cyb4_linux/drivers/usb/gadget/s3c-udc-otg-hs.c

2389 lines
60 KiB
C

/*
* drivers/usb/gadget/s3c-udc-otg-hs.c
* Samsung S3C on-chip full/high speed USB OTG 2.0 device controllers
*
* $Id: s3c-udc-otg-hs.c,v 1.10 2008/07/25 00:49:46 dasan Exp $*
*
* Copyright (C) 2006 for Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "s3c-udc.h"
#include <linux/platform_device.h>
#include <linux/clk.h>
#if defined(CONFIG_CPU_S3C6400)
#include <asm/arch/regs-s3c6400-clock.h>
#else
#include <asm/arch/regs-s3c6410-clock.h>
#endif
#include <asm/arch/regs-usb-otg-hs.h>
/*
Select USB OTG Device Slave or DMA mode
0 : Slave Mode
1 : DMA Mode
*/
#define OTG_DMA_MODE 0
#undef DEBUG_S3C_UDC_SETUP
#undef DEBUG_S3C_UDC_EP0
#undef DEBUG_S3C_UDC_ISR
#undef DEBUG_S3C_UDC_EP1
#undef DEBUG_S3C_UDC_EP2
#undef DEBUG_S3C_UDC
//#define DEBUG_S3C_UDC_SETUP
//#define DEBUG_S3C_UDC_EP0
//#define DEBUG_S3C_UDC_ISR
//#define DEBUG_S3C_UDC_EP1
//#define DEBUG_S3C_UDC_EP2
//#define DEBUG_S3C_UDC
#define EP0_CON 0
#define EP1_OUT 1
#define EP2_IN 2
#define EP3_IN 3
#define EP_MASK 0xF
#if defined(DEBUG_S3C_UDC_ISR) || defined(DEBUG_S3C_UDC_EP0)
static char *state_names[] = {
"WAIT_FOR_SETUP",
"DATA_STATE_XMIT",
"DATA_STATE_NEED_ZLP",
"WAIT_FOR_OUT_STATUS",
"DATA_STATE_RECV"
};
#endif
#ifdef DEBUG_S3C_UDC_SETUP
#define DEBUG_SETUP(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG_SETUP(fmt,args...) do {} while(0)
#endif
#ifdef DEBUG_S3C_UDC_EP0
#define DEBUG_EP0(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG_EP0(fmt,args...) do {} while(0)
#endif
#ifdef DEBUG_S3C_UDC
#define DEBUG(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG(fmt,args...) do {} while(0)
#endif
#ifdef DEBUG_S3C_UDC_ISR
#define DEBUG_ISR(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG_ISR(fmt,args...) do {} while(0)
#endif
#ifdef DEBUG_S3C_UDC_EP1
#define DEBUG_EP1(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG_EP1(fmt,args...) do {} while(0)
#endif
#ifdef DEBUG_S3C_UDC_EP2
#define DEBUG_EP2(fmt,args...) printk(fmt, ##args)
#else
#define DEBUG_EP2(fmt,args...) do {} while(0)
#endif
#define DRIVER_DESC "Samsung Dual-speed USB 2.0 OTG Device Controller"
#define DRIVER_VERSION __DATE__
struct s3c_udc *the_controller;
static const char driver_name[] = "s3c-udc";
static const char driver_desc[] = DRIVER_DESC;
static const char ep0name[] = "ep0-control";
#if OTG_DMA_MODE
static int rx_dmaStart = 0;
static int tx_dmaStart = 0;
#define GINTMSK_INIT (INT_OUT_EP|INT_IN_EP|INT_RESUME|INT_ENUMDONE|INT_RESET|INT_SUSPEND)
#define DOEPMSK_INIT (CTRL_OUT_EP_SETUP_PHASE_DONE|AHB_ERROR|TRANSFER_DONE)
#define DIEPMSK_INIT (NON_ISO_IN_EP_TIMEOUT|AHB_ERROR|TRANSFER_DONE)
#define GAHBCFG_INIT (PTXFE_HALF|NPTXFE_HALF|MODE_DMA|BURST_INCR16|GBL_INT_UNMASK)
#else
#define GINTMSK_INIT (INT_RESUME|INT_ENUMDONE|INT_RESET|INT_SUSPEND|INT_RX_FIFO_NOT_EMPTY)
#define DOEPMSK_INIT (AHB_ERROR)
#define DIEPMSK_INIT (NON_ISO_IN_EP_TIMEOUT|AHB_ERROR)
#define GAHBCFG_INIT (PTXFE_HALF|NPTXFE_HALF|MODE_SLAVE|BURST_INCR16|GBL_INT_UNMASK)
#endif
u32 tx_ep_num = 2;
// Max packet size
static u32 ep0_fifo_size = 64;
static u32 ep_fifo_size = 512;
static u32 ep_fifo_size2 = 1024;
struct usb_ctrlrequest ctrl;
static int set_interface_first = 0;
/*
Local declarations.
*/
static int s3c_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *);
static int s3c_ep_disable(struct usb_ep *ep);
static struct usb_request *s3c_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
static void s3c_free_request(struct usb_ep *ep, struct usb_request *);
static void *s3c_alloc_buffer(struct usb_ep *ep, unsigned, dma_addr_t *,
gfp_t gfp_flags);
static void s3c_free_buffer(struct usb_ep *ep, void *, dma_addr_t,
unsigned);
static int s3c_queue(struct usb_ep *ep, struct usb_request *, gfp_t gfp_flags);
static int s3c_dequeue(struct usb_ep *ep, struct usb_request *);
static int s3c_set_halt(struct usb_ep *ep, int);
static int s3c_fifo_status(struct usb_ep *ep);
static void s3c_fifo_flush(struct usb_ep *ep);
static void s3c_ep0_read(struct s3c_udc *dev);
static void s3c_ep0_kick(struct s3c_udc *dev, struct s3c_ep *ep);
static void s3c_handle_ep0(struct s3c_udc *dev);
static int s3c_ep0_write(struct s3c_udc *dev);
static void done(struct s3c_ep *ep, struct s3c_request *req,
int status);
static void stop_activity(struct s3c_udc *dev,
struct usb_gadget_driver *driver);
static int udc_enable(struct s3c_udc *dev);
static void udc_set_address(struct s3c_udc *dev, unsigned char address);
static void reconfig_usbd(void);
static struct usb_ep_ops s3c_ep_ops = {
.enable = s3c_ep_enable,
.disable = s3c_ep_disable,
.alloc_request = s3c_alloc_request,
.free_request = s3c_free_request,
.alloc_buffer = s3c_alloc_buffer,
.free_buffer = s3c_free_buffer,
.queue = s3c_queue,
.dequeue = s3c_dequeue,
.set_halt = s3c_set_halt,
.fifo_status = s3c_fifo_status,
.fifo_flush = s3c_fifo_flush,
};
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static const char proc_node_name[] = "driver/udc";
static int
udc_proc_read(char *page, char **start, off_t off, int count,
int *eof, void *_dev)
{
char *buf = page;
struct s3c_udc *dev = _dev;
char *next = buf;
unsigned size = count;
unsigned long flags;
int t;
if (off != 0)
return 0;
local_irq_save(flags);
/* basic device status */
t = scnprintf(next, size,
DRIVER_DESC "\n"
"%s version: %s\n"
"Gadget driver: %s\n"
"\n",
driver_name, DRIVER_VERSION,
dev->driver ? dev->driver->driver.name : "(none)");
size -= t;
next += t;
local_irq_restore(flags);
*eof = 1;
return count - size;
}
#define create_proc_files() \
create_proc_read_entry(proc_node_name, 0, NULL, udc_proc_read, dev)
#define remove_proc_files() \
remove_proc_entry(proc_node_name, NULL)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_proc_files() do {} while (0)
#define remove_proc_files() do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct s3c_udc *dev)
{
DEBUG_SETUP("%s: %p\n", __FUNCTION__, dev);
udc_set_address(dev, 0);
dev->ep0state = WAIT_FOR_SETUP;
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->usb_address = 0;
writel(readl(S3C_USBOTG_PHYPWR)|(0x7<<1), S3C_USBOTG_PHYPWR);
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct s3c_udc *dev)
{
u32 i;
DEBUG_SETUP("%s: %p\n", __FUNCTION__, dev);
/* device/ep0 records init */
INIT_LIST_HEAD(&dev->gadget.ep_list);
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
dev->ep0state = WAIT_FOR_SETUP;
/* basic endpoint records init */
for (i = 0; i < S3C_MAX_ENDPOINTS; i++) {
struct s3c_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
ep->desc = 0;
ep->stopped = 0;
INIT_LIST_HEAD(&ep->queue);
ep->pio_irqs = 0;
}
/* the rest was statically initialized, and is read-only */
}
#define BYTES2MAXP(x) (x / 8)
#define MAXP2BYTES(x) (x * 8)
/* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static int udc_enable(struct s3c_udc *dev)
{
u32 uTemp;
DEBUG_SETUP("%s: %p\n", __FUNCTION__, dev);
uTemp = readl(S3C_OTHERS);
uTemp |= (1<<16); // USB_SIG_MASK
writel(uTemp, S3C_OTHERS);
// 1. Initializes OTG Phy.
writel(0x0, S3C_USBOTG_PHYPWR);
writel(0x20, S3C_USBOTG_PHYCLK);
writel(0x1, S3C_USBOTG_RSTCON);
udelay(50);
writel(0x0, S3C_USBOTG_RSTCON);
udelay(50);
reconfig_usbd();
DEBUG_SETUP("S3C USB 2.0 OTG Controller Core Initialized : 0x%x\n",
readl(S3C_UDC_OTG_GINTMSK));
dev->gadget.speed = USB_SPEED_UNKNOWN;
return 0;
}
/*
Register entry point for the peripheral controller driver.
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct s3c_udc *dev = the_controller;
int retval;
DEBUG_SETUP("%s: %s\n", __FUNCTION__, driver->driver.name);
if (!driver
|| (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
|| !driver->bind
|| !driver->unbind || !driver->disconnect || !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
/* first hook up the driver ... */
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
retval = device_add(&dev->gadget.dev);
if(retval) { /* TODO */
printk("target device_add failed, error %d\n", retval);
return retval;
}
retval = driver->bind(&dev->gadget);
if (retval) {
printk("%s: bind to driver %s --> error %d\n", dev->gadget.name,
driver->driver.name, retval);
device_del(&dev->gadget.dev);
dev->driver = 0;
dev->gadget.dev.driver = 0;
return retval;
}
enable_irq(IRQ_OTG);
printk("Registered gadget driver '%s'\n", driver->driver.name);
udc_enable(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
/*
Unregister entry point for the peripheral controller driver.
*/
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct s3c_udc *dev = the_controller;
unsigned long flags;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver)
return -EINVAL;
spin_lock_irqsave(&dev->lock, flags);
dev->driver = 0;
stop_activity(dev, driver);
spin_unlock_irqrestore(&dev->lock, flags);
driver->unbind(&dev->gadget);
device_del(&dev->gadget.dev);
disable_irq(IRQ_OTG);
printk("Unregistered gadget driver '%s'\n", driver->driver.name);
udc_disable(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
#if OTG_DMA_MODE /* DMA Mode */
static int setdma_rx(struct s3c_ep *ep, struct s3c_request *req)
{
u32 *buf, ctrl;
u32 length, pktcnt;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
length = req->req.length - req->req.actual;
consistent_sync(buf, length, DMA_FROM_DEVICE);
if(length == 0)
pktcnt = 1;
else
pktcnt = (length - 1)/(ep->ep.maxpacket) + 1;
writel(virt_to_phys(buf), S3C_UDC_OTG_DOEPDMA1);
writel((pktcnt<<19)|(length<<0), S3C_UDC_OTG_DOEPTSIZ1);
DEBUG_EP1("%s: RX DMA start : DOEPDMA1 = 0x%x, DOEPTSIZ1 = 0x%x,"
"pktcnt= %d, xfersize = %d\n",
__FUNCTION__,
readl(S3C_UDC_OTG_DOEPDMA1),
readl(S3C_UDC_OTG_DOEPTSIZ1),
pktcnt, req->req.length);
ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
writel(DEPCTL_EPENA|DEPCTL_CNAK|ctrl, S3C_UDC_OTG_DOEPCTL1);
rx_dmaStart = 1;
udelay(600);
return 0;
}
static int setdma_tx(struct s3c_ep *ep, struct s3c_request *req)
{
u32 *buf, ctrl;
u32 length, pktcnt;
buf = req->req.buf + req->req.actual;
prefetch(buf);
length = req->req.length - req->req.actual;
req->req.actual += length;
consistent_sync(buf, length, DMA_TO_DEVICE);
if(length == 0)
pktcnt = 1;
else
pktcnt = (length - 1)/(ep->ep.maxpacket) + 1;
if(ep_index(ep) == EP0_CON) {
writel(virt_to_phys(buf), S3C_UDC_OTG_DIEPDMA0);
writel((pktcnt<<19)|(length<<0), (u32) S3C_UDC_OTG_DIEPTSIZ0);
DEBUG_EP0("%s:TX DMA start : DIEPDMA0 = 0x%x, DIEPTSIZ0 = 0x%x,"
"pktcnt = %d, xfersize = %d\n",
__FUNCTION__,
readl(S3C_UDC_OTG_DIEPDMA0),
readl(S3C_UDC_OTG_DIEPTSIZ0),
pktcnt, req->req.length);
ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| ctrl, (u32) S3C_UDC_OTG_DIEPCTL0);
udelay(20);
} else if ((ep_index(ep) == EP2_IN)) {
writel(virt_to_phys(buf), S3C_UDC_OTG_DIEPDMA2);
writel((pktcnt<<19)|(length<<0), S3C_UDC_OTG_DIEPTSIZ2);
DEBUG_EP2("%s:TX DMA start : DIEPDMA2 = 0x%x, DIEPTSIZ2 = 0x%x,"
"pktcnt = %d, xfersize = %d\n",
__FUNCTION__,
readl(S3C_UDC_OTG_DIEPDMA2),
readl(S3C_UDC_OTG_DIEPTSIZ2),
pktcnt, length);
ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| ctrl, (u32) S3C_UDC_OTG_DIEPCTL2);
udelay(500);
} else if ((ep_index(ep) == EP3_IN)) {
if (set_interface_first == 1) {
DEBUG_EP2("%s: first packet write skipped after set_interface\n", __FUNCTION__);
set_interface_first = 0;
return length;
}
writel(virt_to_phys(buf), S3C_UDC_OTG_DIEPDMA3);
writel((pktcnt<<19)|(length<<0), S3C_UDC_OTG_DIEPTSIZ3);
DEBUG_EP2("%s:TX DMA start : DIEPDMA3 = 0x%x, DIEPTSIZ3 = 0x%x,"
"pktcnt = %d, xfersize = %d\n",
__FUNCTION__,
readl(S3C_UDC_OTG_DIEPDMA3),
readl(S3C_UDC_OTG_DIEPTSIZ3),
pktcnt, length);
ctrl = readl(S3C_UDC_OTG_DIEPCTL3);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| ctrl, (u32) S3C_UDC_OTG_DIEPCTL3);
udelay(20);
} else {
printk("%s: --> Error Unused Endpoint!!\n",
__FUNCTION__);
BUG();
}
tx_dmaStart = 1;
return length;
}
static void complete_rx(struct s3c_udc *dev, u32 ep_idx)
{
struct s3c_ep *ep = &dev->ep[ep_idx];
struct s3c_request *req;
u32 csr, count_bytes, xfer_length, is_short = 0;
if (unlikely(!(ep->desc))) {
/* Throw packet away.. */
printk("%s: No descriptor?!?\n", __FUNCTION__);
return;
}
if (list_empty(&ep->queue)) {
DEBUG("%s: NULL REQ on OUT EP-%d\n", __FUNCTION__, ep_idx);
return;
} else if (rx_dmaStart) {
req = list_entry(ep->queue.next,
struct s3c_request, queue);
csr = readl(S3C_UDC_OTG_DOEPTSIZ1);
count_bytes = (csr & 0x7fff);
consistent_sync(req->req.buf, req->req.length, DMA_FROM_DEVICE);
xfer_length = req->req.length-count_bytes;
req->req.actual += min(xfer_length, req->req.length);
is_short = (xfer_length < ep->ep.maxpacket);
DEBUG_EP1("%s: RX DMA done : %d/%d bytes received%s,"
"DOEPTSIZ1 = 0x%x, %d bytes remained\n",
__FUNCTION__, req->req.actual, req->req.length,
is_short ? "/S" : "", csr, count_bytes);
if (is_short || req->req.actual == req->req.length) {
done(ep, req, 0);
rx_dmaStart = 0;
}
}
}
static void complete_tx(struct s3c_udc *dev, u32 ep_idx)
{
struct s3c_ep *ep = &dev->ep[ep_idx];
struct s3c_request *req;
u32 count_bytes;
if (unlikely(!(ep->desc))) {
/* Throw packet away.. */
printk("%s: No descriptor?!?\n", __FUNCTION__);
return;
}
if (list_empty(&ep->queue)) {
DEBUG("%s: NULL REQ on IN EP-%d\n", __FUNCTION__, ep_idx);
return;
} else if (tx_dmaStart) {
req = list_entry(ep->queue.next, struct s3c_request, queue);
count_bytes = (readl(S3C_UDC_OTG_DIEPTSIZ2)) & 0x7fff;
req->req.actual = req->req.length-count_bytes;
DEBUG_EP2("%s: TX DMA done : %d/%d bytes sent, DIEPTSIZ2 = 0x%x\n",
__FUNCTION__, req->req.actual,
req->req.length,
readl(S3C_UDC_OTG_DIEPTSIZ2));
if (req->req.actual == req->req.length) {
done(ep, req, 0);
tx_dmaStart = 0;
}
}
}
#else /* Slave Mode */
/*-------------------------------------------------------------------------*/
/** Read to request from FIFO (max read == bytes in fifo)
* Return: 0 = still running, 1 = completed, negative = errno
*/
static int read_fifo(struct s3c_ep *ep, struct s3c_request *req)
{
u32 csr, gintmsk;
u32 *buf;
u32 bufferspace, count, count_bytes, is_short = 0;
u32 fifo = ep->fifo;
csr = readl(S3C_UDC_OTG_GRXSTSP);
count_bytes = (csr & 0x7ff0)>>4;
gintmsk = readl(S3C_UDC_OTG_GINTMSK);
if(!count_bytes) {
DEBUG_EP1("%s: count_bytes %d bytes\n", __FUNCTION__, count_bytes);
// Unmask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
writel(gintmsk | INT_RX_FIFO_NOT_EMPTY, S3C_UDC_OTG_GINTMSK);
return 0;
}
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
count = count_bytes / 4;
if(count_bytes%4) count = count + 1;
req->req.actual += min(count_bytes, bufferspace);
is_short = (count_bytes < ep->ep.maxpacket);
DEBUG_EP1("%s: read %s, %d bytes%s req %p %d/%d GRXSTSP:0x%x\n",
__FUNCTION__,
ep->ep.name, count_bytes,
is_short ? "/S" : "", req, req->req.actual, req->req.length, csr);
while (likely(count-- != 0)) {
u32 byte = (u32) readl(fifo);
if (unlikely(bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
printk("%s overflow %d\n", ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace-=4;
}
}
// Unmask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
writel(gintmsk | INT_RX_FIFO_NOT_EMPTY, S3C_UDC_OTG_GINTMSK);
/* completion */
if (is_short || req->req.actual == req->req.length) {
done(ep, req, 0);
return 1;
}
/* finished that packet. the next one may be waiting... */
return 0;
}
/* Inline code */
static __inline__ int write_packet(struct s3c_ep *ep,
struct s3c_request *req, int max)
{
u32 *buf;
int length, count;
u32 fifo = ep->fifo, in_ctrl;
buf = req->req.buf + req->req.actual;
prefetch(buf);
length = req->req.length - req->req.actual;
length = min(length, max);
req->req.actual += length;
DEBUG("%s: Write %d (max %d), fifo=0x%x\n",
__FUNCTION__, length, max, fifo);
if(ep_index(ep) == EP0_CON) {
writel((1<<19)|(length<<0), (u32) S3C_UDC_OTG_DIEPTSIZ0);
in_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| in_ctrl, (u32) S3C_UDC_OTG_DIEPCTL0);
DEBUG_EP0("%s:(DIEPTSIZ0):0x%x, (DIEPCTL0):0x%x, (GNPTXSTS):0x%x\n", __FUNCTION__,
readl(S3C_UDC_OTG_DIEPTSIZ0),readl(S3C_UDC_OTG_DIEPCTL0),
readl(S3C_UDC_OTG_GNPTXSTS));
udelay(20);
} else if ((ep_index(ep) == EP2_IN)) {
writel((1<<19)|(length<<0), S3C_UDC_OTG_DIEPTSIZ2);
in_ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| in_ctrl, (u32) S3C_UDC_OTG_DIEPCTL2);
DEBUG_EP2("%s:(DIEPTSIZ2):0x%x, (DIEPCTL2):0x%x, (GNPTXSTS):0x%x\n", __FUNCTION__,
readl(S3C_UDC_OTG_DIEPTSIZ2),readl(S3C_UDC_OTG_DIEPCTL2),
readl(S3C_UDC_OTG_GNPTXSTS));
udelay(20);
} else if ((ep_index(ep) == EP3_IN)) {
if (set_interface_first == 1) {
DEBUG_EP2("%s: first packet write skipped after set_interface\n", __FUNCTION__);
set_interface_first = 0;
return length;
}
writel((1<<19)|(length<<0), S3C_UDC_OTG_DIEPTSIZ3);
in_ctrl = readl(S3C_UDC_OTG_DIEPCTL3);
writel(DEPCTL_EPENA|DEPCTL_CNAK|(EP2_IN<<11)| in_ctrl, (u32) S3C_UDC_OTG_DIEPCTL3);
DEBUG_EP2("%s:(DIEPTSIZ3):0x%x, (DIEPCTL3):0x%x, (GNPTXSTS):0x%x\n", __FUNCTION__,
readl(S3C_UDC_OTG_DIEPTSIZ3),readl(S3C_UDC_OTG_DIEPCTL3),
readl(S3C_UDC_OTG_GNPTXSTS));
udelay(20);
} else {
printk("%s: --> Error Unused Endpoint!!\n",
__FUNCTION__);
BUG();
}
for (count=0;count<length;count+=4) {
writel(*buf++, fifo);
}
return length;
}
/** Write request to FIFO (max write == maxp size)
* Return: 0 = still running, 1 = completed, negative = errno
*/
static int write_fifo(struct s3c_ep *ep, struct s3c_request *req)
{
u32 max, gintmsk;
unsigned count;
int is_last = 0, is_short = 0;
gintmsk = readl(S3C_UDC_OTG_GINTMSK);
max = le16_to_cpu(ep->desc->wMaxPacketSize);
count = write_packet(ep, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely(count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely(max < ep_maxpacket(ep));
}
DEBUG_EP2("%s: wrote %s %d bytes%s%s req %p %d/%d\n",
__FUNCTION__,
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req, req->req.actual, req->req.length);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
if(!ep_index(ep)){
printk("%s: --> Error EP0 must not come here!\n",
__FUNCTION__);
BUG();
}
writel(gintmsk&(~INT_TX_FIFO_EMPTY), S3C_UDC_OTG_GINTMSK);
done(ep, req, 0);
return 1;
}
// Unmask USB OTG 2.0 interrupt source : INT_TX_FIFO_EMPTY
writel(gintmsk | INT_TX_FIFO_EMPTY, S3C_UDC_OTG_GINTMSK);
return 0;
}
/* ********************************************************************************************* */
/* Bulk OUT (recv)
*/
static void s3c_out_epn(struct s3c_udc *dev, u32 ep_idx)
{
struct s3c_ep *ep = &dev->ep[ep_idx];
struct s3c_request *req;
if (unlikely(!(ep->desc))) {
/* Throw packet away.. */
printk("%s: No descriptor?!?\n", __FUNCTION__);
return;
}
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next,
struct s3c_request, queue);
if (unlikely(!req)) {
DEBUG("%s: NULL REQ on OUT EP-%d\n", __FUNCTION__, ep_idx);
return;
} else {
read_fifo(ep, req);
}
}
/**
* s3c_in_epn - handle IN interrupt
*/
static void s3c_in_epn(struct s3c_udc *dev, u32 ep_idx)
{
struct s3c_ep *ep = &dev->ep[ep_idx];
struct s3c_request *req;
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct s3c_request, queue);
if (unlikely(!req)) {
DEBUG("%s: NULL REQ on IN EP-%d\n", __FUNCTION__, ep_idx);
return;
}
else {
write_fifo(ep, req);
}
}
#endif
/*
* done - retire a request; caller blocked irqs
*/
static void done(struct s3c_ep *ep, struct s3c_request *req, int status)
{
unsigned int stopped = ep->stopped;
DEBUG("%s: %s %p, stopped = %d\n", __FUNCTION__, ep->ep.name, ep, stopped);
list_del_init(&req->queue);
if (likely(req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
DEBUG("complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
spin_unlock(&ep->dev->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&ep->dev->lock);
ep->stopped = stopped;
}
/*
* nuke - dequeue ALL requests
*/
void nuke(struct s3c_ep *ep, int status)
{
struct s3c_request *req;
DEBUG("%s: %s %p\n", __FUNCTION__, ep->ep.name, ep);
/* called with irqs blocked */
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct s3c_request, queue);
done(ep, req, status);
}
}
static void stop_activity(struct s3c_udc *dev,
struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = 0;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < S3C_MAX_ENDPOINTS; i++) {
struct s3c_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
/* report disconnect; the driver is already quiesced */
if (driver) {
spin_unlock(&dev->lock);
driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
/* re-init driver-visible data structures */
udc_reinit(dev);
}
static void reconfig_usbd(void)
{
// 2. Soft-reset OTG Core and then unreset again.
u32 uTemp = writel(CORE_SOFT_RESET, S3C_UDC_OTG_GRSTCTL);
#if 1
writel( 0<<15 // PHY Low Power Clock sel
|1<<14 // Non-Periodic TxFIFO Rewind Enable
|0x5<<10 // Turnaround time
|0<<9|0<<8 // [0:HNP disable, 1:HNP enable][ 0:SRP disable, 1:SRP enable] H1= 1,1
|0<<7 // Ulpi DDR sel
|0<<6 // 0: high speed utmi+, 1: full speed serial
|0<<4 // 0: utmi+, 1:ulpi
|1<<3 // phy i/f 0:8bit, 1:16bit
|0x7<<0, // HS/FS Timeout*
S3C_UDC_OTG_GUSBCFG);
#endif
// 3. Put the OTG device core in the disconnected state.
uTemp = readl(S3C_UDC_OTG_DCTL);
uTemp |= SOFT_DISCONNECT;
writel(uTemp, S3C_UDC_OTG_DCTL);
udelay(20);
// 4. Make the OTG device core exit from the disconnected state.
uTemp = readl(S3C_UDC_OTG_DCTL);
uTemp = uTemp & ~SOFT_DISCONNECT;
writel(uTemp, S3C_UDC_OTG_DCTL);
// 5. Configure OTG Core to initial settings of device mode.
writel(1<<18|0x0<<0, S3C_UDC_OTG_DCFG); // [][1: full speed(30Mhz) 0:high speed]
mdelay(1);
// 6. Unmask the core interrupts
writel(GINTMSK_INIT, S3C_UDC_OTG_GINTMSK);
// 7. Set NAK bit of EP0, EP1, EP2
writel(DEPCTL_EPDIS|DEPCTL_SNAK|(0<<0), S3C_UDC_OTG_DOEPCTL0); /* EP0: Control OUT */
writel(DEPCTL_EPDIS|DEPCTL_SNAK|(0<<0), S3C_UDC_OTG_DIEPCTL0); /* EP0: Control IN */
writel(DEPCTL_EPDIS|DEPCTL_SNAK|DEPCTL_BULK_TYPE|(0<<0), S3C_UDC_OTG_DOEPCTL1); /* EP1:Data OUT */
writel(DEPCTL_EPDIS|DEPCTL_SNAK|DEPCTL_BULK_TYPE|(0<<0), S3C_UDC_OTG_DIEPCTL2); /* EP2:Data IN */
writel(DEPCTL_EPDIS|DEPCTL_SNAK|DEPCTL_BULK_TYPE|(0<<0), S3C_UDC_OTG_DIEPCTL3); /* EP3:IN Interrupt*/
// 8. Unmask EP interrupts on IN EPs : 0, 2, 3
// OUT EPs : 0, 1
writel( (((1<<EP1_OUT)|(1<<EP0_CON))<<16) |
(1<<EP3_IN)|(1<<EP2_IN)|(1<<EP0_CON),
S3C_UDC_OTG_DAINTMSK);
// 9. Unmask device OUT EP common interrupts
writel(DOEPMSK_INIT, S3C_UDC_OTG_DOEPMSK);
// 10. Unmask device IN EP common interrupts
writel(DIEPMSK_INIT, S3C_UDC_OTG_DIEPMSK);
// 11. Set Rx FIFO Size
writel(RX_FIFO_SIZE, S3C_UDC_OTG_GRXFSIZ);
// 12. Set Non Periodic Tx FIFO Size
writel(NPTX_FIFO_SIZE<<16| NPTX_FIFO_START_ADDR<<0, S3C_UDC_OTG_GNPTXFSIZ);
// 13. Clear NAK bit of EP0, EP1, EP2
// For Slave mode
writel(DEPCTL_EPDIS|DEPCTL_CNAK|(0<<0), S3C_UDC_OTG_DOEPCTL0); /* EP0: Control OUT */
// 14. Initialize OTG Link Core.
writel(GAHBCFG_INIT, S3C_UDC_OTG_GAHBCFG);
}
void set_max_pktsize(struct s3c_udc *dev, enum usb_device_speed speed)
{
u32 ep_ctrl;
if (speed == USB_SPEED_HIGH) {
ep0_fifo_size = 64;
ep_fifo_size = 512;
ep_fifo_size2 = 1024;
dev->gadget.speed = USB_SPEED_HIGH;
} else {
ep0_fifo_size = 64;
ep_fifo_size = 64;
ep_fifo_size2 = 64;
dev->gadget.speed = USB_SPEED_FULL;
}
dev->ep[0].ep.maxpacket = ep0_fifo_size;
dev->ep[1].ep.maxpacket = ep_fifo_size;
dev->ep[2].ep.maxpacket = ep_fifo_size;
dev->ep[3].ep.maxpacket = ep_fifo_size;
dev->ep[4].ep.maxpacket = ep_fifo_size;
dev->ep[5].ep.maxpacket = ep_fifo_size2;
dev->ep[6].ep.maxpacket = ep_fifo_size2;
dev->ep[7].ep.maxpacket = ep_fifo_size2;
dev->ep[8].ep.maxpacket = ep_fifo_size2;
if (speed == USB_SPEED_HIGH) {
// EP0 - Control IN (64 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(ep_ctrl|(0<<0), (u32) S3C_UDC_OTG_DIEPCTL0);
// EP0 - Control OUT (64 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
writel(ep_ctrl|(0<<0), (u32) S3C_UDC_OTG_DOEPCTL0);
} else {
// EP0 - Control IN (8 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(ep_ctrl|(3<<0), (u32) S3C_UDC_OTG_DIEPCTL0);
// EP0 - Control OUT (8 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
writel(ep_ctrl|(3<<0), (u32) S3C_UDC_OTG_DOEPCTL0);
}
// EP1 - Bulk Data OUT (512 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
writel(ep_ctrl|(ep_fifo_size<<0), (u32) S3C_UDC_OTG_DOEPCTL1);
// EP2 - Bulk Data IN (512 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
writel(ep_ctrl|(ep_fifo_size<<0), (u32) S3C_UDC_OTG_DIEPCTL2);
// EP3 - INTR Data IN (512 bytes)
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL3);
writel(ep_ctrl|(ep_fifo_size<<0), (u32) S3C_UDC_OTG_DIEPCTL3);
}
static int reset_available = 1;
/*
* elfin usb client interrupt handler.
*/
static irqreturn_t s3c_udc_irq(int irq, void *_dev)
{
struct s3c_udc *dev = _dev;
u32 intr_status;
u32 usb_status, ep_ctrl, gintmsk;
spin_lock(&dev->lock);
intr_status = readl(S3C_UDC_OTG_GINTSTS);
gintmsk = readl(S3C_UDC_OTG_GINTMSK);
DEBUG_ISR("\n**** %s : GINTSTS=0x%x(on state %s), GINTMSK : 0x%x\n",
__FUNCTION__, intr_status, state_names[dev->ep0state], gintmsk);
if (!intr_status) {
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
if (intr_status & INT_ENUMDONE) {
DEBUG_SETUP("####################################\n");
DEBUG_SETUP(" %s: Speed Detection interrupt\n",
__FUNCTION__);
writel(INT_ENUMDONE, S3C_UDC_OTG_GINTSTS);
usb_status = (readl(S3C_UDC_OTG_DSTS) & 0x6);
if (usb_status & (USB_FULL_30_60MHZ | USB_FULL_48MHZ)) {
DEBUG_SETUP(" %s: Full Speed Detection\n",__FUNCTION__);
set_max_pktsize(dev, USB_SPEED_FULL);
} else {
DEBUG_SETUP(" %s: High Speed Detection : 0x%x\n", __FUNCTION__, usb_status);
set_max_pktsize(dev, USB_SPEED_HIGH);
}
}
if (intr_status & INT_EARLY_SUSPEND) {
DEBUG_SETUP("####################################\n");
DEBUG_SETUP(" %s:Early suspend interrupt\n", __FUNCTION__);
writel(INT_EARLY_SUSPEND, S3C_UDC_OTG_GINTSTS);
}
if (intr_status & INT_SUSPEND) {
usb_status = readl(S3C_UDC_OTG_DSTS);
DEBUG_SETUP("####################################\n");
DEBUG_SETUP(" %s:Suspend interrupt :(DSTS):0x%x\n", __FUNCTION__, usb_status);
writel(INT_SUSPEND, S3C_UDC_OTG_GINTSTS);
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->suspend) {
dev->driver->suspend(&dev->gadget);
}
}
if (intr_status & INT_RESUME) {
DEBUG_SETUP("####################################\n");
DEBUG_SETUP(" %s: Resume interrupt\n", __FUNCTION__);
writel(INT_RESUME, S3C_UDC_OTG_GINTSTS);
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume) {
dev->driver->resume(&dev->gadget);
}
}
if (intr_status & INT_RESET) {
usb_status = readl(S3C_UDC_OTG_GOTGCTL);
DEBUG_SETUP("####################################\n");
DEBUG_SETUP(" %s: Reset interrupt - (GOTGCTL):0x%x\n", __FUNCTION__, usb_status);
writel(INT_RESET, S3C_UDC_OTG_GINTSTS);
if((usb_status & 0xc0000) == (0x3 << 18)) {
if(reset_available) {
DEBUG_SETUP(" ===> OTG core got reset (%d)!! \n", reset_available);
reconfig_usbd();
dev->ep0state = WAIT_FOR_SETUP;
reset_available = 0;
#if OTG_DMA_MODE
writel((1 << 19)|sizeof(struct usb_ctrlrequest), S3C_UDC_OTG_DOEPTSIZ0);
writel(virt_to_phys(&ctrl), S3C_UDC_OTG_DOEPDMA0);
writel(DEPCTL_EPENA |DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL0);
tx_dmaStart = 0;
rx_dmaStart = 0;
#endif
}
} else {
reset_available = 1;
DEBUG_SETUP(" RESET handling skipped : reset_available : %d\n", reset_available);
}
}
#if OTG_DMA_MODE
if ((intr_status & INT_IN_EP) || (intr_status & INT_OUT_EP)) {
u32 ep_int, ep_int_status;
gintmsk &= ~(INT_IN_EP|INT_OUT_EP); // interrupt mask
writel(gintmsk, S3C_UDC_OTG_GINTMSK);
ep_int = readl(S3C_UDC_OTG_DAINT);
DEBUG_ISR("\tDAINT : 0x%x \n", ep_int);
if (ep_int & (1<<EP0_CON)) { /* CONTROL IN endpont */
ep_int_status = readl(S3C_UDC_OTG_DIEPINT0);
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
DEBUG_EP0("\tEP0-IN : DIEPINT0 = 0x%x, DIEPCTL0 = 0x%x \n", ep_int_status, ep_ctrl);
if (ep_int_status & TRANSFER_DONE) {
DEBUG_EP0("\tEP0-IN transaction completed - (TX DMA done)\n");
writel((1 << 19)|sizeof(struct usb_ctrlrequest), S3C_UDC_OTG_DOEPTSIZ0);
writel(virt_to_phys(&ctrl), S3C_UDC_OTG_DOEPDMA0);
writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL0);
tx_dmaStart = 0;
}
writel(ep_int_status, S3C_UDC_OTG_DIEPINT0); // Interrupt Clear
} else if (ep_int & ((1<<EP0_CON)<<16)) { /* CONTROL OUT endpont */
ep_int_status = readl(S3C_UDC_OTG_DOEPINT0);
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
DEBUG_EP0("\tEP0-OUT : DOEPINT0 = 0x%x, DOEPCTL0 = 0x%x\n", ep_int_status, ep_ctrl);
if (ep_int_status & CTRL_OUT_EP_SETUP_PHASE_DONE) {
DEBUG_EP0("\tSETUP packet(transaction) arrived\n");
s3c_handle_ep0(dev);
} else if (ep_int_status & TRANSFER_DONE) {
DEBUG_EP0("\tEP0-OUT transaction completed - (RX DMA done)\n");
writel((1 << 19)|sizeof(struct usb_ctrlrequest), S3C_UDC_OTG_DOEPTSIZ0);
writel(virt_to_phys(&ctrl), S3C_UDC_OTG_DOEPDMA0);
writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL0); // ep0 OUT enable, clear nak
}
writel(ep_int_status, S3C_UDC_OTG_DOEPINT0); // Interrupt Clear
} else if (ep_int & ((1<<EP1_OUT)<<16)) { /* BULK OUT endpont */
ep_int_status = readl(S3C_UDC_OTG_DOEPINT1);
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
DEBUG_EP1("\tEP1-OUT : DOEPINT1 = 0x%x, DOEPCTL1 = 0x%x\n", ep_int_status, ep_ctrl);
if (ep_int_status & TRANSFER_DONE) {
DEBUG_EP1("\tBULK OUT packet(transaction) arrived - (RX DMA done)\n");
complete_rx(dev, EP1_OUT);
}
writel(ep_int_status, S3C_UDC_OTG_DOEPINT1); // ep1 Interrupt Clear
} else if(ep_int & (1<<EP2_IN)) { /* BULK IN endpont */
ep_int_status = readl(S3C_UDC_OTG_DIEPINT2);
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
DEBUG_EP2("\tEP2-IN : DIEPINT2 = 0x%x, DIEPCTL2 = 0x%x\n", ep_int_status, ep_ctrl);
if (ep_int_status & TRANSFER_DONE) {
DEBUG_EP2("\tBULK IN transaction completed - (TX DMA done)\n");
complete_tx(dev, EP2_IN);
}
writel(ep_int_status, S3C_UDC_OTG_DIEPINT2); // ep2 Interrupt Clear
}
gintmsk |= (INT_IN_EP|INT_OUT_EP);
writel(gintmsk, S3C_UDC_OTG_GINTMSK);
}
#else
if (intr_status & INT_RX_FIFO_NOT_EMPTY) {
u32 grx_status, packet_status, ep_num, fifoCntByte = 0;
// Mask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
gintmsk &= ~INT_RX_FIFO_NOT_EMPTY;
writel(gintmsk, S3C_UDC_OTG_GINTMSK);
grx_status = readl(S3C_UDC_OTG_GRXSTSR);
DEBUG_ISR(" INT_RX_FIFO_NOT_EMPTY(GRXSTSR):0x%x, GINTMSK:0x%x\n", grx_status, gintmsk);
packet_status = grx_status & 0x1E0000;
fifoCntByte = (grx_status & 0x7ff0)>>4;
ep_num = grx_status & EP_MASK;
if (fifoCntByte) {
if (packet_status == SETUP_PKT_RECEIVED) {
DEBUG_EP0(" => A SETUP data packet received : %d bytes\n", fifoCntByte);
s3c_handle_ep0(dev);
// Unmask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
gintmsk |= INT_RX_FIFO_NOT_EMPTY;
} else if (packet_status == OUT_PKT_RECEIVED) {
if(ep_num == EP1_OUT) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
DEBUG_ISR(" => A Bulk OUT data packet received : %d bytes, (DOEPCTL1):0x%x\n",
fifoCntByte, ep_ctrl);
s3c_out_epn(dev, 1);
gintmsk = readl(S3C_UDC_OTG_GINTMSK);
writel(ep_ctrl | DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL1);
} else if (ep_num == EP0_CON) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
DEBUG_EP0(" => A CONTROL OUT data packet received : %d bytes, (DOEPCTL0):0x%x\n",
fifoCntByte, ep_ctrl);
dev->ep0state = DATA_STATE_RECV;
s3c_ep0_read(dev);
gintmsk |= INT_RX_FIFO_NOT_EMPTY;
} else {
DEBUG_ISR(" => Unused EP: %d bytes, (GRXSTSR):0x%x\n", fifoCntByte, grx_status);
}
} else {
grx_status = readl(S3C_UDC_OTG_GRXSTSP);
// Unmask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
gintmsk |= INT_RX_FIFO_NOT_EMPTY;
DEBUG_ISR(" => A reserved packet received : %d bytes\n", fifoCntByte);
}
} else {
if (dev->ep0state == DATA_STATE_XMIT) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
DEBUG_EP0(" => Write ep0 continue... (DOEPCTL0):0x%x\n", ep_ctrl);
s3c_ep0_write(dev);
}
if (packet_status == SETUP_TRANSACTION_COMPLETED) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
DEBUG_EP0(" => A SETUP transaction completed (DOEPCTL0):0x%x\n", ep_ctrl);
writel(ep_ctrl | DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL0);
} else if (packet_status == OUT_TRANSFER_COMPLELTED) {
if (ep_num == EP1_OUT) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
DEBUG_ISR(" => An OUT transaction completed (DOEPCTL1):0x%x\n", ep_ctrl);
writel(ep_ctrl | DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL1);
} else if (ep_num == EP0_CON) {
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL0);
DEBUG_ISR(" => An OUT transaction completed (DOEPCTL0):0x%x\n", ep_ctrl);
writel(ep_ctrl | DEPCTL_CNAK, S3C_UDC_OTG_DOEPCTL0);
} else {
DEBUG_ISR(" => Unused EP: %d bytes, (GRXSTSR):0x%x\n", fifoCntByte, grx_status);
}
} else if (packet_status == OUT_PKT_RECEIVED) {
DEBUG_ISR(" => A OUT PACKET RECEIVED (NO FIFO CNT BYTE)...(GRXSTSR):0x%x\n", grx_status);
} else {
DEBUG_ISR(" => A RESERVED PACKET RECEIVED (NO FIFO CNT BYTE)...(GRXSTSR):0x%x\n", grx_status);
}
grx_status = readl(S3C_UDC_OTG_GRXSTSP);
// Unmask USB OTG 2.0 interrupt source : INT_RX_FIFO_NOT_EMPTY
gintmsk |= INT_RX_FIFO_NOT_EMPTY;
}
// Un/Mask USB OTG 2.0 interrupt sources
writel(gintmsk, S3C_UDC_OTG_GINTMSK);
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
if (intr_status & INT_TX_FIFO_EMPTY) {
DEBUG_ISR(" INT_TX_FIFO_EMPTY (GNPTXSTS):0x%x, (GINTMSK):0x%x, ep_num=%d\n",
readl(S3C_UDC_OTG_GNPTXSTS),
readl(S3C_UDC_OTG_GINTMSK),
tx_ep_num);
s3c_in_epn(dev, tx_ep_num);
}
#endif
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
static int s3c_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct s3c_ep *ep;
struct s3c_udc *dev;
unsigned long flags;
DEBUG("%s: %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct s3c_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep_maxpacket(ep) < le16_to_cpu(desc->wMaxPacketSize)) {
DEBUG("%s: bad ep or descriptor\n", __FUNCTION__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DEBUG("%s: %s type mismatch\n", __FUNCTION__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& le16_to_cpu(desc->wMaxPacketSize) != ep_maxpacket(ep))
|| !desc->wMaxPacketSize) {
DEBUG("%s: bad %s maxpacket\n", __FUNCTION__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
DEBUG("%s: bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
spin_lock_irqsave(&ep->dev->lock, flags);
ep->stopped = 0;
ep->desc = desc;
ep->pio_irqs = 0;
ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
/* Reset halt state */
s3c_set_halt(_ep, 0);
spin_unlock_irqrestore(&ep->dev->lock, flags);
DEBUG("%s: enabled %s, stopped = %d, maxpacket = %d\n",
__FUNCTION__, _ep->name, ep->stopped, ep->ep.maxpacket);
return 0;
}
/** Disable EP
*/
static int s3c_ep_disable(struct usb_ep *_ep)
{
struct s3c_ep *ep;
unsigned long flags;
DEBUG("%s: %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct s3c_ep, ep);
if (!_ep || !ep->desc) {
DEBUG("%s: %s not enabled\n", __FUNCTION__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
spin_lock_irqsave(&ep->dev->lock, flags);
/* Nuke all pending requests */
nuke(ep, -ESHUTDOWN);
ep->desc = 0;
ep->stopped = 1;
spin_unlock_irqrestore(&ep->dev->lock, flags);
DEBUG("%s: disabled %s\n", __FUNCTION__, _ep->name);
return 0;
}
static struct usb_request *s3c_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
{
struct s3c_request *req;
DEBUG("%s: %s %p\n", __FUNCTION__, ep->name, ep);
req = kmalloc(sizeof *req, gfp_flags);
if (!req)
return 0;
memset(req, 0, sizeof *req);
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void s3c_free_request(struct usb_ep *ep, struct usb_request *_req)
{
struct s3c_request *req;
DEBUG("%s: %p\n", __FUNCTION__, ep);
req = container_of(_req, struct s3c_request, req);
WARN_ON(!list_empty(&req->queue));
kfree(req);
}
static void *s3c_alloc_buffer(struct usb_ep *ep, unsigned bytes,
dma_addr_t * dma, gfp_t gfp_flags)
{
char *retval;
DEBUG("%s (%p, %d, %d)\n", __FUNCTION__, ep, bytes, gfp_flags);
retval = kmalloc(bytes, gfp_flags & ~(__GFP_DMA | __GFP_HIGHMEM));
if (retval) {
*dma = virt_to_dma(NULL, retval);
DEBUG("%s %p\n", __FUNCTION__, dma);
}
return retval;
}
static void s3c_free_buffer(struct usb_ep *ep, void *buf, dma_addr_t dma,
unsigned bytes)
{
DEBUG("%s: %p\n", __FUNCTION__, ep);
kfree(buf);
}
/** Queue one request
* Kickstart transfer if needed
*/
static int s3c_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct s3c_request *req;
struct s3c_ep *ep;
struct s3c_udc *dev;
unsigned long flags;
req = container_of(_req, struct s3c_request, req);
if (unlikely(!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue)))
{
DEBUG("%s: bad params\n", __FUNCTION__);
return -EINVAL;
}
ep = container_of(_ep, struct s3c_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DEBUG("%s: bad ep\n", __FUNCTION__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
DEBUG("%s: bogus device state %p\n", __FUNCTION__, dev->driver);
return -ESHUTDOWN;
}
DEBUG("\n%s: %s queue req %p, len %d buf %p\n",
__FUNCTION__, _ep->name, _req, _req->length, _req->buf);
spin_lock_irqsave(&dev->lock, flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
DEBUG("%s: Add to ep=%d, Q empty=%d, stopped=%d\n",
__FUNCTION__, ep_index(ep), list_empty(&ep->queue), ep->stopped);
if (list_empty(&ep->queue) && likely(!ep->stopped)) {
u32 csr;
if (unlikely(ep_index(ep) == 0)) {
/* EP0 */
list_add_tail(&req->queue, &ep->queue);
s3c_ep0_kick(dev, ep);
req = 0;
} else if (ep_is_in(ep)) {
csr = readl((u32) S3C_UDC_OTG_GINTSTS);
DEBUG("%s: ep_is_in, S3C_UDC_OTG_GINTSTS=0x%x\n",
__FUNCTION__, csr);
#if OTG_DMA_MODE
if (unlikely(tx_dmaStart == 1))
DEBUG_EP2("%s: On Tx DMA transfer....\n", __FUNCTION__);
else
setdma_tx(ep, req);
DEBUG("++++ IN-list_add_taill::req=%p, ep=%d\n",
req, ep_index(ep));
tx_ep_num = ep_index(ep);
#else
if((csr & INT_TX_FIFO_EMPTY) &&
(write_fifo(ep, req) == 1)) {
req = 0;
} else {
DEBUG("++++ IN-list_add_taill::req=%p, ep=%d\n",
req, ep_index(ep));
tx_ep_num = ep_index(ep);
}
#endif
} else {
csr = readl((u32) S3C_UDC_OTG_GINTSTS);
DEBUG("%s: ep_is_out, S3C_UDC_OTG_GINTSTS=0x%x\n",
__FUNCTION__, csr);
#if OTG_DMA_MODE
if (unlikely(rx_dmaStart == 1))
DEBUG_EP1("%s: On Rx DMA transfer....\n", __FUNCTION__);
else
setdma_rx(ep, req);
DEBUG("++++ OUT-list_add_taill::req=%p, DOEPCTL1:0x%x\n",
req, readl(S3C_UDC_OTG_DOEPCTL1));
#else
if((csr & INT_RX_FIFO_NOT_EMPTY) &&
(read_fifo(ep, req) == 1))
req = 0;
else
DEBUG("++++ OUT-list_add_taill::req=%p, DOEPCTL1:0x%x\n",
req, readl(S3C_UDC_OTG_DOEPCTL1));
#endif
}
}
/* pio or dma irq handler advances the queue. */
if (likely(req != 0))
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/* dequeue JUST ONE request */
static int s3c_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct s3c_ep *ep;
struct s3c_request *req;
unsigned long flags;
DEBUG("%s: %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct s3c_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
spin_lock_irqsave(&ep->dev->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&ep->dev->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&ep->dev->lock, flags);
return 0;
}
/** Halt specific EP
* Return 0 if success
*/
static int s3c_set_halt(struct usb_ep *_ep, int value)
{
return 0;
}
/** Return bytes in EP FIFO
*/
static int s3c_fifo_status(struct usb_ep *_ep)
{
int count = 0;
struct s3c_ep *ep;
ep = container_of(_ep, struct s3c_ep, ep);
if (!_ep) {
DEBUG("%s: bad ep\n", __FUNCTION__);
return -ENODEV;
}
DEBUG("%s: %d\n", __FUNCTION__, ep_index(ep));
/* LPD can't report unclaimed bytes from IN fifos */
if (ep_is_in(ep))
return -EOPNOTSUPP;
return count;
}
/** Flush EP FIFO
*/
static void s3c_fifo_flush(struct usb_ep *_ep)
{
struct s3c_ep *ep;
ep = container_of(_ep, struct s3c_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DEBUG("%s: bad ep\n", __FUNCTION__);
return;
}
DEBUG("%s: %d\n", __FUNCTION__, ep_index(ep));
}
/****************************************************************/
/* End Point 0 related functions */
/****************************************************************/
/* return: 0 = still running, 1 = completed, negative = errno */
static int write_fifo_ep0(struct s3c_ep *ep, struct s3c_request *req)
{
u32 max;
unsigned count;
int is_last;
max = ep_maxpacket(ep);
DEBUG_EP0("%s: max = %d\n", __FUNCTION__, max);
#if OTG_DMA_MODE
if (tx_dmaStart) {
DEBUG_EP2("%s: On Tx DMA transfer....\n", __FUNCTION__);
return 0;
}
count = setdma_tx(ep, req);
#else
count = write_packet(ep, req, max);
#endif
/* last packet is usually short (or a zlp) */
if (likely(count != max))
is_last = 1;
else {
if (likely(req->req.length != req->req.actual) || req->req.zero)
is_last = 0;
else
is_last = 1;
}
DEBUG_EP0("%s: wrote %s %d bytes%s %d left %p\n", __FUNCTION__,
ep->ep.name, count,
is_last ? "/L" : "", req->req.length - req->req.actual, req);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
return 1;
}
return 0;
}
static __inline__ int s3c_fifo_read(struct s3c_ep *ep, u32 *cp, int max)
{
int bytes;
#if OTG_DMA_MODE
bytes = sizeof(struct usb_ctrlrequest);
consistent_sync(&ctrl, bytes, DMA_FROM_DEVICE);
DEBUG_EP0("%s: bytes=%d, ep_index=%d \n", __FUNCTION__, bytes, ep_index(ep));
#else
int count;
u32 grx_status = readl(S3C_UDC_OTG_GRXSTSP);
bytes = (grx_status & 0x7ff0)>>4;
DEBUG_EP0("%s: GRXSTSP=0x%x, bytes=%d, ep_index=%d, fifo=0x%x\n",
__FUNCTION__, grx_status, bytes, ep_index(ep), ep->fifo);
// 32 bits interface
count = bytes / 4;
while (count--) {
*cp++ = (u32) readl(S3C_UDC_OTG_EP0_FIFO);
}
#endif
return bytes;
}
static int read_fifo_ep0(struct s3c_ep *ep, struct s3c_request *req)
{
u32 csr;
u32 *buf;
unsigned bufferspace, count, is_short, bytes;
u32 fifo = ep->fifo;
DEBUG_EP0("%s\n", __FUNCTION__);
csr = readl(S3C_UDC_OTG_GRXSTSP);
bytes = (csr & 0x7ff0)>>4;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely((csr & EP_MASK) == EP0_CON)) {
count = bytes / 4;
req->req.actual += min(bytes, bufferspace);
} else { // zlp
count = 0;
bytes = 0;
}
is_short = (bytes < ep->ep.maxpacket);
DEBUG_EP0("%s: read %s %02x, %d bytes%s req %p %d/%d\n",
__FUNCTION__,
ep->ep.name, csr, bytes,
is_short ? "/S" : "", req, req->req.actual, req->req.length);
while (likely(count-- != 0)) {
u32 byte = (u32) readl(fifo);
if (unlikely(bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DEBUG_EP0("%s overflow %d\n", ep->ep.name,
count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace = bufferspace - 4;
}
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
return 1;
}
return 0;
}
/**
* udc_set_address - set the USB address for this device
* @address:
*
* Called from control endpoint function
* after it decodes a set address setup packet.
*/
static void udc_set_address(struct s3c_udc *dev, unsigned char address)
{
u32 tmp = readl(S3C_UDC_OTG_DCFG);
writel(address << 4 | tmp, S3C_UDC_OTG_DCFG);
#if OTG_DMA_MODE
writel((1 << 19)|(0<<0), S3C_UDC_OTG_DIEPTSIZ0);
#endif
tmp = readl(S3C_UDC_OTG_DIEPCTL0);
writel(DEPCTL_EPENA|DEPCTL_CNAK|tmp, S3C_UDC_OTG_DIEPCTL0); /* EP0: Control IN */
DEBUG_EP0("%s: USB OTG 2.0 Device address=%d, DCFG=0x%x\n",
__FUNCTION__, address, readl(S3C_UDC_OTG_DCFG));
dev->usb_address = address;
}
static int first_time = 1;
static void s3c_ep0_read(struct s3c_udc *dev)
{
struct s3c_request *req;
struct s3c_ep *ep = &dev->ep[0];
int ret;
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next, struct s3c_request, queue);
else {
printk("%s: ---> BUG\n", __FUNCTION__);
BUG(); //logic ensures -jassi
return;
}
DEBUG_EP0("%s: req.length = 0x%x, req.actual = 0x%x\n",
__FUNCTION__, req->req.length, req->req.actual);
if(req->req.length == 0) {
dev->ep0state = WAIT_FOR_SETUP;
first_time = 1;
done(ep, req, 0);
return;
}
if(!req->req.actual && first_time){ //for SetUp packet
first_time = 0;
return;
}
ret = read_fifo_ep0(ep, req);
if (ret) {
dev->ep0state = WAIT_FOR_SETUP;
first_time = 1;
done(ep, req, 0);
return;
}
}
/*
* DATA_STATE_XMIT
*/
static int s3c_ep0_write(struct s3c_udc *dev)
{
struct s3c_request *req;
struct s3c_ep *ep = &dev->ep[0];
int ret, need_zlp = 0;
DEBUG_EP0("%s: ep0 write\n", __FUNCTION__);
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct s3c_request, queue);
if (!req) {
DEBUG_EP0("%s: NULL REQ\n", __FUNCTION__);
return 0;
}
DEBUG_EP0("%s: req.length = 0x%x, req.actual = 0x%x\n",
__FUNCTION__, req->req.length, req->req.actual);
if (req->req.length == 0) {
dev->ep0state = WAIT_FOR_SETUP;
done(ep, req, 0);
return 1;
}
if (req->req.length - req->req.actual == ep0_fifo_size) {
/* Next write will end with the packet size, */
/* so we need Zero-length-packet */
need_zlp = 1;
}
ret = write_fifo_ep0(ep, req);
if ((ret == 1) && !need_zlp) {
/* Last packet */
DEBUG_EP0("%s: finished, waiting for status\n", __FUNCTION__);
dev->ep0state = WAIT_FOR_SETUP;
} else {
DEBUG_EP0("%s: not finished\n", __FUNCTION__);
}
if (need_zlp) {
DEBUG_EP0("%s: Need ZLP!\n", __FUNCTION__);
dev->ep0state = DATA_STATE_NEED_ZLP;
}
if(ret)
done(ep, req, 0);
return 1;
}
/*
* WAIT_FOR_SETUP (OUT_PKT_RDY)
*/
static void s3c_ep0_setup(struct s3c_udc *dev)
{
struct s3c_ep *ep = &dev->ep[0];
int i, bytes, is_in;
u32 ep_ctrl;
/* Nuke all previous transfers */
nuke(ep, -EPROTO);
/* read control req from fifo (8 bytes) */
bytes = s3c_fifo_read(ep, (u32 *)&ctrl, 8);
DEBUG_SETUP("Read CTRL REQ %d bytes\n", bytes);
DEBUG_SETUP(" CTRL.bRequestType = 0x%x (is_in %d)\n", ctrl.bRequestType,
ctrl.bRequestType & USB_DIR_IN);
DEBUG_SETUP(" CTRL.bRequest = 0x%x\n", ctrl.bRequest);
DEBUG_SETUP(" CTRL.wLength = 0x%x\n", ctrl.wLength);
DEBUG_SETUP(" CTRL.wValue = 0x%x (%d)\n", ctrl.wValue, ctrl.wValue >> 8);
DEBUG_SETUP(" CTRL.wIndex = 0x%x\n", ctrl.wIndex);
/* Set direction of EP0 */
if (likely(ctrl.bRequestType & USB_DIR_IN)) {
ep->bEndpointAddress |= USB_DIR_IN;
is_in = 1;
} else {
ep->bEndpointAddress &= ~USB_DIR_IN;
is_in = 0;
}
dev->req_pending = 1;
/* Handle some SETUP packets ourselves */
switch (ctrl.bRequest) {
case USB_REQ_SET_ADDRESS:
if (ctrl.bRequestType
!= (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
break;
DEBUG_SETUP("%s: *** USB_REQ_SET_ADDRESS (%d)\n",
__FUNCTION__, ctrl.wValue);
udc_set_address(dev, ctrl.wValue);
return;
case USB_REQ_SET_CONFIGURATION :
DEBUG_SETUP("============================================\n");
DEBUG_SETUP("%s: USB_REQ_SET_CONFIGURATION (%d)\n",
__FUNCTION__, ctrl.wValue);
config_change:
#if OTG_DMA_MODE
writel((1 << 19)|(0<<0), S3C_UDC_OTG_DIEPTSIZ0);
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(DEPCTL_EPENA|DEPCTL_CNAK|ep_ctrl, S3C_UDC_OTG_DIEPCTL0); /* EP0: Control IN */
// For Startng EP1 on this new configuration
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
writel(DEPCTL_CNAK|DEPCTL_BULK_TYPE|DEPCTL_USBACTEP|ep_ctrl, S3C_UDC_OTG_DOEPCTL1); /* EP1: Bulk OUT */
// For starting EP2 on this new configuration
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
writel(DEPCTL_CNAK|DEPCTL_BULK_TYPE|DEPCTL_USBACTEP|ep_ctrl, S3C_UDC_OTG_DIEPCTL2); /* EP2: Bulk IN */
#else
// Just to send ZLP(Zero length Packet) to HOST in response to SET CONFIGURATION
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL0);
writel(DEPCTL_EPENA|DEPCTL_CNAK|ep_ctrl, S3C_UDC_OTG_DIEPCTL0); /* EP0: Control IN */
// For Startng EP1 on this new configuration
ep_ctrl = readl(S3C_UDC_OTG_DOEPCTL1);
writel(DEPCTL_EPDIS|DEPCTL_CNAK|DEPCTL_BULK_TYPE|DEPCTL_USBACTEP|ep_ctrl, S3C_UDC_OTG_DOEPCTL1); /* EP1: Bulk OUT */
// For starting EP2 on this new configuration
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL2);
writel(DEPCTL_BULK_TYPE|DEPCTL_USBACTEP|ep_ctrl, S3C_UDC_OTG_DIEPCTL2); /* EP2: Bulk IN */
// For starting EP3 on this new configuration
ep_ctrl = readl(S3C_UDC_OTG_DIEPCTL3);
writel(DEPCTL_BULK_TYPE|DEPCTL_USBACTEP|ep_ctrl, S3C_UDC_OTG_DIEPCTL3); /* EP3: INTR IN */
#endif
DEBUG_SETUP("%s:(DOEPCTL1):0x%x, (DIEPCTL2):0x%x, (DIEPCTL3):0x%x\n",
__FUNCTION__,
readl(S3C_UDC_OTG_DOEPCTL1),
readl(S3C_UDC_OTG_DIEPCTL2),
readl(S3C_UDC_OTG_DIEPCTL3));
DEBUG_SETUP("============================================\n");
reset_available = 1;
dev->req_config = 1;
break;
case USB_REQ_GET_DESCRIPTOR:
DEBUG_SETUP("%s: *** USB_REQ_GET_DESCRIPTOR \n",__FUNCTION__);
break;
case USB_REQ_SET_INTERFACE:
DEBUG_SETUP("%s: *** USB_REQ_SET_INTERFACE (%d)\n",
__FUNCTION__, ctrl.wValue);
set_interface_first = 1;
goto config_change;
break;
case USB_REQ_GET_CONFIGURATION:
DEBUG_SETUP("%s: *** USB_REQ_GET_CONFIGURATION \n",__FUNCTION__);
break;
case USB_REQ_GET_STATUS:
DEBUG_SETUP("%s: *** USB_REQ_GET_STATUS \n",__FUNCTION__);
break;
default:
DEBUG_SETUP("%s: *** Default of ctrl.bRequest=0x%x happened.\n",
__FUNCTION__, ctrl.bRequest);
break;
}
if (likely(dev->driver)) {
/* device-2-host (IN) or no data setup command,
* process immediately */
spin_unlock(&dev->lock);
DEBUG_SETUP("%s: usb_ctrlrequest will be passed to fsg_setup()\n", __FUNCTION__);
i = dev->driver->setup(&dev->gadget, &ctrl);
spin_lock(&dev->lock);
if (i < 0) {
/* setup processing failed, force stall */
DEBUG_SETUP("%s: gadget setup FAILED (stalling), setup returned %d\n",
__FUNCTION__, i);
/* ep->stopped = 1; */
dev->ep0state = WAIT_FOR_SETUP;
}
}
}
/*
* handle ep0 interrupt
*/
static void s3c_handle_ep0(struct s3c_udc *dev)
{
if (dev->ep0state == WAIT_FOR_SETUP) {
DEBUG_EP0("%s: WAIT_FOR_SETUP\n", __FUNCTION__);
s3c_ep0_setup(dev);
} else {
DEBUG_EP0("%s: strange state!!(state = %s)\n",
__FUNCTION__, state_names[dev->ep0state]);
}
}
static void s3c_ep0_kick(struct s3c_udc *dev, struct s3c_ep *ep)
{
DEBUG_EP0("%s: ep_is_in = %d\n", __FUNCTION__, ep_is_in(ep));
if (ep_is_in(ep)) {
dev->ep0state = DATA_STATE_XMIT;
s3c_ep0_write(dev);
} else {
dev->ep0state = DATA_STATE_RECV;
s3c_ep0_read(dev);
}
}
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int s3c_udc_get_frame(struct usb_gadget *_gadget)
{
/*fram count number [21:8]*/
u32 frame = readl(S3C_UDC_OTG_DSTS);
DEBUG("%s: %p\n", __FUNCTION__, _gadget);
return (frame & 0x3ff00);
}
static int s3c_udc_wakeup(struct usb_gadget *_gadget)
{
return -ENOTSUPP;
}
static const struct usb_gadget_ops s3c_udc_ops = {
.get_frame = s3c_udc_get_frame,
.wakeup = s3c_udc_wakeup,
/* current versions must always be self-powered */
};
static void nop_release(struct device *dev)
{
DEBUG("%s %s\n", __FUNCTION__, dev->bus_id);
}
static struct s3c_udc memory = {
.usb_address = 0,
.gadget = {
.ops = &s3c_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
.dev = {
.bus_id = "gadget",
.release = nop_release,
},
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &s3c_ep_ops,
.maxpacket = EP0_FIFO_SIZE,
},
.dev = &memory,
.bEndpointAddress = 0,
.bmAttributes = 0,
.ep_type = ep_control,
.fifo = (u32) S3C_UDC_OTG_EP0_FIFO,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1-bulk",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE,
},
.dev = &memory,
.bEndpointAddress = 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.ep_type = ep_bulk_out,
.fifo = (u32) S3C_UDC_OTG_EP1_FIFO,
},
.ep[2] = {
.ep = {
.name = "ep2-bulk",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.ep_type = ep_bulk_in,
.fifo = (u32) S3C_UDC_OTG_EP2_FIFO,
},
.ep[3] = { // Though NOT USED XXX
.ep = {
.name = "ep3-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP3_FIFO,
},
.ep[4] = { // Though NOT USED XXX
.ep = {
.name = "ep4-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 4,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP4_FIFO,
},
.ep[5] = { // Though NOT USED XXX
.ep = {
.name = "ep5-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE2,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 5,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP5_FIFO,
},
.ep[6] = { // Though NOT USED XXX
.ep = {
.name = "ep6-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE2,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 6,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP6_FIFO,
},
.ep[7] = { // Though NOT USED XXX
.ep = {
.name = "ep7-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE2,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 7,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP7_FIFO,
},
.ep[8] = { // Though NOT USED XXX
.ep = {
.name = "ep8-int",
.ops = &s3c_ep_ops,
.maxpacket = EP_FIFO_SIZE2,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 8,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = (u32) S3C_UDC_OTG_EP8_FIFO,
},
};
/*
* probe - binds to the platform device
*/
static struct clk *otg_clock = NULL;
static int s3c_udc_probe(struct platform_device *pdev)
{
struct s3c_udc *dev = &memory;
int retval;
DEBUG("%s: %p\n", __FUNCTION__, pdev);
spin_lock_init(&dev->lock);
dev->dev = pdev;
device_initialize(&dev->gadget.dev);
dev->gadget.dev.parent = &pdev->dev;
dev->gadget.is_dualspeed = 1; // Hack only
dev->gadget.is_otg = 0;
dev->gadget.is_a_peripheral = 0;
dev->gadget.b_hnp_enable = 0;
dev->gadget.a_hnp_support = 0;
dev->gadget.a_alt_hnp_support = 0;
the_controller = dev;
platform_set_drvdata(pdev, dev);
otg_clock = clk_get(&pdev->dev, "otg");
if (otg_clock == NULL) {
printk(KERN_INFO "failed to find otg clock source\n");
return -ENOENT;
}
clk_enable(otg_clock);
udc_reinit(dev);
local_irq_disable();
/* irq setup after old hardware state is cleaned up */
retval =
request_irq(IRQ_OTG, s3c_udc_irq, SA_INTERRUPT, driver_name,
dev);
if (retval != 0) {
DEBUG(KERN_ERR "%s: can't get irq %i, err %d\n", driver_name,
IRQ_OTG, retval);
return -EBUSY;
}
disable_irq(IRQ_OTG);
local_irq_enable();
create_proc_files();
return retval;
}
static int s3c_udc_remove(struct platform_device *pdev)
{
struct s3c_udc *dev = platform_get_drvdata(pdev);
DEBUG("%s: %p\n", __FUNCTION__, pdev);
if (otg_clock != NULL) {
clk_disable(otg_clock);
clk_put(otg_clock);
otg_clock = NULL;
}
remove_proc_files();
usb_gadget_unregister_driver(dev->driver);
free_irq(IRQ_OTG, dev);
platform_set_drvdata(pdev, 0);
the_controller = 0;
return 0;
}
#ifdef CONFIG_PM
static int s3c_udc_suspend(struct platform_device *dev, pm_message_t state)
{
return 0;
}
static int s3c_udc_resume(struct platform_device *dev)
{
return 0;
}
#else
#define s3c_udc_suspend NULL
#define s3c_udc_resume NULL
#endif /* CONFIG_PM */
/*-------------------------------------------------------------------------*/
static struct platform_driver s3c_udc_driver = {
.probe = s3c_udc_probe,
.remove = s3c_udc_remove,
.suspend = s3c_udc_suspend,
.resume = s3c_udc_resume,
.driver = {
.owner = THIS_MODULE,
.name = "s3c2410-usbgadget",
},
};
static int __init udc_init(void)
{
int ret;
ret = platform_driver_register(&s3c_udc_driver);
if(!ret)
printk("Loaded %s version %s %s\n", driver_name, DRIVER_VERSION,
OTG_DMA_MODE? "(DMA Mode)" : "(Slave Mode)");
return ret;
}
static void __exit udc_exit(void)
{
platform_driver_unregister(&s3c_udc_driver);
printk("Unloaded %s version %s\n", driver_name, DRIVER_VERSION);
}
module_init(udc_init);
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Samsung");
MODULE_LICENSE("GPL");