/* * @cond * The following section will be excluded from the documentation. */ /////////////////////////////////////////////////////////////////////////////////// //-------------------------------------------------------------------------------// //-------------------------------------------------------------------------------// //-----------H----H--X----X-----CCCCC----22222----0000-----0000------11----------// //----------H----H----X-X-----C--------------2---0----0---0----0--1--1-----------// //---------HHHHHH-----X------C----------22222---0----0---0----0-----1------------// //--------H----H----X--X----C----------2-------0----0---0----0-----1-------------// //-------H----H---X-----X---CCCCC-----222222----0000-----0000----1111------------// //-------------------------------------------------------------------------------// //----------------------------------------------------- http://hxc2001.free.fr --// /////////////////////////////////////////////////////////////////////////////////// // File : hxcmod.c // Contains: a tiny mod player // // Written by: Jean Fran�ois DEL NERO // // You are free to do what you want with this code. // A credit is always appreciated if you include it into your prod :) // // This file include some parts of the Noisetracker/Soundtracker/Protracker // Module Format documentation written by Andrew Scott (Adrenalin Software) // (modformat.txt) // // The core (hxcmod.c/hxcmod.h) is designed to have the least external dependency. // So it should be usable on almost all OS and systems. // Please also note that no dynamic allocation is done into the HxCMOD core. // // Change History (most recent first): /////////////////////////////////////////////////////////////////////////////////// // HxCMOD Core API: // ------------------------------------------- // int hxcmod_init(modcontext * modctx) // // - Initialize the modcontext buffer. Must be called before doing anything else. // Return 1 if success. 0 in case of error. // ------------------------------------------- // int hxcmod_load( modcontext * modctx, void * mod_data, int mod_data_size ) // // - "Load" a MOD from memory (from "mod_data" with size "mod_data_size"). // Return 1 if success. 0 in case of error. // ------------------------------------------- // void hxcmod_fillbuffer( modcontext * modctx, unsigned short * outbuffer, unsigned long nbsample, tracker_buffer_state * trkbuf ) // // - Generate and return the next samples chunk to outbuffer. // nbsample specify the number of stereo 16bits samples you want. // The output format is signed 44100Hz 16-bit Stereo PCM samples. // The output buffer size in byte must be equal to ( nbsample * 2 * 2 ). // The optional trkbuf parameter can be used to get detailed status of the player. Put NULL/0 is unused. // ------------------------------------------- // void hxcmod_unload( modcontext * modctx ) // - "Unload" / clear the player status. // ------------------------------------------- /////////////////////////////////////////////////////////////////////////////////// #include "hxcmod.h" /////////////////////////////////////////////////////////////////////////////////// // Effects list #define EFFECT_ARPEGGIO 0x0 // Supported #define EFFECT_PORTAMENTO_UP 0x1 // Supported #define EFFECT_PORTAMENTO_DOWN 0x2 // Supported #define EFFECT_TONE_PORTAMENTO 0x3 // Supported #define EFFECT_VIBRATO 0x4 // Supported #define EFFECT_VOLSLIDE_TONEPORTA 0x5 // Supported #define EFFECT_VOLSLIDE_VIBRATO 0x6 // Supported #define EFFECT_VOLSLIDE_TREMOLO 0x7 // - TO BE DONE - #define EFFECT_SET_PANNING 0x8 // - TO BE DONE - #define EFFECT_SET_OFFSET 0x9 // Supported #define EFFECT_VOLUME_SLIDE 0xA // Supported #define EFFECT_JUMP_POSITION 0xB // Supported #define EFFECT_SET_VOLUME 0xC // Supported #define EFFECT_PATTERN_BREAK 0xD // Supported #define EFFECT_EXTENDED 0xE #define EFFECT_E_FINE_PORTA_UP 0x1 // Supported #define EFFECT_E_FINE_PORTA_DOWN 0x2 // Supported #define EFFECT_E_GLISSANDO_CTRL 0x3 // - TO BE DONE - #define EFFECT_E_VIBRATO_WAVEFORM 0x4 // - TO BE DONE - #define EFFECT_E_SET_FINETUNE 0x5 // Supported #define EFFECT_E_PATTERN_LOOP 0x6 // Supported #define EFFECT_E_TREMOLO_WAVEFORM 0x7 // - TO BE DONE - #define EFFECT_E_SET_PANNING_2 0x8 // - TO BE DONE - #define EFFECT_E_RETRIGGER_NOTE 0x9 // Supported #define EFFECT_E_FINE_VOLSLIDE_UP 0xA // Supported #define EFFECT_E_FINE_VOLSLIDE_DOWN 0xB // Supported #define EFFECT_E_NOTE_CUT 0xC // Supported #define EFFECT_E_NOTE_DELAY 0xD // Supported #define EFFECT_E_PATTERN_DELAY 0xE // Supported #define EFFECT_E_INVERT_LOOP 0xF // Supported (W.I.P) #define EFFECT_SET_SPEED 0xF0 // Supported #define EFFECT_SET_TEMPO 0xF2 // Supported #define PERIOD_TABLE_LENGTH MAXNOTES #define FULL_PERIOD_TABLE_LENGTH ( PERIOD_TABLE_LENGTH * 8 ) static const short periodtable[]= { 27392, 25856, 24384, 23040, 21696, 20480, 19328, 18240, 17216, 16256, 15360, 14496, 13696, 12928, 12192, 11520, 10848, 10240, 9664, 9120, 8606, 8128, 7680, 7248, 6848, 6464, 6096, 5760, 5424, 5120, 4832, 4560, 4304, 4064, 3840, 3624, 3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1812, 1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 906, 856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453, 428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226, 214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113, 107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56, 53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28, 27, 25, 24, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7 }; static const short sintable[]={ 0, 24, 49, 74, 97, 120, 141, 161, 180, 197, 212, 224, 235, 244, 250, 253, 255, 253, 250, 244, 235, 224, 212, 197, 180, 161, 141, 120, 97, 74, 49, 24 }; static const muchar InvertLoopTable[]={ 0, 5, 6, 7, 8, 10, 11, 13, 16, 19, 22, 26, 32, 43, 64, 128 }; typedef struct modtype_ { unsigned char signature[5]; int numberofchannels; }modtype; modtype modlist[]= { { "M!K!",4}, { "M.K.",4}, { "M&K!",4}, { "PATT",4}, { "NSMS",4}, { "LARD",4}, { "FEST",4}, { "FIST",4}, { "N.T.",4}, { "OKTA",8}, { "OCTA",8}, { "$CHN",-1}, { "$$CH",-1}, { "$$CN",-1}, { "$$$C",-1}, { "FLT$",-1}, { "EXO$",-1}, { "CD$1",-1}, { "TDZ$",-1}, { "FA0$",-1}, { "",0} }; #ifdef HXCMOD_BIGENDIAN_MACHINE #define GET_BGI_W( big_endian_word ) ( big_endian_word ) #else #define GET_BGI_W( big_endian_word ) ( (big_endian_word >> 8) | ((big_endian_word&0xFF) << 8) ) #endif /////////////////////////////////////////////////////////////////////////////////// static void memcopy( void * dest, void *source, unsigned long size ) { unsigned long i; unsigned char * d,*s; d=(unsigned char*)dest; s=(unsigned char*)source; for(i=0;i= mod->fullperiod[i]) { return i; } } return MAXNOTES; } static void doFunk(channel * cptr) { if(cptr->funkspeed) { cptr->funkoffset += InvertLoopTable[cptr->funkspeed]; if( cptr->funkoffset > 128 ) { cptr->funkoffset = 0; if( cptr->sampdata && cptr->length && (cptr->replen > 2) ) { if( ( (cptr->samppos) >> 10 ) >= (unsigned long)(cptr->replen+cptr->reppnt) ) { cptr->samppos = ((unsigned long)(cptr->reppnt)<<10) + (cptr->samppos % ((unsigned long)(cptr->replen+cptr->reppnt)<<10)); } // Note : Directly modify the sample in the mod buffer... // The current Invert Loop effect implementation can't be played from ROM. cptr->sampdata[cptr->samppos >> 10] = -1 - cptr->sampdata[cptr->samppos >> 10]; } } } } static void worknote( note * nptr, channel * cptr,char t,modcontext * mod ) { muint sample, period, effect, operiod; muint curnote, arpnote; muchar effect_op; muchar effect_param,effect_param_l,effect_param_h; muint enable_nxt_smp; sample = (nptr->sampperiod & 0xF0) | (nptr->sampeffect >> 4); period = ((nptr->sampperiod & 0xF) << 8) | nptr->period; effect = ((nptr->sampeffect & 0xF) << 8) | nptr->effect; effect_op = nptr->sampeffect & 0xF; effect_param = nptr->effect; effect_param_l = effect_param & 0x0F; effect_param_h = effect_param >> 4; enable_nxt_smp = 0; operiod = cptr->period; if ( period || sample ) { if( sample && ( sample < 32 ) ) { cptr->sampnum = sample - 1; } if( period || sample ) { if( period ) { if( ( effect_op != EFFECT_TONE_PORTAMENTO ) || ( ( effect_op == EFFECT_TONE_PORTAMENTO ) && !cptr->sampdata ) ) { // Not a Tone Partamento effect or no sound currently played : if ( ( effect_op != EFFECT_EXTENDED || effect_param_h != EFFECT_E_NOTE_DELAY ) || ( ( effect_op == EFFECT_EXTENDED && effect_param_h == EFFECT_E_NOTE_DELAY ) && !effect_param_l ) ) { // Immediately (re)trigger the new note cptr->sampdata = mod->sampledata[cptr->sampnum]; cptr->length = GET_BGI_W( mod->song.samples[cptr->sampnum].length ) * 2; cptr->reppnt = GET_BGI_W( mod->song.samples[cptr->sampnum].reppnt ) * 2; cptr->replen = GET_BGI_W( mod->song.samples[cptr->sampnum].replen ) * 2; cptr->lst_sampdata = cptr->sampdata; cptr->lst_length = cptr->length; cptr->lst_reppnt = cptr->reppnt; cptr->lst_replen = cptr->replen; } else { cptr->dly_sampdata = mod->sampledata[cptr->sampnum]; cptr->dly_length = GET_BGI_W( mod->song.samples[cptr->sampnum].length ) * 2; cptr->dly_reppnt = GET_BGI_W( mod->song.samples[cptr->sampnum].reppnt ) * 2; cptr->dly_replen = GET_BGI_W( mod->song.samples[cptr->sampnum].replen ) * 2; cptr->note_delay = effect_param_l; } // Cancel any delayed note... cptr->update_nxt_repeat = 0; } else { // Partamento effect - Play the new note after the current sample. if( effect_op == EFFECT_TONE_PORTAMENTO ) enable_nxt_smp = 1; } } else // Note without period : Trigger it after the current sample. enable_nxt_smp = 1; if ( enable_nxt_smp ) { // Prepare the next sample retrigger after the current one cptr->nxt_sampdata = mod->sampledata[cptr->sampnum]; cptr->nxt_length = GET_BGI_W( mod->song.samples[cptr->sampnum].length ) * 2; cptr->nxt_reppnt = GET_BGI_W( mod->song.samples[cptr->sampnum].reppnt ) * 2; cptr->nxt_replen = GET_BGI_W( mod->song.samples[cptr->sampnum].replen ) * 2; if(cptr->nxt_replen<=2) // Protracker : don't play the sample if not looped... cptr->nxt_sampdata = 0; cptr->update_nxt_repeat = 1; } cptr->finetune = (mod->song.samples[cptr->sampnum].finetune) & 0xF; if( effect_op != EFFECT_VIBRATO && effect_op != EFFECT_VOLSLIDE_VIBRATO ) { cptr->vibraperiod = 0; cptr->vibrapointeur = 0; } } if( (sample != 0) && ( effect_op != EFFECT_VOLSLIDE_TONEPORTA ) ) { cptr->volume = mod->song.samples[cptr->sampnum].volume; cptr->volumeslide = 0; } if( ( effect_op != EFFECT_TONE_PORTAMENTO ) && ( effect_op != EFFECT_VOLSLIDE_TONEPORTA ) ) { if ( period != 0 ) cptr->samppos = 0; } cptr->decalperiod = 0; if( period ) { if( cptr->finetune ) { if( cptr->finetune <= 7 ) { period = mod->fullperiod[getnote(mod,period,0) + cptr->finetune]; } else { period = mod->fullperiod[getnote(mod,period,0) - (16 - (cptr->finetune)) ]; } } cptr->period = period; } } cptr->effect = 0; cptr->parameffect = 0; cptr->effect_code = effect; #ifdef EFFECTS_USAGE_STATE if(effect_op || ((effect_op==EFFECT_ARPEGGIO) && effect_param)) { mod->effects_event_counts[ effect_op ]++; } if(effect_op == 0xE) mod->effects_event_counts[ 0x10 + effect_param_h ]++; #endif switch ( effect_op ) { case EFFECT_ARPEGGIO: /* [0]: Arpeggio Where [0][x][y] means "play note, note+x semitones, note+y semitones, then return to original note". The fluctuations are carried out evenly spaced in one pattern division. They are usually used to simulate chords, but this doesn't work too well. They are also used to produce heavy vibrato. A major chord is when x=4, y=7. A minor chord is when x=3, y=7. */ if( effect_param ) { cptr->effect = EFFECT_ARPEGGIO; cptr->parameffect = effect_param; cptr->ArpIndex = 0; curnote = getnote(mod,cptr->period,cptr->finetune); cptr->Arpperiods[0] = cptr->period; arpnote = curnote + (((cptr->parameffect>>4)&0xF)*8); if( arpnote >= FULL_PERIOD_TABLE_LENGTH ) arpnote = FULL_PERIOD_TABLE_LENGTH - 1; cptr->Arpperiods[1] = mod->fullperiod[arpnote]; arpnote = curnote + (((cptr->parameffect)&0xF)*8); if( arpnote >= FULL_PERIOD_TABLE_LENGTH ) arpnote = FULL_PERIOD_TABLE_LENGTH - 1; cptr->Arpperiods[2] = mod->fullperiod[arpnote]; } break; case EFFECT_PORTAMENTO_UP: /* [1]: Slide up Where [1][x][y] means "smoothly decrease the period of current sample by x*16+y after each tick in the division". The ticks/division are set with the 'set speed' effect (see below). If the period of the note being played is z, then the final period will be z - (x*16 + y)*(ticks - 1). As the slide rate depends on the speed, changing the speed will change the slide. You cannot slide beyond the note B3 (period 113). */ cptr->effect = EFFECT_PORTAMENTO_UP; cptr->parameffect = effect_param; break; case EFFECT_PORTAMENTO_DOWN: /* [2]: Slide down Where [2][x][y] means "smoothly increase the period of current sample by x*16+y after each tick in the division". Similar to [1], but lowers the pitch. You cannot slide beyond the note C1 (period 856). */ cptr->effect = EFFECT_PORTAMENTO_DOWN; cptr->parameffect = effect_param; break; case EFFECT_TONE_PORTAMENTO: /* [3]: Slide to note Where [3][x][y] means "smoothly change the period of current sample by x*16+y after each tick in the division, never sliding beyond current period". The period-length in this channel's division is a parameter to this effect, and hence is not played. Sliding to a note is similar to effects [1] and [2], but the slide will not go beyond the given period, and the direction is implied by that period. If x and y are both 0, then the old slide will continue. */ cptr->effect = EFFECT_TONE_PORTAMENTO; if( effect_param != 0 ) { cptr->portaspeed = (short)( effect_param ); } if(period!=0) { cptr->portaperiod = period; cptr->period = operiod; } break; case EFFECT_VIBRATO: /* [4]: Vibrato Where [4][x][y] means "oscillate the sample pitch using a particular waveform with amplitude y/16 semitones, such that (x * ticks)/64 cycles occur in the division". The waveform is set using effect [14][4]. By placing vibrato effects on consecutive divisions, the vibrato effect can be maintained. If either x or y are 0, then the old vibrato values will be used. */ cptr->effect = EFFECT_VIBRATO; if( effect_param_l != 0 ) // Depth continue or change ? cptr->vibraparam = ( cptr->vibraparam & 0xF0 ) | effect_param_l; if( effect_param_h != 0 ) // Speed continue or change ? cptr->vibraparam = ( cptr->vibraparam & 0x0F ) | ( effect_param_h << 4 ); break; case EFFECT_VOLSLIDE_TONEPORTA: /* [5]: Continue 'Slide to note', but also do Volume slide Where [5][x][y] means "either slide the volume up x*(ticks - 1) or slide the volume down y*(ticks - 1), at the same time as continuing the last 'Slide to note'". It is illegal for both x and y to be non-zero. You cannot slide outside the volume range 0..64. The period-length in this channel's division is a parameter to this effect, and hence is not played. */ if( period != 0 ) { cptr->portaperiod = period; cptr->period = operiod; } cptr->effect = EFFECT_VOLSLIDE_TONEPORTA; if( effect_param != 0 ) cptr->volumeslide = effect_param; break; case EFFECT_VOLSLIDE_VIBRATO: /* [6]: Continue 'Vibrato', but also do Volume slide Where [6][x][y] means "either slide the volume up x*(ticks - 1) or slide the volume down y*(ticks - 1), at the same time as continuing the last 'Vibrato'". It is illegal for both x and y to be non-zero. You cannot slide outside the volume range 0..64. */ cptr->effect = EFFECT_VOLSLIDE_VIBRATO; if( effect_param != 0 ) cptr->volumeslide = effect_param; break; case EFFECT_SET_OFFSET: /* [9]: Set sample offset Where [9][x][y] means "play the sample from offset x*4096 + y*256". The offset is measured in words. If no sample is given, yet one is still playing on this channel, it should be retriggered to the new offset using the current volume. */ cptr->samppos = ( ( ((muint)effect_param_h) << 12) + ( (((muint)effect_param_l) << 8) ) ) << 10; break; case EFFECT_VOLUME_SLIDE: /* [10]: Volume slide Where [10][x][y] means "either slide the volume up x*(ticks - 1) or slide the volume down y*(ticks - 1)". If both x and y are non-zero, then the y value is ignored (assumed to be 0). You cannot slide outside the volume range 0..64. */ cptr->effect = EFFECT_VOLUME_SLIDE; cptr->volumeslide = effect_param; break; case EFFECT_JUMP_POSITION: /* [11]: Position Jump Where [11][x][y] means "stop the pattern after this division, and continue the song at song-position x*16+y". This shifts the 'pattern-cursor' in the pattern table (see above). Legal values for x*16+y are from 0 to 127. */ mod->tablepos = effect_param; if(mod->tablepos >= mod->song.length) mod->tablepos = 0; mod->patternpos = 0; mod->jump_loop_effect = 1; break; case EFFECT_SET_VOLUME: /* [12]: Set volume Where [12][x][y] means "set current sample's volume to x*16+y". Legal volumes are 0..64. */ cptr->volume = effect_param; break; case EFFECT_PATTERN_BREAK: /* [13]: Pattern Break Where [13][x][y] means "stop the pattern after this division, and continue the song at the next pattern at division x*10+y" (the 10 is not a typo). Legal divisions are from 0 to 63 (note Protracker exception above). */ mod->patternpos = ( (muint)(effect_param_h) * 10 + effect_param_l ) * mod->number_of_channels; mod->jump_loop_effect = 1; mod->tablepos++; if(mod->tablepos >= mod->song.length) mod->tablepos = 0; break; case EFFECT_EXTENDED: switch( effect_param_h ) { case EFFECT_E_FINE_PORTA_UP: /* [14][1]: Fineslide up Where [14][1][x] means "decrement the period of the current sample by x". The incrementing takes place at the beginning of the division, and hence there is no actual sliding. You cannot slide beyond the note B3 (period 113). */ cptr->period -= effect_param_l; if( cptr->period < 113 ) cptr->period = 113; break; case EFFECT_E_FINE_PORTA_DOWN: /* [14][2]: Fineslide down Where [14][2][x] means "increment the period of the current sample by x". Similar to [14][1] but shifts the pitch down. You cannot slide beyond the note C1 (period 856). */ cptr->period += effect_param_l; if( cptr->period > 856 ) cptr->period = 856; break; case EFFECT_E_GLISSANDO_CTRL: /* [14][3]: Set glissando on/off Where [14][3][x] means "set glissando ON if x is 1, OFF if x is 0". Used in conjunction with [3] ('Slide to note'). If glissando is on, then 'Slide to note' will slide in semitones, otherwise will perform the default smooth slide. */ cptr->glissando = effect_param_l; break; case EFFECT_E_FINE_VOLSLIDE_UP: /* [14][10]: Fine volume slide up Where [14][10][x] means "increment the volume of the current sample by x". The incrementing takes place at the beginning of the division, and hence there is no sliding. You cannot slide beyond volume 64. */ cptr->volume += effect_param_l; if( cptr->volume > 64 ) cptr->volume = 64; break; case EFFECT_E_FINE_VOLSLIDE_DOWN: /* [14][11]: Fine volume slide down Where [14][11][x] means "decrement the volume of the current sample by x". Similar to [14][10] but lowers volume. You cannot slide beyond volume 0. */ cptr->volume -= effect_param_l; if( cptr->volume > 200 ) cptr->volume = 0; break; case EFFECT_E_SET_FINETUNE: /* [14][5]: Set finetune value Where [14][5][x] means "sets the finetune value of the current sample to the signed nibble x". x has legal values of 0..15, corresponding to signed nibbles 0..7,-8..-1 (see start of text for more info on finetune values). */ cptr->finetune = effect_param_l; if( period ) { if( cptr->finetune ) { if( cptr->finetune <= 7 ) { period = mod->fullperiod[getnote(mod,period,0) + cptr->finetune]; } else { period = mod->fullperiod[getnote(mod,period,0) - (16 - (cptr->finetune)) ]; } } cptr->period = period; } break; case EFFECT_E_PATTERN_LOOP: /* [14][6]: Loop pattern Where [14][6][x] means "set the start of a loop to this division if x is 0, otherwise after this division, jump back to the start of a loop and play it another x times before continuing". If the start of the loop was not set, it will default to the start of the current pattern. Hence 'loop pattern' cannot be performed across multiple patterns. Note that loops do not support nesting, and you may generate an infinite loop if you try to nest 'loop pattern's. */ if( effect_param_l ) { if( cptr->patternloopcnt ) { cptr->patternloopcnt--; if( cptr->patternloopcnt ) { mod->patternpos = cptr->patternloopstartpoint; mod->jump_loop_effect = 1; } else { cptr->patternloopstartpoint = mod->patternpos ; } } else { cptr->patternloopcnt = effect_param_l; mod->patternpos = cptr->patternloopstartpoint; mod->jump_loop_effect = 1; } } else // Start point { cptr->patternloopstartpoint = mod->patternpos; } break; case EFFECT_E_PATTERN_DELAY: /* [14][14]: Delay pattern Where [14][14][x] means "after this division there will be a delay equivalent to the time taken to play x divisions after which the pattern will be resumed". The delay only relates to the interpreting of new divisions, and all effects and previous notes continue during delay. */ mod->patterndelay = effect_param_l; break; case EFFECT_E_RETRIGGER_NOTE: /* [14][9]: Retrigger sample Where [14][9][x] means "trigger current sample every x ticks in this division". If x is 0, then no retriggering is done (acts as if no effect was chosen), otherwise the retriggering begins on the first tick and then x ticks after that, etc. */ if( effect_param_l ) { cptr->effect = EFFECT_EXTENDED; cptr->parameffect = (EFFECT_E_RETRIGGER_NOTE<<4); cptr->retrig_param = effect_param_l; cptr->retrig_cnt = 0; } break; case EFFECT_E_NOTE_CUT: /* [14][12]: Cut sample Where [14][12][x] means "after the current sample has been played for x ticks in this division, its volume will be set to 0". This implies that if x is 0, then you will not hear any of the sample. If you wish to insert "silence" in a pattern, it is better to use a "silence"-sample (see above) due to the lack of proper support for this effect. */ cptr->effect = EFFECT_E_NOTE_CUT; cptr->cut_param = effect_param_l; if( !cptr->cut_param ) cptr->volume = 0; break; case EFFECT_E_NOTE_DELAY: /* Where [14][13][x] means "do not start this division's sample for the first x ticks in this division, play the sample after this". This implies that if x is 0, then you will hear no delay, but actually there will be a VERY small delay. Note that this effect only influences a sample if it was started in this division. */ cptr->effect = EFFECT_EXTENDED; cptr->parameffect = (EFFECT_E_NOTE_DELAY<<4); break; case EFFECT_E_INVERT_LOOP: /* Where [14][15][x] means "if x is greater than 0, then play the current sample's loop upside down at speed x". Each byte in the sample's loop will have its sign changed (negated). It will only work if the sample's loop (defined previously) is not too big. The speed is based on an internal table. */ cptr->funkspeed = effect_param_l; doFunk(cptr); break; default: break; } break; case 0xF: /* [15]: Set speed Where [15][x][y] means "set speed to x*16+y". Though it is nowhere near that simple. Let z = x*16+y. Depending on what values z takes, different units of speed are set, there being two: ticks/division and beats/minute (though this one is only a label and not strictly true). If z=0, then what should technically happen is that the module stops, but in practice it is treated as if z=1, because there is already a method for stopping the module (running out of patterns). If z<=32, then it means "set ticks/division to z" otherwise it means "set beats/minute to z" (convention says that this should read "If z<32.." but there are some composers out there that defy conventions). Default values are 6 ticks/division, and 125 beats/minute (4 divisions = 1 beat). The beats/minute tag is only meaningful for 6 ticks/division. To get a more accurate view of how things work, use the following formula: 24 * beats/minute divisions/minute = ----------------- ticks/division Hence divisions/minute range from 24.75 to 6120, eg. to get a value of 2000 divisions/minute use 3 ticks/division and 250 beats/minute. If multiple "set speed" effects are performed in a single division, the ones on higher-numbered channels take precedence over the ones on lower-numbered channels. This effect has a large number of different implementations, but the one described here has the widest usage. */ if( effect_param < 0x20 ) { if( effect_param ) { mod->song.speed = effect_param; mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm))); } } if( effect_param >= 0x20 ) { /// HZ = 2 * BPM / 5 mod->bpm = effect_param; mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm))); } break; default: // Unsupported effect break; } } static void workeffect( modcontext * modctx, note * nptr, channel * cptr ) { doFunk(cptr); switch(cptr->effect) { case EFFECT_ARPEGGIO: if( cptr->parameffect ) { cptr->decalperiod = cptr->period - cptr->Arpperiods[cptr->ArpIndex]; cptr->ArpIndex++; if( cptr->ArpIndex>2 ) cptr->ArpIndex = 0; } break; case EFFECT_PORTAMENTO_UP: if( cptr->period ) { cptr->period -= cptr->parameffect; if( cptr->period < 113 || cptr->period > 20000 ) cptr->period = 113; } break; case EFFECT_PORTAMENTO_DOWN: if( cptr->period ) { cptr->period += cptr->parameffect; if( cptr->period > 20000 ) cptr->period = 20000; } break; case EFFECT_VOLSLIDE_TONEPORTA: case EFFECT_TONE_PORTAMENTO: if( cptr->period && ( cptr->period != cptr->portaperiod ) && cptr->portaperiod ) { if( cptr->period > cptr->portaperiod ) { if( cptr->period - cptr->portaperiod >= cptr->portaspeed ) { cptr->period -= cptr->portaspeed; } else { cptr->period = cptr->portaperiod; } } else { if( cptr->portaperiod - cptr->period >= cptr->portaspeed ) { cptr->period += cptr->portaspeed; } else { cptr->period = cptr->portaperiod; } } if( cptr->period == cptr->portaperiod ) { // If the slide is over, don't let it to be retriggered. cptr->portaperiod = 0; } } if( cptr->glissando ) { // TODO : Glissando effect. } if( cptr->effect == EFFECT_VOLSLIDE_TONEPORTA ) { if( cptr->volumeslide & 0xF0 ) { cptr->volume += ( cptr->volumeslide >> 4 ); if( cptr->volume > 63 ) cptr->volume = 63; } else { cptr->volume -= ( cptr->volumeslide & 0x0F ); if( cptr->volume > 63 ) cptr->volume = 0; } } break; case EFFECT_VOLSLIDE_VIBRATO: case EFFECT_VIBRATO: cptr->vibraperiod = ( (cptr->vibraparam&0xF) * sintable[cptr->vibrapointeur&0x1F] )>>7; if( cptr->vibrapointeur > 31 ) cptr->vibraperiod = -cptr->vibraperiod; cptr->vibrapointeur = ( cptr->vibrapointeur + ( ( cptr->vibraparam>>4 ) & 0x0F) ) & 0x3F; if( cptr->effect == EFFECT_VOLSLIDE_VIBRATO ) { if( cptr->volumeslide & 0xF0 ) { cptr->volume += ( cptr->volumeslide >> 4 ); if( cptr->volume > 64 ) cptr->volume = 64; } else { cptr->volume -= cptr->volumeslide; if( cptr->volume > 64 ) cptr->volume = 0; } } break; case EFFECT_VOLUME_SLIDE: if( cptr->volumeslide & 0xF0 ) { cptr->volume += ( cptr->volumeslide >> 4 ); if( cptr->volume > 64 ) cptr->volume = 64; } else { cptr->volume -= cptr->volumeslide; if( cptr->volume > 64 ) cptr->volume = 0; } break; case EFFECT_EXTENDED: switch( cptr->parameffect >> 4 ) { case EFFECT_E_NOTE_CUT: if( cptr->cut_param ) cptr->cut_param--; if( !cptr->cut_param ) cptr->volume = 0; break; case EFFECT_E_RETRIGGER_NOTE: cptr->retrig_cnt++; if( cptr->retrig_cnt >= cptr->retrig_param ) { cptr->retrig_cnt = 0; cptr->sampdata = cptr->lst_sampdata; cptr->length = cptr->lst_length; cptr->reppnt = cptr->lst_reppnt; cptr->replen = cptr->lst_replen; cptr->samppos = 0; } break; case EFFECT_E_NOTE_DELAY: if( cptr->note_delay ) { if( ( cptr->note_delay - 1 ) == modctx->tick_cnt ) { cptr->sampdata = cptr->dly_sampdata; cptr->length = cptr->dly_length; cptr->reppnt = cptr->dly_reppnt; cptr->replen = cptr->dly_replen; cptr->lst_sampdata = cptr->sampdata; cptr->lst_length = cptr->length; cptr->lst_reppnt = cptr->reppnt; cptr->lst_replen = cptr->replen; cptr->note_delay = 0; } } break; default: break; } break; default: break; } } /////////////////////////////////////////////////////////////////////////////////// int hxcmod_init(modcontext * modctx) { muint i,j; if( modctx ) { memclear(modctx,0,sizeof(modcontext)); modctx->playrate = 44100; modctx->stereo = 1; modctx->stereo_separation = 1; modctx->bits = 16; modctx->filter = 1; for(i=0;ifullperiod[(i*8) + j] = periodtable[i] - ((( periodtable[i] - periodtable[i+1] ) / 8) * j); } } return 1; } return 0; } int hxcmod_setcfg(modcontext * modctx, int samplerate, int stereo_separation, int filter) { if( modctx ) { modctx->playrate = samplerate; if(stereo_separation < 4) { modctx->stereo_separation = stereo_separation; } if( filter ) modctx->filter = 1; else modctx->filter = 0; return 1; } return 0; } int hxcmod_load( modcontext * modctx, void * mod_data, int mod_data_size ) { muint i, j, max, digitfactor; sample *sptr; unsigned char * modmemory,* endmodmemory; modmemory = (unsigned char *)mod_data; endmodmemory = modmemory + mod_data_size; if( modmemory ) { if( modctx ) { #ifdef FULL_STATE memclear(&(modctx->effects_event_counts),0,sizeof(modctx->effects_event_counts)); #endif memcopy(&(modctx->song.title),modmemory,1084); i = 0; modctx->number_of_channels = 0; modctx->number_of_seffects = NUMMAXSEFFECTS; while(modlist[i].numberofchannels && !modctx->number_of_channels) { digitfactor = 0; j = 0; while( j < 4 ) { if( modlist[i].signature[j] == '$' ) { if(digitfactor) digitfactor *= 10; else digitfactor = 1; } j++; } modctx->number_of_channels = 0; j = 0; while( j < 4 ) { if( (modlist[i].signature[j] == modctx->song.signature[j]) || modlist[i].signature[j] == '$' ) { if( modlist[i].signature[j] == '$' ) { if(modctx->song.signature[j] >= '0' && modctx->song.signature[j] <= '9') { modctx->number_of_channels += (modctx->song.signature[j] - '0') * digitfactor; digitfactor /= 10; } else { modctx->number_of_channels = 0; break; } } j++; } else { modctx->number_of_channels = 0; break; } } if( j == 4 ) { if(!modctx->number_of_channels) modctx->number_of_channels = modlist[i].numberofchannels; } i++; } if( !modctx->number_of_channels ) { // 15 Samples modules support // Shift the whole datas to make it look likes a standard 4 channels mod. memcopy(&(modctx->song.signature), "M.K.", 4); memcopy(&(modctx->song.length), &(modctx->song.samples[15]), 130); memclear(&(modctx->song.samples[15]), 0, 480); modmemory += 600; modctx->number_of_channels = 4; } else { modmemory += 1084; } if( modctx->number_of_channels > NUMMAXCHANNELS ) return 0; // Too much channels ! - Increase/define HXCMOD_MAXCHANNELS ! if( modmemory >= endmodmemory ) return 0; // End passed ? - Probably a bad file ! // Patterns loading for (i = max = 0; i < 128; i++) { while (max <= modctx->song.patterntable[i]) { modctx->patterndata[max] = (note*)modmemory; modmemory += (256*modctx->number_of_channels); max++; if( modmemory >= endmodmemory ) return 0; // End passed ? - Probably a bad file ! } } for (i = 0; i < 31; i++) modctx->sampledata[i]=0; // Samples loading for (i = 0, sptr = modctx->song.samples; i <31; i++, sptr++) { if (sptr->length == 0) continue; modctx->sampledata[i] = (mchar*)modmemory; modmemory += (GET_BGI_W(sptr->length)*2); if (GET_BGI_W(sptr->replen) + GET_BGI_W(sptr->reppnt) > GET_BGI_W(sptr->length)) sptr->replen = GET_BGI_W((GET_BGI_W(sptr->length) - GET_BGI_W(sptr->reppnt))); if( modmemory > endmodmemory ) return 0; // End passed ? - Probably a bad file ! } // States init modctx->tablepos = 0; modctx->patternpos = 0; modctx->song.speed = 6; modctx->bpm = 125; modctx->samplenb = 0; modctx->patternticks = (((long)modctx->song.speed * modctx->playrate * 5)/ (2 * modctx->bpm)) + 1; modctx->patternticksaim = ((long)modctx->song.speed * modctx->playrate * 5) / (2 * modctx->bpm); modctx->sampleticksconst = 3546894UL / modctx->playrate; //8448*428/playrate; for(i=0; i < modctx->number_of_channels; i++) { modctx->channels[i].volume = 0; modctx->channels[i].period = 0; } for(i=0; i < modctx->number_of_seffects; i++) { modctx->seffects[i].active = 0; } modctx->mod_loaded = 1; return 1; } } return 0; } void hxcmod_playsoundeffect( modcontext * modctx, unsigned short sampnum, unsigned short seffectnum, unsigned char volume, unsigned int period ) { seffect *effectptr; effectptr = modctx->seffects + seffectnum; effectptr -> active = 1; effectptr -> sampdata = modctx->sampledata[sampnum]; effectptr -> length = GET_BGI_W( modctx->song.samples[sampnum].length ) * 2; effectptr -> sampnum = sampnum; effectptr -> samppos = 0; effectptr -> period = period; effectptr -> volume = volume; } int hxcmod_effectplaying( modcontext * modctx, unsigned short seffectnum) { seffect *effectptr; effectptr = modctx->seffects + seffectnum; return effectptr -> active; } int hxcmod_fillbuffer( modcontext * modctx, msample * outbuffer, unsigned long nbsample, tracker_buffer_state * trkbuf, int noloop ) { unsigned long i, j; unsigned long k; unsigned int c; unsigned int state_remaining_steps; #ifndef HXCMOD_MONO_OUTPUT int l,ll,tl; #endif int r,lr,tr; short finalperiod; note *nptr; channel *cptr; seffect *seffectptr; if( modctx && outbuffer ) { if(modctx->mod_loaded) { state_remaining_steps = 0; if( trkbuf ) { trkbuf->cur_rd_index = 0; memcopy(trkbuf->name,modctx->song.title,sizeof(modctx->song.title)); for(i=0;i<31;i++) { memcopy(trkbuf->instruments[i].name,modctx->song.samples[i].name,sizeof(trkbuf->instruments[i].name)); } } #ifndef HXCMOD_MONO_OUTPUT ll = modctx->last_l_sample; #endif lr = modctx->last_r_sample; for (i = 0; i < nbsample; i++) { //--------------------------------------- if( modctx->patternticks++ > modctx->patternticksaim ) { if( !modctx->patterndelay ) { nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]]; nptr = nptr + modctx->patternpos; cptr = modctx->channels; modctx->tick_cnt = 0; modctx->patternticks = 0; modctx->patterntickse = 0; for(c=0;cnumber_of_channels;c++) { worknote((note*)(nptr+c), (channel*)(cptr+c),(char)(c+1),modctx); } if( !modctx->jump_loop_effect ) modctx->patternpos += modctx->number_of_channels; else modctx->jump_loop_effect = 0; if( modctx->patternpos == 64*modctx->number_of_channels ) { modctx->tablepos++; modctx->patternpos = 0; if(modctx->tablepos >= modctx->song.length){ if(noloop) return 1; else modctx->tablepos = 0; } } } else { modctx->patterndelay--; modctx->patternticks = 0; modctx->patterntickse = 0; modctx->tick_cnt = 0; } } if( modctx->patterntickse++ > (modctx->patternticksaim/modctx->song.speed) ) { nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]]; nptr = nptr + modctx->patternpos; cptr = modctx->channels; for(c=0;cnumber_of_channels;c++) { workeffect( modctx, nptr+c, cptr+c ); } modctx->tick_cnt++; modctx->patterntickse = 0; } //--------------------------------------- if( trkbuf && !state_remaining_steps ) { if( trkbuf->nb_of_state < trkbuf->nb_max_of_state ) { memclear(&trkbuf->track_state_buf[trkbuf->nb_of_state],0,sizeof(tracker_state)); } } #ifndef HXCMOD_MONO_OUTPUT l=0; #endif r=0; for( j = 0, cptr = modctx->channels; j < modctx->number_of_channels ; j++, cptr++) { if( cptr->period != 0 ) { finalperiod = cptr->period - cptr->decalperiod - cptr->vibraperiod; if( finalperiod ) { cptr->samppos += ( (modctx->sampleticksconst<<10) / finalperiod ); } cptr->ticks++; if( cptr->replen<=2 ) { if( ( cptr->samppos >> 10) >= cptr->length ) { cptr->length = 0; cptr->reppnt = 0; if(cptr->update_nxt_repeat) { cptr->replen = cptr->nxt_replen; cptr->reppnt = cptr->nxt_reppnt; cptr->sampdata = cptr->nxt_sampdata; cptr->length = cptr->nxt_length; cptr->lst_sampdata = cptr->sampdata; cptr->lst_length = cptr->length; cptr->lst_reppnt = cptr->reppnt; cptr->lst_replen = cptr->replen; cptr->update_nxt_repeat = 0; } if( cptr->length ) cptr->samppos = cptr->samppos % (((unsigned long)cptr->length)<<10); else cptr->samppos = 0; } } else { if( ( cptr->samppos >> 10 ) >= (unsigned long)(cptr->replen+cptr->reppnt) ) { if( cptr->update_nxt_repeat ) { cptr->replen = cptr->nxt_replen; cptr->reppnt = cptr->nxt_reppnt; cptr->sampdata = cptr->nxt_sampdata; cptr->length = cptr->nxt_length; cptr->lst_sampdata = cptr->sampdata; cptr->lst_length = cptr->length; cptr->lst_reppnt = cptr->reppnt; cptr->lst_replen = cptr->replen; cptr->update_nxt_repeat = 0; } if( cptr->sampdata ) { cptr->samppos = ((unsigned long)(cptr->reppnt)<<10) + (cptr->samppos % ((unsigned long)(cptr->replen+cptr->reppnt)<<10)); } } } k = cptr->samppos >> 10; #ifdef HXCMOD_MONO_OUTPUT if( cptr->sampdata!=0 ) { r += ( cptr->sampdata[k] * cptr->volume ); } #else if( cptr->sampdata!=0 && ( ((j&3)==1) || ((j&3)==2) ) ) { r += ( cptr->sampdata[k] * cptr->volume ); } if( cptr->sampdata!=0 && ( ((j&3)==0) || ((j&3)==3) ) ) { l += ( cptr->sampdata[k] * cptr->volume ); } #endif if( trkbuf && !state_remaining_steps ) { if( trkbuf->nb_of_state < trkbuf->nb_max_of_state ) { trkbuf->track_state_buf[trkbuf->nb_of_state].number_of_tracks = modctx->number_of_channels; trkbuf->track_state_buf[trkbuf->nb_of_state].buf_index = i; trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern = modctx->song.patterntable[modctx->tablepos]; trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_pos = modctx->patternpos / modctx->number_of_channels; trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_table_pos = modctx->tablepos; trkbuf->track_state_buf[trkbuf->nb_of_state].bpm = modctx->bpm; trkbuf->track_state_buf[trkbuf->nb_of_state].speed = modctx->song.speed; trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_effect = cptr->effect_code; trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_parameffect = cptr->parameffect; trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_period = finalperiod; trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_volume = cptr->volume; trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].instrument_number = (unsigned char)cptr->sampnum; } } } } for( j = 0, seffectptr = modctx->seffects; j < modctx->number_of_seffects ; j++, seffectptr++) { if (seffectptr->active) { seffectptr->samppos += ( (modctx->sampleticksconst<<10) / seffectptr->period ); if( ( seffectptr->samppos >> 10) >= seffectptr->length ) { seffectptr->active = 0; } else { k = seffectptr->samppos >> 10; #ifdef HXCMOD_MONO_OUTPUT if( seffectptr->sampdata!=0 ) { r += ( seffectptr->sampdata[k] * seffectptr->volume ); } #else if( seffectptr->sampdata!=0) { r += ( seffectptr->sampdata[k] * seffectptr->volume ); l += ( seffectptr->sampdata[k] * seffectptr->volume ); } #endif } } } if( trkbuf && !state_remaining_steps ) { state_remaining_steps = trkbuf->sample_step; if(trkbuf->nb_of_state < trkbuf->nb_max_of_state) trkbuf->nb_of_state++; } else { state_remaining_steps--; } #ifdef HXCMOD_MONO_OUTPUT tr = (short)r; if ( modctx->filter ) { // Filter r = (r+lr)>>1; } // Level limitation if( r > 32767 ) r = 32767; if( r < -32768 ) r = -32768; // Store the final sample. #ifdef HXCMOD_8BITS_OUTPUT #ifdef HXCMOD_UNSIGNED_OUTPUT outbuffer[i] = (r >> 8) + 127; #else outbuffer[i] = r >> 8; #endif #else #ifdef HXCMOD_UNSIGNED_OUTPUT outbuffer[i] = r + 32767; #else outbuffer[i] = r; #endif #endif lr = tr; #else tl = (short)l; tr = (short)r; if ( modctx->filter ) { // Filter l = (l+ll)>>1; r = (r+lr)>>1; } if ( modctx->stereo_separation == 1 ) { // Left & Right Stereo panning l = (l+(r>>1)); r = (r+(l>>1)); } // Level limitation if( l > 32767 ) l = 32767; if( l < -32768 ) l = -32768; if( r > 32767 ) r = 32767; if( r < -32768 ) r = -32768; // Store the final sample. #ifdef HXCMOD_8BITS_OUTPUT #ifdef HXCMOD_UNSIGNED_OUTPUT outbuffer[(i*2)] = ( l >> 8 ) + 127; outbuffer[(i*2)+1] = ( r >> 8 ) + 127; #else outbuffer[(i*2)] = l >> 8; outbuffer[(i*2)+1] = r >> 8; #endif #else #ifdef HXCMOD_UNSIGNED_OUTPUT outbuffer[(i*2)] = l + 32767; outbuffer[(i*2)+1] = r + 32767; #else outbuffer[(i*2)] = l; outbuffer[(i*2)+1] = r; #endif #endif ll = tl; lr = tr; #endif // HXCMOD_MONO_OUTPUT } #ifndef HXCMOD_MONO_OUTPUT modctx->last_l_sample = ll; #endif modctx->last_r_sample = lr; modctx->samplenb = modctx->samplenb+nbsample; } else { for (i = 0; i < nbsample; i++) { // Mod not loaded. Return blank buffer. #ifdef HXCMOD_MONO_OUTPUT outbuffer[i] = 0; #else outbuffer[(i*2)] = 0; outbuffer[(i*2)+1] = 0; #endif } if(trkbuf) { trkbuf->nb_of_state = 0; trkbuf->cur_rd_index = 0; trkbuf->name[0] = 0; memclear(trkbuf->track_state_buf,0,sizeof(tracker_state) * trkbuf->nb_max_of_state); memclear(trkbuf->instruments,0,sizeof(trkbuf->instruments)); } } } return 0; } void hxcmod_unload( modcontext * modctx ) { if(modctx) { memclear(&modctx->song,0,sizeof(modctx->song)); memclear(&modctx->sampledata,0,sizeof(modctx->sampledata)); memclear(&modctx->patterndata,0,sizeof(modctx->patterndata)); modctx->tablepos = 0; modctx->patternpos = 0; modctx->patterndelay = 0; modctx->jump_loop_effect = 0; modctx->bpm = 0; modctx->patternticks = 0; modctx->patterntickse = 0; modctx->patternticksaim = 0; modctx->sampleticksconst = 0; modctx->samplenb = 0; memclear(modctx->channels,0,sizeof(modctx->channels)); modctx->number_of_channels = 0; modctx->mod_loaded = 0; modctx->last_r_sample = 0; modctx->last_l_sample = 0; } } /* @endcond */