mirror of
https://github.com/clockworkpi/PicoCalc.git
synced 2025-12-12 18:28:53 +01:00
387 lines
16 KiB
C
387 lines
16 KiB
C
/*
|
|
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "hardware/flash.h"
|
|
#include "pico/bootrom.h"
|
|
|
|
#if PICO_RP2040
|
|
#include "hardware/structs/io_qspi.h"
|
|
#include "hardware/structs/ssi.h"
|
|
#else
|
|
#include "hardware/structs/qmi.h"
|
|
#include "hardware/structs/pads_qspi.h"
|
|
#include "hardware/regs/otp_data.h"
|
|
#endif
|
|
#include "hardware/xip_cache.h"
|
|
|
|
#define FLASH_BLOCK_ERASE_CMD 0xd8
|
|
|
|
// Standard RUID instruction: 4Bh command prefix, 32 dummy bits, 64 data bits.
|
|
#define FLASH_RUID_CMD 0x4b
|
|
#define FLASH_RUID_DUMMY_BYTES 4
|
|
#define FLASH_RUID_DATA_BYTES FLASH_UNIQUE_ID_SIZE_BYTES
|
|
#define FLASH_RUID_TOTAL_BYTES (1 + FLASH_RUID_DUMMY_BYTES + FLASH_RUID_DATA_BYTES)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Infrastructure for reentering XIP mode after exiting for programming (take
|
|
// a copy of boot2 before XIP exit). Calling boot2 as a function works because
|
|
// it accepts a return vector in LR (and doesn't trash r4-r7). Bootrom passes
|
|
// NULL in LR, instructing boot2 to enter flash vector table's reset handler.
|
|
|
|
#if !PICO_NO_FLASH
|
|
|
|
#define BOOT2_SIZE_WORDS 64
|
|
|
|
static uint32_t boot2_copyout[BOOT2_SIZE_WORDS];
|
|
static bool boot2_copyout_valid = false;
|
|
|
|
static void __no_inline_not_in_flash_func(flash_init_boot2_copyout)(void) {
|
|
if (boot2_copyout_valid)
|
|
return;
|
|
// todo we may want the option of boot2 just being a free function in
|
|
// user RAM, e.g. if it is larger than 256 bytes
|
|
#if PICO_RP2040
|
|
const volatile uint32_t *copy_from = (uint32_t *)XIP_BASE;
|
|
#else
|
|
const volatile uint32_t *copy_from = (uint32_t *)BOOTRAM_BASE;
|
|
#endif
|
|
for (int i = 0; i < BOOT2_SIZE_WORDS; ++i)
|
|
boot2_copyout[i] = copy_from[i];
|
|
__compiler_memory_barrier();
|
|
boot2_copyout_valid = true;
|
|
}
|
|
|
|
|
|
static void __no_inline_not_in_flash_func(flash_enable_xip_via_boot2)(void) {
|
|
((void (*)(void))((intptr_t)boot2_copyout+1))();
|
|
}
|
|
|
|
#else
|
|
|
|
static void __no_inline_not_in_flash_func(flash_init_boot2_copyout)(void) {}
|
|
|
|
static void __no_inline_not_in_flash_func(flash_enable_xip_via_boot2)(void) {
|
|
// Set up XIP for 03h read on bus access (slow but generic)
|
|
rom_flash_enter_cmd_xip_fn flash_enter_cmd_xip_func = (rom_flash_enter_cmd_xip_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_ENTER_CMD_XIP);
|
|
assert(flash_enter_cmd_xip_func);
|
|
flash_enter_cmd_xip_func();
|
|
}
|
|
|
|
#endif
|
|
|
|
#if PICO_RP2350
|
|
// This is specifically for saving/restoring the registers modified by RP2350
|
|
// flash_exit_xip() ROM func, not the entirety of the QMI window state.
|
|
typedef struct flash_rp2350_qmi_save_state {
|
|
uint32_t timing;
|
|
uint32_t rcmd;
|
|
uint32_t rfmt;
|
|
uint32_t io[6];
|
|
} flash_rp2350_qmi_save_state_t;
|
|
|
|
static void __no_inline_not_in_flash_func(flash_rp2350_save_qmi_cs1)(flash_rp2350_qmi_save_state_t *state) {
|
|
state->timing = qmi_hw->m[1].timing;
|
|
state->rcmd = qmi_hw->m[1].rcmd;
|
|
state->rfmt = qmi_hw->m[1].rfmt;
|
|
state->io[0]=pads_qspi_hw->io[0];
|
|
state->io[1]=pads_qspi_hw->io[1];
|
|
state->io[2]=pads_qspi_hw->io[2];
|
|
state->io[3]=pads_qspi_hw->io[3];
|
|
state->io[4]=pads_qspi_hw->io[4];
|
|
state->io[5]=pads_qspi_hw->io[5];
|
|
}
|
|
|
|
static void __no_inline_not_in_flash_func(flash_rp2350_restore_qmi_cs1)(const flash_rp2350_qmi_save_state_t *state) {
|
|
if (flash_devinfo_get_cs_size(1) == FLASH_DEVINFO_SIZE_NONE) {
|
|
// Case 1: The RP2350 ROM sets QMI to a clean (03h read) configuration
|
|
// during flash_exit_xip(), even though when CS1 is not enabled via
|
|
// FLASH_DEVINFO it does not issue an XIP exit sequence to CS1. In
|
|
// this case, restore the original register config for CS1 as it is
|
|
// still the correct config.
|
|
qmi_hw->m[1].timing = state->timing;
|
|
qmi_hw->m[1].rcmd = state->rcmd;
|
|
qmi_hw->m[1].rfmt = state->rfmt;
|
|
pads_qspi_hw->io[0]=state->io[0];
|
|
pads_qspi_hw->io[1]=state->io[1];
|
|
pads_qspi_hw->io[2]=state->io[2];
|
|
pads_qspi_hw->io[3]=state->io[3];
|
|
pads_qspi_hw->io[4]=state->io[4];
|
|
pads_qspi_hw->io[5]=state->io[5];
|
|
} else {
|
|
// Case 2: If RAM is attached to CS1, and the ROM has issued an XIP
|
|
// exit sequence to it, then the ROM re-initialisation of the QMI
|
|
// registers has actually not gone far enough. The old XIP write mode
|
|
// is no longer valid when the QSPI RAM is returned to a serial
|
|
// command state. Restore the default 02h serial write command config.
|
|
qmi_hw->m[1].wfmt = QMI_M1_WFMT_RESET;
|
|
qmi_hw->m[1].wcmd = QMI_M1_WCMD_RESET;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Actual flash programming shims (work whether or not PICO_NO_FLASH==1)
|
|
|
|
void __no_inline_not_in_flash_func(flash_range_erase)(uint32_t flash_offs, size_t count) {
|
|
#ifdef PICO_FLASH_SIZE_BYTES
|
|
hard_assert(flash_offs + count <= PICO_FLASH_SIZE_BYTES);
|
|
#endif
|
|
invalid_params_if(HARDWARE_FLASH, flash_offs & (FLASH_SECTOR_SIZE - 1));
|
|
invalid_params_if(HARDWARE_FLASH, count & (FLASH_SECTOR_SIZE - 1));
|
|
rom_connect_internal_flash_fn connect_internal_flash_func = (rom_connect_internal_flash_fn)rom_func_lookup_inline(ROM_FUNC_CONNECT_INTERNAL_FLASH);
|
|
rom_flash_exit_xip_fn flash_exit_xip_func = (rom_flash_exit_xip_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_EXIT_XIP);
|
|
rom_flash_range_erase_fn flash_range_erase_func = (rom_flash_range_erase_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_RANGE_ERASE);
|
|
rom_flash_flush_cache_fn flash_flush_cache_func = (rom_flash_flush_cache_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_FLUSH_CACHE);
|
|
assert(connect_internal_flash_func && flash_exit_xip_func && flash_range_erase_func && flash_flush_cache_func);
|
|
flash_init_boot2_copyout();
|
|
// Commit any pending writes to external RAM, to avoid losing them in the subsequent flush:
|
|
xip_cache_clean_all();
|
|
#if PICO_RP2350
|
|
flash_rp2350_qmi_save_state_t qmi_save;
|
|
flash_rp2350_save_qmi_cs1(&qmi_save);
|
|
#endif
|
|
|
|
// No flash accesses after this point
|
|
__compiler_memory_barrier();
|
|
|
|
connect_internal_flash_func();
|
|
flash_exit_xip_func();
|
|
flash_range_erase_func(flash_offs, count, FLASH_BLOCK_SIZE, FLASH_BLOCK_ERASE_CMD);
|
|
flash_flush_cache_func(); // Note this is needed to remove CSn IO force as well as cache flushing
|
|
flash_enable_xip_via_boot2();
|
|
#if PICO_RP2350
|
|
flash_rp2350_restore_qmi_cs1(&qmi_save);
|
|
#endif
|
|
}
|
|
|
|
void __no_inline_not_in_flash_func(flash_flush_cache)(void) {
|
|
rom_flash_flush_cache_fn flash_flush_cache_func = (rom_flash_flush_cache_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_FLUSH_CACHE);
|
|
flash_flush_cache_func();
|
|
}
|
|
|
|
void __no_inline_not_in_flash_func(flash_range_program)(uint32_t flash_offs, const uint8_t *data, size_t count) {
|
|
#ifdef PICO_FLASH_SIZE_BYTES
|
|
hard_assert(flash_offs + count <= PICO_FLASH_SIZE_BYTES);
|
|
#endif
|
|
invalid_params_if(HARDWARE_FLASH, flash_offs & (FLASH_PAGE_SIZE - 1));
|
|
invalid_params_if(HARDWARE_FLASH, count & (FLASH_PAGE_SIZE - 1));
|
|
rom_connect_internal_flash_fn connect_internal_flash_func = (rom_connect_internal_flash_fn)rom_func_lookup_inline(ROM_FUNC_CONNECT_INTERNAL_FLASH);
|
|
rom_flash_exit_xip_fn flash_exit_xip_func = (rom_flash_exit_xip_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_EXIT_XIP);
|
|
rom_flash_range_program_fn flash_range_program_func = (rom_flash_range_program_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_RANGE_PROGRAM);
|
|
rom_flash_flush_cache_fn flash_flush_cache_func = (rom_flash_flush_cache_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_FLUSH_CACHE);
|
|
assert(connect_internal_flash_func && flash_exit_xip_func && flash_range_program_func && flash_flush_cache_func);
|
|
flash_init_boot2_copyout();
|
|
xip_cache_clean_all();
|
|
#if PICO_RP2350
|
|
flash_rp2350_qmi_save_state_t qmi_save;
|
|
flash_rp2350_save_qmi_cs1(&qmi_save);
|
|
#endif
|
|
|
|
__compiler_memory_barrier();
|
|
|
|
connect_internal_flash_func();
|
|
flash_exit_xip_func();
|
|
flash_range_program_func(flash_offs, data, count);
|
|
flash_flush_cache_func(); // Note this is needed to remove CSn IO force as well as cache flushing
|
|
flash_enable_xip_via_boot2();
|
|
#if PICO_RP2350
|
|
flash_rp2350_restore_qmi_cs1(&qmi_save);
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Lower-level flash access functions
|
|
|
|
#if !PICO_NO_FLASH
|
|
// Bitbanging the chip select using IO overrides, in case RAM-resident IRQs
|
|
// are still running, and the FIFO bottoms out. (the bootrom does the same)
|
|
static void __no_inline_not_in_flash_func(flash_cs_force)(bool high) {
|
|
#if PICO_RP2040
|
|
uint32_t field_val = high ?
|
|
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_HIGH :
|
|
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_LOW;
|
|
hw_write_masked(&io_qspi_hw->io[1].ctrl,
|
|
field_val << IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_LSB,
|
|
IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_BITS
|
|
);
|
|
#else
|
|
if (high) {
|
|
hw_clear_bits(&qmi_hw->direct_csr, QMI_DIRECT_CSR_ASSERT_CS0N_BITS);
|
|
} else {
|
|
hw_set_bits(&qmi_hw->direct_csr, QMI_DIRECT_CSR_ASSERT_CS0N_BITS);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void __no_inline_not_in_flash_func(flash_do_cmd)(const uint8_t *txbuf, uint8_t *rxbuf, size_t count) {
|
|
rom_connect_internal_flash_fn connect_internal_flash_func = (rom_connect_internal_flash_fn)rom_func_lookup_inline(ROM_FUNC_CONNECT_INTERNAL_FLASH);
|
|
rom_flash_exit_xip_fn flash_exit_xip_func = (rom_flash_exit_xip_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_EXIT_XIP);
|
|
rom_flash_flush_cache_fn flash_flush_cache_func = (rom_flash_flush_cache_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_FLUSH_CACHE);
|
|
assert(connect_internal_flash_func && flash_exit_xip_func && flash_flush_cache_func);
|
|
flash_init_boot2_copyout();
|
|
xip_cache_clean_all();
|
|
#if PICO_RP2350
|
|
flash_rp2350_qmi_save_state_t qmi_save;
|
|
flash_rp2350_save_qmi_cs1(&qmi_save);
|
|
#endif
|
|
|
|
__compiler_memory_barrier();
|
|
connect_internal_flash_func();
|
|
flash_exit_xip_func();
|
|
|
|
flash_cs_force(0);
|
|
size_t tx_remaining = count;
|
|
size_t rx_remaining = count;
|
|
#if PICO_RP2040
|
|
// Synopsys SSI version
|
|
// We may be interrupted -- don't want FIFO to overflow if we're distracted.
|
|
const size_t max_in_flight = 16 - 2;
|
|
while (tx_remaining || rx_remaining) {
|
|
uint32_t flags = ssi_hw->sr;
|
|
bool can_put = flags & SSI_SR_TFNF_BITS;
|
|
bool can_get = flags & SSI_SR_RFNE_BITS;
|
|
if (can_put && tx_remaining && rx_remaining - tx_remaining < max_in_flight) {
|
|
ssi_hw->dr0 = *txbuf++;
|
|
--tx_remaining;
|
|
}
|
|
if (can_get && rx_remaining) {
|
|
*rxbuf++ = (uint8_t)ssi_hw->dr0;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
#else
|
|
// QMI version -- no need to bound FIFO contents as QMI stalls on full DIRECT_RX.
|
|
hw_set_bits(&qmi_hw->direct_csr, QMI_DIRECT_CSR_EN_BITS);
|
|
while (tx_remaining || rx_remaining) {
|
|
uint32_t flags = qmi_hw->direct_csr;
|
|
bool can_put = !(flags & QMI_DIRECT_CSR_TXFULL_BITS);
|
|
bool can_get = !(flags & QMI_DIRECT_CSR_RXEMPTY_BITS);
|
|
if (can_put && tx_remaining) {
|
|
qmi_hw->direct_tx = *txbuf++;
|
|
--tx_remaining;
|
|
}
|
|
if (can_get && rx_remaining) {
|
|
*rxbuf++ = (uint8_t)qmi_hw->direct_rx;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
hw_clear_bits(&qmi_hw->direct_csr, QMI_DIRECT_CSR_EN_BITS);
|
|
#endif
|
|
flash_cs_force(1);
|
|
|
|
flash_flush_cache_func();
|
|
flash_enable_xip_via_boot2();
|
|
#if PICO_RP2350
|
|
flash_rp2350_restore_qmi_cs1(&qmi_save);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Use standard RUID command to get a unique identifier for the flash (and
|
|
// hence the board)
|
|
|
|
static_assert(FLASH_UNIQUE_ID_SIZE_BYTES == FLASH_RUID_DATA_BYTES, "");
|
|
|
|
void flash_get_unique_id(uint8_t *id_out) {
|
|
#if PICO_NO_FLASH
|
|
__unused uint8_t *ignore = id_out;
|
|
panic_unsupported();
|
|
#else
|
|
uint8_t txbuf[FLASH_RUID_TOTAL_BYTES] = {0};
|
|
uint8_t rxbuf[FLASH_RUID_TOTAL_BYTES] = {0};
|
|
txbuf[0] = FLASH_RUID_CMD;
|
|
flash_do_cmd(txbuf, rxbuf, FLASH_RUID_TOTAL_BYTES);
|
|
for (int i = 0; i < FLASH_RUID_DATA_BYTES; i++)
|
|
id_out[i] = rxbuf[i + 1 + FLASH_RUID_DUMMY_BYTES];
|
|
#endif
|
|
}
|
|
|
|
#if !PICO_RP2040
|
|
// This is a static symbol because the layout of FLASH_DEVINFO is liable to change from device to
|
|
// device, so fields must have getters/setters.
|
|
static io_rw_16 * __no_inline_not_in_flash_func(flash_devinfo_ptr)(void) {
|
|
// Note the lookup returns a pointer to a 32-bit pointer literal in the ROM
|
|
io_rw_16 **p = (io_rw_16 **) rom_data_lookup_inline(ROM_DATA_FLASH_DEVINFO16_PTR);
|
|
assert(p);
|
|
return *p;
|
|
}
|
|
|
|
static void flash_devinfo_update_field(uint16_t wdata, uint16_t mask) {
|
|
// Boot RAM does not support exclusives, but does support RWTYPE SET/CLR/XOR (with byte
|
|
// strobes). Can't use hw_write_masked because it performs a 32-bit write.
|
|
io_rw_16 *devinfo = flash_devinfo_ptr();
|
|
*hw_xor_alias(devinfo) = (*devinfo ^ wdata) & mask;
|
|
}
|
|
|
|
// This is a RAM function because may be called during flash programming to enable save/restore of
|
|
// QMI window 1 registers on RP2350:
|
|
flash_devinfo_size_t __no_inline_not_in_flash_func(flash_devinfo_get_cs_size)(uint cs) {
|
|
invalid_params_if(HARDWARE_FLASH, cs > 1);
|
|
io_ro_16 *devinfo = (io_ro_16 *) flash_devinfo_ptr();
|
|
if (cs == 0u) {
|
|
#ifdef PICO_FLASH_SIZE_BYTES
|
|
// A flash size explicitly specified for the build (e.g. from the board header) takes
|
|
// precedence over whatever was found in OTP. Not using flash_devinfo_bytes_to_size() as
|
|
// the call could be outlined, and this code must be in RAM.
|
|
if (PICO_FLASH_SIZE_BYTES == 0) {
|
|
return FLASH_DEVINFO_SIZE_NONE;
|
|
} else {
|
|
return (flash_devinfo_size_t) (
|
|
__builtin_ctz(PICO_FLASH_SIZE_BYTES / 8192u) + (uint)FLASH_DEVINFO_SIZE_8K
|
|
);
|
|
}
|
|
#else
|
|
return (flash_devinfo_size_t) (
|
|
(*devinfo & OTP_DATA_FLASH_DEVINFO_CS0_SIZE_BITS) >> OTP_DATA_FLASH_DEVINFO_CS0_SIZE_LSB
|
|
);
|
|
#endif
|
|
} else {
|
|
return (flash_devinfo_size_t) (
|
|
(*devinfo & OTP_DATA_FLASH_DEVINFO_CS1_SIZE_BITS) >> OTP_DATA_FLASH_DEVINFO_CS1_SIZE_LSB
|
|
);
|
|
}
|
|
}
|
|
|
|
void flash_devinfo_set_cs_size(uint cs, flash_devinfo_size_t size) {
|
|
invalid_params_if(HARDWARE_FLASH, cs > 1);
|
|
invalid_params_if(HARDWARE_FLASH, (uint)size > (uint)FLASH_DEVINFO_SIZE_MAX);
|
|
uint cs_shift = cs == 0u ? OTP_DATA_FLASH_DEVINFO_CS0_SIZE_LSB : OTP_DATA_FLASH_DEVINFO_CS1_SIZE_LSB;
|
|
uint16_t cs_mask = OTP_DATA_FLASH_DEVINFO_CS0_SIZE_BITS >> OTP_DATA_FLASH_DEVINFO_CS0_SIZE_LSB;
|
|
flash_devinfo_update_field(
|
|
(uint16_t)size << cs_shift,
|
|
cs_mask << cs_shift
|
|
);
|
|
}
|
|
|
|
bool flash_devinfo_get_d8h_erase_supported(void) {
|
|
return *flash_devinfo_ptr() & OTP_DATA_FLASH_DEVINFO_D8H_ERASE_SUPPORTED_BITS;
|
|
}
|
|
|
|
void flash_devinfo_set_d8h_erase_supported(bool supported) {
|
|
flash_devinfo_update_field(
|
|
(uint)supported << OTP_DATA_FLASH_DEVINFO_D8H_ERASE_SUPPORTED_LSB,
|
|
OTP_DATA_FLASH_DEVINFO_D8H_ERASE_SUPPORTED_BITS
|
|
);
|
|
}
|
|
|
|
uint flash_devinfo_get_cs_gpio(uint cs) {
|
|
invalid_params_if(HARDWARE_FLASH, cs != 1);
|
|
(void)cs;
|
|
return (*flash_devinfo_ptr() & OTP_DATA_FLASH_DEVINFO_CS1_GPIO_BITS) >> OTP_DATA_FLASH_DEVINFO_CS1_GPIO_LSB;
|
|
}
|
|
|
|
void flash_devinfo_set_cs_gpio(uint cs, uint gpio) {
|
|
invalid_params_if(HARDWARE_FLASH, cs != 1);
|
|
invalid_params_if(HARDWARE_FLASH, gpio >= NUM_BANK0_GPIOS);
|
|
(void)cs;
|
|
flash_devinfo_update_field(
|
|
((uint16_t)gpio) << OTP_DATA_FLASH_DEVINFO_CS1_GPIO_LSB,
|
|
OTP_DATA_FLASH_DEVINFO_CS1_GPIO_BITS
|
|
);
|
|
}
|
|
|
|
#endif // !PICO_RP2040
|