WiringPi/wiringPi/wiringPi.c
Gordon Henderson eb1fc2c920 Updates to the build process
Moved the extensions into wiringPi from gpio and made it more general purpose
more so that RTB and anything else can dymanically add devices
into wiringPi.
Changes to GPIO to updates for the SPI and I2C module loads
Added gpio unload for SPI and I2C.

Added a new way to setup SPI - by passing the mode in.

Support for the new Pi2 thing too
2015-01-30 18:14:49 +00:00

1972 lines
55 KiB
C

/*
* wiringPi:
* Arduino compatable (ish) Wiring library for the Raspberry Pi
* Copyright (c) 2012 Gordon Henderson
* Additional code for pwmSetClock by Chris Hall <chris@kchall.plus.com>
*
* Thanks to code samples from Gert Jan van Loo and the
* BCM2835 ARM Peripherals manual, however it's missing
* the clock section /grr/mutter/
***********************************************************************
* This file is part of wiringPi:
* https://projects.drogon.net/raspberry-pi/wiringpi/
*
* wiringPi is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* wiringPi is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with wiringPi.
* If not, see <http://www.gnu.org/licenses/>.
***********************************************************************
*/
// Revisions:
// 19 Jul 2012:
// Moved to the LGPL
// Added an abstraction layer to the main routines to save a tiny
// bit of run-time and make the clode a little cleaner (if a little
// larger)
// Added waitForInterrupt code
// Added piHiPri code
//
// 9 Jul 2012:
// Added in support to use the /sys/class/gpio interface.
// 2 Jul 2012:
// Fixed a few more bugs to do with range-checking when in GPIO mode.
// 11 Jun 2012:
// Fixed some typos.
// Added c++ support for the .h file
// Added a new function to allow for using my "pin" numbers, or native
// GPIO pin numbers.
// Removed my busy-loop delay and replaced it with a call to delayMicroseconds
//
// 02 May 2012:
// Added in the 2 UART pins
// Change maxPins to numPins to more accurately reflect purpose
#include <stdio.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <ctype.h>
#include <poll.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include "softPwm.h"
#include "softTone.h"
#include "wiringPi.h"
#ifndef TRUE
#define TRUE (1==1)
#define FALSE (1==2)
#endif
// Environment Variables
#define ENV_DEBUG "WIRINGPI_DEBUG"
#define ENV_CODES "WIRINGPI_CODES"
// Mask for the bottom 64 pins which belong to the Raspberry Pi
// The others are available for the other devices
#define PI_GPIO_MASK (0xFFFFFFC0)
struct wiringPiNodeStruct *wiringPiNodes = NULL ;
// BCM Magic
#define BCM_PASSWORD 0x5A000000
// The BCM2835 has 54 GPIO pins.
// BCM2835 data sheet, Page 90 onwards.
// There are 6 control registers, each control the functions of a block
// of 10 pins.
// Each control register has 10 sets of 3 bits per GPIO pin - the ALT values
//
// 000 = GPIO Pin X is an input
// 001 = GPIO Pin X is an output
// 100 = GPIO Pin X takes alternate function 0
// 101 = GPIO Pin X takes alternate function 1
// 110 = GPIO Pin X takes alternate function 2
// 111 = GPIO Pin X takes alternate function 3
// 011 = GPIO Pin X takes alternate function 4
// 010 = GPIO Pin X takes alternate function 5
//
// So the 3 bits for port X are:
// X / 10 + ((X % 10) * 3)
// Port function select bits
#define FSEL_INPT 0b000
#define FSEL_OUTP 0b001
#define FSEL_ALT0 0b100
#define FSEL_ALT1 0b101
#define FSEL_ALT2 0b110
#define FSEL_ALT3 0b111
#define FSEL_ALT4 0b011
#define FSEL_ALT5 0b010
// Access from ARM Running Linux
// Taken from Gert/Doms code. Some of this is not in the manual
// that I can find )-:
static volatile unsigned int BCM2708_PERI_BASE = 0x20000000 ;
#define GPIO_PADS (BCM2708_PERI_BASE + 0x00100000)
#define CLOCK_BASE (BCM2708_PERI_BASE + 0x00101000)
#define GPIO_BASE (BCM2708_PERI_BASE + 0x00200000)
#define GPIO_TIMER (BCM2708_PERI_BASE + 0x0000B000)
#define GPIO_PWM (BCM2708_PERI_BASE + 0x0020C000)
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
// PWM
// Word offsets into the PWM control region
#define PWM_CONTROL 0
#define PWM_STATUS 1
#define PWM0_RANGE 4
#define PWM0_DATA 5
#define PWM1_RANGE 8
#define PWM1_DATA 9
// Clock regsiter offsets
#define PWMCLK_CNTL 40
#define PWMCLK_DIV 41
#define PWM0_MS_MODE 0x0080 // Run in MS mode
#define PWM0_USEFIFO 0x0020 // Data from FIFO
#define PWM0_REVPOLAR 0x0010 // Reverse polarity
#define PWM0_OFFSTATE 0x0008 // Ouput Off state
#define PWM0_REPEATFF 0x0004 // Repeat last value if FIFO empty
#define PWM0_SERIAL 0x0002 // Run in serial mode
#define PWM0_ENABLE 0x0001 // Channel Enable
#define PWM1_MS_MODE 0x8000 // Run in MS mode
#define PWM1_USEFIFO 0x2000 // Data from FIFO
#define PWM1_REVPOLAR 0x1000 // Reverse polarity
#define PWM1_OFFSTATE 0x0800 // Ouput Off state
#define PWM1_REPEATFF 0x0400 // Repeat last value if FIFO empty
#define PWM1_SERIAL 0x0200 // Run in serial mode
#define PWM1_ENABLE 0x0100 // Channel Enable
// Timer
// Word offsets
#define TIMER_LOAD (0x400 >> 2)
#define TIMER_VALUE (0x404 >> 2)
#define TIMER_CONTROL (0x408 >> 2)
#define TIMER_IRQ_CLR (0x40C >> 2)
#define TIMER_IRQ_RAW (0x410 >> 2)
#define TIMER_IRQ_MASK (0x414 >> 2)
#define TIMER_RELOAD (0x418 >> 2)
#define TIMER_PRE_DIV (0x41C >> 2)
#define TIMER_COUNTER (0x420 >> 2)
// Locals to hold pointers to the hardware
static volatile uint32_t *gpio ;
static volatile uint32_t *pwm ;
static volatile uint32_t *clk ;
static volatile uint32_t *pads ;
#ifdef USE_TIMER
static volatile uint32_t *timer ;
static volatile uint32_t *timerIrqRaw ;
#endif
// Data for use with the boardId functions.
// The order of entries here to correspond with the PI_MODEL_X
// and PI_VERSION_X defines in wiringPi.h
// Only intended for the gpio command - use at your own risk!
static int piModel2 = FALSE ;
const char *piModelNames [7] =
{
"Unknown",
"Model A",
"Model B",
"Model B+",
"Compute Module",
"Model A+",
"Model 2", // Quad Core
} ;
const char *piRevisionNames [5] =
{
"Unknown",
"1",
"1.1",
"1.2",
"2",
} ;
const char *piMakerNames [5] =
{
"Unknown",
"Egoman",
"Sony",
"Qusda",
"MBest",
} ;
// Time for easy calculations
static uint64_t epochMilli, epochMicro ;
// Misc
static int wiringPiMode = WPI_MODE_UNINITIALISED ;
static volatile int pinPass = -1 ;
static pthread_mutex_t pinMutex ;
// Debugging & Return codes
int wiringPiDebug = FALSE ;
int wiringPiReturnCodes = FALSE ;
// sysFds:
// Map a file descriptor from the /sys/class/gpio/gpioX/value
static int sysFds [64] =
{
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
} ;
// ISR Data
static void (*isrFunctions [64])(void) ;
// Doing it the Arduino way with lookup tables...
// Yes, it's probably more innefficient than all the bit-twidling, but it
// does tend to make it all a bit clearer. At least to me!
// pinToGpio:
// Take a Wiring pin (0 through X) and re-map it to the BCM_GPIO pin
// Cope for 3 different board revisions here.
static int *pinToGpio ;
// Revision 1, 1.1:
static int pinToGpioR1 [64] =
{
17, 18, 21, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7
0, 1, // I2C - SDA1, SCL1 wpi 8 - 9
8, 7, // SPI - CE1, CE0 wpi 10 - 11
10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14
14, 15, // UART - Tx, Rx wpi 15 - 16
// Padding:
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 31
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
// Revision 2:
static int pinToGpioR2 [64] =
{
17, 18, 27, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7
2, 3, // I2C - SDA0, SCL0 wpi 8 - 9
8, 7, // SPI - CE1, CE0 wpi 10 - 11
10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14
14, 15, // UART - Tx, Rx wpi 15 - 16
28, 29, 30, 31, // Rev 2: New GPIOs 8 though 11 wpi 17 - 20
5, 6, 13, 19, 26, // B+ wpi 21, 22, 23, 24, 25
12, 16, 20, 21, // B+ wpi 26, 27, 28, 29
0, 1, // B+ wpi 30, 31
// Padding:
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
// physToGpio:
// Take a physical pin (1 through 26) and re-map it to the BCM_GPIO pin
// Cope for 2 different board revisions here.
// Also add in the P5 connector, so the P5 pins are 3,4,5,6, so 53,54,55,56
static int *physToGpio ;
static int physToGpioR1 [64] =
{
-1, // 0
-1, -1, // 1, 2
0, -1,
1, -1,
4, 14,
-1, 15,
17, 18,
21, -1,
22, 23,
-1, 24,
10, -1,
9, 25,
11, 8,
-1, 7, // 25, 26
-1, -1, -1, -1, -1, // ... 31
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63
} ;
static int physToGpioR2 [64] =
{
-1, // 0
-1, -1, // 1, 2
2, -1,
3, -1,
4, 14,
-1, 15,
17, 18,
27, -1,
22, 23,
-1, 24,
10, -1,
9, 25,
11, 8,
-1, 7, // 25, 26
// B+
0, 1,
5, -1,
6, 12,
13, -1,
19, 16,
26, 20,
-1, 21,
// the P5 connector on the Rev 2 boards:
-1, -1,
-1, -1,
-1, -1,
-1, -1,
-1, -1,
28, 29,
30, 31,
-1, -1,
-1, -1,
-1, -1,
-1, -1,
} ;
// gpioToGPFSEL:
// Map a BCM_GPIO pin to it's Function Selection
// control port. (GPFSEL 0-5)
// Groups of 10 - 3 bits per Function - 30 bits per port
static uint8_t gpioToGPFSEL [] =
{
0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,
} ;
// gpioToShift
// Define the shift up for the 3 bits per pin in each GPFSEL port
static uint8_t gpioToShift [] =
{
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
0,3,6,9,12,15,18,21,24,27,
} ;
// gpioToGPSET:
// (Word) offset to the GPIO Set registers for each GPIO pin
static uint8_t gpioToGPSET [] =
{
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
} ;
// gpioToGPCLR:
// (Word) offset to the GPIO Clear registers for each GPIO pin
static uint8_t gpioToGPCLR [] =
{
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
} ;
// gpioToGPLEV:
// (Word) offset to the GPIO Input level registers for each GPIO pin
static uint8_t gpioToGPLEV [] =
{
13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,
} ;
#ifdef notYetReady
// gpioToEDS
// (Word) offset to the Event Detect Status
static uint8_t gpioToEDS [] =
{
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
} ;
// gpioToREN
// (Word) offset to the Rising edge ENable register
static uint8_t gpioToREN [] =
{
19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,
20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,
} ;
// gpioToFEN
// (Word) offset to the Falling edgde ENable register
static uint8_t gpioToFEN [] =
{
22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,
23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,
} ;
#endif
// GPPUD:
// GPIO Pin pull up/down register
#define GPPUD 37
// gpioToPUDCLK
// (Word) offset to the Pull Up Down Clock regsiter
static uint8_t gpioToPUDCLK [] =
{
38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,
39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,
} ;
// gpioToPwmALT
// the ALT value to put a GPIO pin into PWM mode
static uint8_t gpioToPwmALT [] =
{
0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7
0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, 0, 0, // 8 -> 15
0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39
FSEL_ALT0, FSEL_ALT0, 0, 0, 0, FSEL_ALT0, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToPwmPort
// The port value to put a GPIO pin into PWM mode
static uint8_t gpioToPwmPort [] =
{
0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7
0, 0, 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, // 8 -> 15
0, 0, PWM0_DATA, PWM1_DATA, 0, 0, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39
PWM0_DATA, PWM1_DATA, 0, 0, 0, PWM1_DATA, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToGpClkALT:
// ALT value to put a GPIO pin into GP Clock mode.
// On the Pi we can really only use BCM_GPIO_4 and BCM_GPIO_21
// for clocks 0 and 1 respectively, however I'll include the full
// list for completeness - maybe one day...
#define GPIO_CLOCK_SOURCE 1
// gpioToGpClkALT0:
static uint8_t gpioToGpClkALT0 [] =
{
0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, // 0 -> 7
0, 0, 0, 0, 0, 0, 0, 0, // 8 -> 15
0, 0, 0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, // 16 -> 23
0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31
FSEL_ALT0, 0, FSEL_ALT0, 0, 0, 0, 0, 0, // 32 -> 39
0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, 0, 0, // 40 -> 47
0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55
0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63
} ;
// gpioToClk:
// (word) Offsets to the clock Control and Divisor register
static uint8_t gpioToClkCon [] =
{
-1, -1, -1, -1, 28, 30, 32, -1, // 0 -> 7
-1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15
-1, -1, -1, -1, 28, 30, -1, -1, // 16 -> 23
-1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31
28, -1, 28, -1, -1, -1, -1, -1, // 32 -> 39
-1, -1, 28, 30, 28, -1, -1, -1, // 40 -> 47
-1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55
-1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63
} ;
static uint8_t gpioToClkDiv [] =
{
-1, -1, -1, -1, 29, 31, 33, -1, // 0 -> 7
-1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15
-1, -1, -1, -1, 29, 31, -1, -1, // 16 -> 23
-1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31
29, -1, 29, -1, -1, -1, -1, -1, // 32 -> 39
-1, -1, 29, 31, 29, -1, -1, -1, // 40 -> 47
-1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55
-1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63
} ;
/*
* Functions
*********************************************************************************
*/
/*
* wiringPiFailure:
* Fail. Or not.
*********************************************************************************
*/
int wiringPiFailure (int fatal, const char *message, ...)
{
va_list argp ;
char buffer [1024] ;
if (!fatal && wiringPiReturnCodes)
return -1 ;
va_start (argp, message) ;
vsnprintf (buffer, 1023, message, argp) ;
va_end (argp) ;
fprintf (stderr, "%s", buffer) ;
exit (EXIT_FAILURE) ;
return 0 ;
}
/*
* piBoardRev:
* Return a number representing the hardware revision of the board.
*
* Revision 1 really means the early Model B's.
* Revision 2 is everything else - it covers the B, B+ and CM.
* ... and the quad core Pi 2 - which is a B+ ++ ...
*
* Seems there are some boards with 0000 in them (mistake in manufacture)
* So the distinction between boards that I can see is:
* 0000 - Error
* 0001 - Not used
* 0002 - Model B, Rev 1, 256MB, Egoman
* 0003 - Model B, Rev 1.1, 256MB, Egoman, Fuses/D14 removed.
* 0004 - Model B, Rev 2, 256MB, Sony
* 0005 - Model B, Rev 2, 256MB, Qisda
* 0006 - Model B, Rev 2, 256MB, Egoman
* 0007 - Model A, Rev 2, 256MB, Egoman
* 0008 - Model A, Rev 2, 256MB, Sony
* 0009 - Model A, Rev 2, 256MB, Qisda
* 000d - Model B, Rev 2, 512MB, Egoman
* 000e - Model B, Rev 2, 512MB, Sony
* 000f - Model B, Rev 2, 512MB, Qisda
* 0010 - Model B+, Rev 1.2, 512MB, Sony
* 0011 - Pi CM, Rev 1.2, 512MB, Sony
* 0012 - Model A+ Rev 1.2, 256MB, Sony
*
* For the Pi 2:
* 0010 - Model 2, Rev 1.1, Quad Core, 1GB, Sony
*
* A small thorn is the olde style overvolting - that will add in
* 1000000
*
* The Pi compute module has an revision of 0011 - since we only check the
* last digit, then it's 1, therefore it'll default to not 2 or 3 for a
* Rev 1, so will appear as a Rev 2. This is fine for the most part, but
* we'll properly detect the Compute Module later and adjust accordingly.
*
*********************************************************************************
*/
static void piBoardRevOops (const char *why)
{
fprintf (stderr, "piBoardRev: Unable to determine board revision from /proc/cpuinfo\n") ;
fprintf (stderr, " -> %s\n", why) ;
fprintf (stderr, " -> You may want to check:\n") ;
fprintf (stderr, " -> http://www.raspberrypi.org/phpBB3/viewtopic.php?p=184410#p184410\n") ;
exit (EXIT_FAILURE) ;
}
int piBoardRev (void)
{
FILE *cpuFd ;
char line [120] ;
char *c ;
static int boardRev = -1 ;
if (boardRev != -1) // No point checking twice
return boardRev ;
if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL)
piBoardRevOops ("Unable to open /proc/cpuinfo") ;
// Start by looking for the Architecture, then we can look for a B2 revision....
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "model name", 10) == 0)
break ;
if (strncmp (line, "model name", 10) != 0)
piBoardRevOops ("No \"model name\" line") ;
if (wiringPiDebug)
printf ("piboardRev: Model name: %s\n", line) ;
// See if it's v7
if (strstr (line, "ARMv7") != NULL)
piModel2 = TRUE ;
// Now do the rest of it as before
rewind (cpuFd) ;
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "Revision", 8) == 0)
break ;
fclose (cpuFd) ;
if (strncmp (line, "Revision", 8) != 0)
piBoardRevOops ("No \"Revision\" line") ;
// Chomp trailing CR/NL
for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c)
*c = 0 ;
if (wiringPiDebug)
printf ("piboardRev: Revision string: %s\n", line) ;
// Scan to first digit
for (c = line ; *c ; ++c)
if (isdigit (*c))
break ;
if (!isdigit (*c))
piBoardRevOops ("No numeric revision string") ;
// Make sure its long enough
if (strlen (c) < 4)
piBoardRevOops ("Bogus \"Revision\" line (too small)") ;
// If you have overvolted the Pi, then it appears that the revision
// has 100000 added to it!
// The actual condition for it being set is:
// (force_turbo || current_limit_override || temp_limit>85) && over_voltage>0
if (wiringPiDebug)
if (strlen (c) != 4)
printf ("piboardRev: This Pi has/is (force_turbo || current_limit_override || temp_limit>85) && over_voltage>0\n") ;
// Isolate last 4 characters:
c = c + strlen (c) - 4 ;
if (wiringPiDebug)
printf ("piboardRev: last4Chars are: \"%s\"\n", c) ;
if ( (strcmp (c, "0002") == 0) || (strcmp (c, "0003") == 0))
boardRev = 1 ;
else
boardRev = 2 ;
if (wiringPiDebug)
printf ("piBoardRev: Returning revision: %d\n", boardRev) ;
return boardRev ;
}
/*
* piBoardId:
* Do more digging into the board revision string as above, but return
* as much details as we can.
* This is undocumented and really only intended for the GPIO command.
* Use at your own risk!
*********************************************************************************
*/
void piBoardId (int *model, int *rev, int *mem, int *maker, int *overVolted)
{
FILE *cpuFd ;
char line [120] ;
char *c ;
(void)piBoardRev () ; // Call this first to make sure all's OK. Don't care about the result.
if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL)
piBoardRevOops ("Unable to open /proc/cpuinfo") ;
while (fgets (line, 120, cpuFd) != NULL)
if (strncmp (line, "Revision", 8) == 0)
break ;
fclose (cpuFd) ;
if (strncmp (line, "Revision", 8) != 0)
piBoardRevOops ("No \"Revision\" line") ;
// Chomp trailing CR/NL
for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c)
*c = 0 ;
if (wiringPiDebug)
printf ("piboardId: Revision string: %s\n", line) ;
// Scan to first digit
for (c = line ; *c ; ++c)
if (isdigit (*c))
break ;
// Make sure its long enough
if (strlen (c) < 4)
piBoardRevOops ("Bogus \"Revision\" line") ;
// If longer than 4, we'll assume it's been overvolted
*overVolted = strlen (c) > 4 ;
// Extract last 4 characters:
c = c + strlen (c) - 4 ;
// Fill out the replys as appropriate
if (piModel2)
{
/**/ if (strcmp (c, "0010") == 0) { *model = PI_MODEL_2 ; *rev = PI_VERSION_1_1 ; *mem = 1024 ; *maker = PI_MAKER_SONY ; }
else { *model = 0 ; *rev = 0 ; *mem = 0 ; *maker = 0 ; }
}
else
{
/**/ if (strcmp (c, "0002") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0003") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_1 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0004") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0005") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_QISDA ; }
else if (strcmp (c, "0006") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0007") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0008") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_SONY ; ; }
else if (strcmp (c, "0009") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_QISDA ; }
else if (strcmp (c, "000d") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "000e") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "000f") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_EGOMAN ; }
else if (strcmp (c, "0010") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0011") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0012") == 0) { *model = PI_MODEL_AP ; *rev = PI_VERSION_1_2 ; *mem = 256 ; *maker = PI_MAKER_SONY ; }
else if (strcmp (c, "0013") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 512 ; *maker = PI_MAKER_MBEST ; }
else { *model = 0 ; *rev = 0 ; *mem = 0 ; *maker = 0 ; }
}
}
/*
* wpiPinToGpio:
* Translate a wiringPi Pin number to native GPIO pin number.
* Provided for external support.
*********************************************************************************
*/
int wpiPinToGpio (int wpiPin)
{
return pinToGpio [wpiPin & 63] ;
}
/*
* physPinToGpio:
* Translate a physical Pin number to native GPIO pin number.
* Provided for external support.
*********************************************************************************
*/
int physPinToGpio (int physPin)
{
return physToGpio [physPin & 63] ;
}
/*
* setPadDrive:
* Set the PAD driver value
*********************************************************************************
*/
void setPadDrive (int group, int value)
{
uint32_t wrVal ;
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if ((group < 0) || (group > 2))
return ;
wrVal = BCM_PASSWORD | 0x18 | (value & 7) ;
*(pads + group + 11) = wrVal ;
if (wiringPiDebug)
{
printf ("setPadDrive: Group: %d, value: %d (%08X)\n", group, value, wrVal) ;
printf ("Read : %08X\n", *(pads + group + 11)) ;
}
}
}
/*
* getAlt:
* Returns the ALT bits for a given port. Only really of-use
* for the gpio readall command (I think)
*********************************************************************************
*/
int getAlt (int pin)
{
int fSel, shift, alt ;
pin &= 63 ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return 0 ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
alt = (*(gpio + fSel) >> shift) & 7 ;
return alt ;
}
/*
* pwmSetMode:
* Select the native "balanced" mode, or standard mark:space mode
*********************************************************************************
*/
void pwmSetMode (int mode)
{
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if (mode == PWM_MODE_MS)
*(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE | PWM0_MS_MODE | PWM1_MS_MODE ;
else
*(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE ;
}
}
/*
* pwmSetRange:
* Set the PWM range register. We set both range registers to the same
* value. If you want different in your own code, then write your own.
*********************************************************************************
*/
void pwmSetRange (unsigned int range)
{
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
*(pwm + PWM0_RANGE) = range ; delayMicroseconds (10) ;
*(pwm + PWM1_RANGE) = range ; delayMicroseconds (10) ;
}
}
/*
* pwmSetClock:
* Set/Change the PWM clock. Originally my code, but changed
* (for the better!) by Chris Hall, <chris@kchall.plus.com>
* after further study of the manual and testing with a 'scope
*********************************************************************************
*/
void pwmSetClock (int divisor)
{
uint32_t pwm_control ;
divisor &= 4095 ;
if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO))
{
if (wiringPiDebug)
printf ("Setting to: %d. Current: 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ;
pwm_control = *(pwm + PWM_CONTROL) ; // preserve PWM_CONTROL
// We need to stop PWM prior to stopping PWM clock in MS mode otherwise BUSY
// stays high.
*(pwm + PWM_CONTROL) = 0 ; // Stop PWM
// Stop PWM clock before changing divisor. The delay after this does need to
// this big (95uS occasionally fails, 100uS OK), it's almost as though the BUSY
// flag is not working properly in balanced mode. Without the delay when DIV is
// adjusted the clock sometimes switches to very slow, once slow further DIV
// adjustments do nothing and it's difficult to get out of this mode.
*(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x01 ; // Stop PWM Clock
delayMicroseconds (110) ; // prevents clock going sloooow
while ((*(clk + PWMCLK_CNTL) & 0x80) != 0) // Wait for clock to be !BUSY
delayMicroseconds (1) ;
*(clk + PWMCLK_DIV) = BCM_PASSWORD | (divisor << 12) ;
*(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x11 ; // Start PWM clock
*(pwm + PWM_CONTROL) = pwm_control ; // restore PWM_CONTROL
if (wiringPiDebug)
printf ("Set to: %d. Now : 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ;
}
}
/*
* gpioClockSet:
* Set the freuency on a GPIO clock pin
*********************************************************************************
*/
void gpioClockSet (int pin, int freq)
{
int divi, divr, divf ;
pin &= 63 ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
divi = 19200000 / freq ;
divr = 19200000 % freq ;
divf = (int)((double)divr * 4096.0 / 19200000.0) ;
if (divi > 4095)
divi = 4095 ;
*(clk + gpioToClkCon [pin]) = BCM_PASSWORD | GPIO_CLOCK_SOURCE ; // Stop GPIO Clock
while ((*(clk + gpioToClkCon [pin]) & 0x80) != 0) // ... and wait
;
*(clk + gpioToClkDiv [pin]) = BCM_PASSWORD | (divi << 12) | divf ; // Set dividers
*(clk + gpioToClkCon [pin]) = BCM_PASSWORD | 0x10 | GPIO_CLOCK_SOURCE ; // Start Clock
}
/*
* wiringPiFindNode:
* Locate our device node
*********************************************************************************
*/
struct wiringPiNodeStruct *wiringPiFindNode (int pin)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
while (node != NULL)
if ((pin >= node->pinBase) && (pin <= node->pinMax))
return node ;
else
node = node->next ;
return NULL ;
}
/*
* wiringPiNewNode:
* Create a new GPIO node into the wiringPi handling system
*********************************************************************************
*/
static void pinModeDummy (struct wiringPiNodeStruct *node, int pin, int mode) { return ; }
static void pullUpDnControlDummy (struct wiringPiNodeStruct *node, int pin, int pud) { return ; }
static int digitalReadDummy (struct wiringPiNodeStruct *node, int pin) { return LOW ; }
static void digitalWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; }
static void pwmWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; }
static int analogReadDummy (struct wiringPiNodeStruct *node, int pin) { return 0 ; }
static void analogWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; }
struct wiringPiNodeStruct *wiringPiNewNode (int pinBase, int numPins)
{
int pin ;
struct wiringPiNodeStruct *node ;
// Minimum pin base is 64
if (pinBase < 64)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: pinBase of %d is < 64\n", pinBase) ;
// Check all pins in-case there is overlap:
for (pin = pinBase ; pin < (pinBase + numPins) ; ++pin)
if (wiringPiFindNode (pin) != NULL)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Pin %d overlaps with existing definition\n", pin) ;
node = (struct wiringPiNodeStruct *)calloc (sizeof (struct wiringPiNodeStruct), 1) ; // calloc zeros
if (node == NULL)
(void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Unable to allocate memory: %s\n", strerror (errno)) ;
node->pinBase = pinBase ;
node->pinMax = pinBase + numPins - 1 ;
node->pinMode = pinModeDummy ;
node->pullUpDnControl = pullUpDnControlDummy ;
node->digitalRead = digitalReadDummy ;
node->digitalWrite = digitalWriteDummy ;
node->pwmWrite = pwmWriteDummy ;
node->analogRead = analogReadDummy ;
node->analogWrite = analogWriteDummy ;
node->next = wiringPiNodes ;
wiringPiNodes = node ;
return node ;
}
#ifdef notYetReady
/*
* pinED01:
* pinED10:
* Enables edge-detect mode on a pin - from a 0 to a 1 or 1 to 0
* Pin must already be in input mode with appropriate pull up/downs set.
*********************************************************************************
*/
void pinEnableED01Pi (int pin)
{
pin = pinToGpio [pin & 63] ;
}
#endif
/*
*********************************************************************************
* Core Functions
*********************************************************************************
*/
/*
* pinModeAlt:
* This is an un-documented special to let you set any pin to any mode
*********************************************************************************
*/
void pinModeAlt (int pin, int mode)
{
int fSel, shift ;
if ((pin & PI_GPIO_MASK) == 0) // On-board pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | ((mode & 0x7) << shift) ;
}
}
/*
* pinMode:
* Sets the mode of a pin to be input, output or PWM output
*********************************************************************************
*/
void pinMode (int pin, int mode)
{
int fSel, shift, alt ;
struct wiringPiNodeStruct *node = wiringPiNodes ;
int origPin = pin ;
if ((pin & PI_GPIO_MASK) == 0) // On-board pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
softPwmStop (origPin) ;
softToneStop (origPin) ;
fSel = gpioToGPFSEL [pin] ;
shift = gpioToShift [pin] ;
/**/ if (mode == INPUT)
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) ; // Sets bits to zero = input
else if (mode == OUTPUT)
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (1 << shift) ;
else if (mode == SOFT_PWM_OUTPUT)
softPwmCreate (origPin, 0, 100) ;
else if (mode == SOFT_TONE_OUTPUT)
softToneCreate (origPin) ;
else if (mode == PWM_TONE_OUTPUT)
{
pinMode (origPin, PWM_OUTPUT) ; // Call myself to enable PWM mode
pwmSetMode (PWM_MODE_MS) ;
}
else if (mode == PWM_OUTPUT)
{
if ((alt = gpioToPwmALT [pin]) == 0) // Not a hardware capable PWM pin
return ;
// Set pin to PWM mode
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ;
delayMicroseconds (110) ; // See comments in pwmSetClockWPi
pwmSetMode (PWM_MODE_BAL) ; // Pi default mode
pwmSetRange (1024) ; // Default range of 1024
pwmSetClock (32) ; // 19.2 / 32 = 600KHz - Also starts the PWM
}
else if (mode == GPIO_CLOCK)
{
if ((alt = gpioToGpClkALT0 [pin]) == 0) // Not a GPIO_CLOCK pin
return ;
// Set pin to GPIO_CLOCK mode and set the clock frequency to 100KHz
*(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ;
delayMicroseconds (110) ;
gpioClockSet (pin, 100000) ;
}
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pinMode (node, pin, mode) ;
return ;
}
}
/*
* pullUpDownCtrl:
* Control the internal pull-up/down resistors on a GPIO pin
* The Arduino only has pull-ups and these are enabled by writing 1
* to a port when in input mode - this paradigm doesn't quite apply
* here though.
*********************************************************************************
*/
void pullUpDnControl (int pin, int pud)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
*(gpio + GPPUD) = pud & 3 ; delayMicroseconds (5) ;
*(gpio + gpioToPUDCLK [pin]) = 1 << (pin & 31) ; delayMicroseconds (5) ;
*(gpio + GPPUD) = 0 ; delayMicroseconds (5) ;
*(gpio + gpioToPUDCLK [pin]) = 0 ; delayMicroseconds (5) ;
}
else // Extension module
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pullUpDnControl (node, pin, pud) ;
return ;
}
}
/*
* digitalRead:
* Read the value of a given Pin, returning HIGH or LOW
*********************************************************************************
*/
int digitalRead (int pin)
{
char c ;
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode
{
if (sysFds [pin] == -1)
return LOW ;
lseek (sysFds [pin], 0L, SEEK_SET) ;
read (sysFds [pin], &c, 1) ;
return (c == '0') ? LOW : HIGH ;
}
else if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return LOW ;
if ((*(gpio + gpioToGPLEV [pin]) & (1 << (pin & 31))) != 0)
return HIGH ;
else
return LOW ;
}
else
{
if ((node = wiringPiFindNode (pin)) == NULL)
return LOW ;
return node->digitalRead (node, pin) ;
}
}
/*
* digitalWrite:
* Set an output bit
*********************************************************************************
*/
void digitalWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode
{
if (sysFds [pin] != -1)
{
if (value == LOW)
write (sysFds [pin], "0\n", 2) ;
else
write (sysFds [pin], "1\n", 2) ;
}
return ;
}
else if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
if (value == LOW)
*(gpio + gpioToGPCLR [pin]) = 1 << (pin & 31) ;
else
*(gpio + gpioToGPSET [pin]) = 1 << (pin & 31) ;
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->digitalWrite (node, pin, value) ;
}
}
/*
* pwmWrite:
* Set an output PWM value
*********************************************************************************
*/
void pwmWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin
{
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
else if (wiringPiMode != WPI_MODE_GPIO)
return ;
*(pwm + gpioToPwmPort [pin]) = value ;
}
else
{
if ((node = wiringPiFindNode (pin)) != NULL)
node->pwmWrite (node, pin, value) ;
}
}
/*
* analogRead:
* Read the analog value of a given Pin.
* There is no on-board Pi analog hardware,
* so this needs to go to a new node.
*********************************************************************************
*/
int analogRead (int pin)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((node = wiringPiFindNode (pin)) == NULL)
return 0 ;
else
return node->analogRead (node, pin) ;
}
/*
* analogWrite:
* Write the analog value to the given Pin.
* There is no on-board Pi analog hardware,
* so this needs to go to a new node.
*********************************************************************************
*/
void analogWrite (int pin, int value)
{
struct wiringPiNodeStruct *node = wiringPiNodes ;
if ((node = wiringPiFindNode (pin)) == NULL)
return ;
node->analogWrite (node, pin, value) ;
}
/*
* pwmToneWrite:
* Pi Specific.
* Output the given frequency on the Pi's PWM pin
*********************************************************************************
*/
void pwmToneWrite (int pin, int freq)
{
int range ;
if (freq == 0)
pwmWrite (pin, 0) ; // Off
else
{
range = 600000 / freq ;
pwmSetRange (range) ;
pwmWrite (pin, freq / 2) ;
}
}
/*
* digitalWriteByte:
* Pi Specific
* Write an 8-bit byte to the first 8 GPIO pins - try to do it as
* fast as possible.
* However it still needs 2 operations to set the bits, so any external
* hardware must not rely on seeing a change as there will be a change
* to set the outputs bits to zero, then another change to set the 1's
*********************************************************************************
*/
void digitalWriteByte (int value)
{
uint32_t pinSet = 0 ;
uint32_t pinClr = 0 ;
int mask = 1 ;
int pin ;
/**/ if (wiringPiMode == WPI_MODE_GPIO_SYS)
{
for (pin = 0 ; pin < 8 ; ++pin)
{
digitalWrite (pin, value & mask) ;
mask <<= 1 ;
}
return ;
}
else
{
for (pin = 0 ; pin < 8 ; ++pin)
{
if ((value & mask) == 0)
pinClr |= (1 << pinToGpio [pin]) ;
else
pinSet |= (1 << pinToGpio [pin]) ;
mask <<= 1 ;
}
*(gpio + gpioToGPCLR [0]) = pinClr ;
*(gpio + gpioToGPSET [0]) = pinSet ;
}
}
/*
* waitForInterrupt:
* Pi Specific.
* Wait for Interrupt on a GPIO pin.
* This is actually done via the /sys/class/gpio interface regardless of
* the wiringPi access mode in-use. Maybe sometime it might get a better
* way for a bit more efficiency.
*********************************************************************************
*/
int waitForInterrupt (int pin, int mS)
{
int fd, x ;
uint8_t c ;
struct pollfd polls ;
/**/ if (wiringPiMode == WPI_MODE_PINS)
pin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
pin = physToGpio [pin] ;
if ((fd = sysFds [pin]) == -1)
return -2 ;
// Setup poll structure
polls.fd = fd ;
polls.events = POLLPRI ; // Urgent data!
// Wait for it ...
x = poll (&polls, 1, mS) ;
// Do a dummy read to clear the interrupt
// A one character read appars to be enough.
// Followed by a seek to reset it.
(void)read (fd, &c, 1) ;
lseek (fd, 0, SEEK_SET) ;
return x ;
}
/*
* interruptHandler:
* This is a thread and gets started to wait for the interrupt we're
* hoping to catch. It will call the user-function when the interrupt
* fires.
*********************************************************************************
*/
static void *interruptHandler (void *arg)
{
int myPin ;
(void)piHiPri (55) ; // Only effective if we run as root
myPin = pinPass ;
pinPass = -1 ;
for (;;)
if (waitForInterrupt (myPin, -1) > 0)
isrFunctions [myPin] () ;
return NULL ;
}
/*
* wiringPiISR:
* Pi Specific.
* Take the details and create an interrupt handler that will do a call-
* back to the user supplied function.
*********************************************************************************
*/
int wiringPiISR (int pin, int mode, void (*function)(void))
{
pthread_t threadId ;
const char *modeS ;
char fName [64] ;
char pinS [8] ;
pid_t pid ;
int count, i ;
char c ;
int bcmGpioPin ;
if ((pin < 0) || (pin > 63))
return wiringPiFailure (WPI_FATAL, "wiringPiISR: pin must be 0-63 (%d)\n", pin) ;
/**/ if (wiringPiMode == WPI_MODE_UNINITIALISED)
return wiringPiFailure (WPI_FATAL, "wiringPiISR: wiringPi has not been initialised. Unable to continue.\n") ;
else if (wiringPiMode == WPI_MODE_PINS)
bcmGpioPin = pinToGpio [pin] ;
else if (wiringPiMode == WPI_MODE_PHYS)
bcmGpioPin = physToGpio [pin] ;
else
bcmGpioPin = pin ;
// Now export the pin and set the right edge
// We're going to use the gpio program to do this, so it assumes
// a full installation of wiringPi. It's a bit 'clunky', but it
// is a way that will work when we're running in "Sys" mode, as
// a non-root user. (without sudo)
if (mode != INT_EDGE_SETUP)
{
/**/ if (mode == INT_EDGE_FALLING)
modeS = "falling" ;
else if (mode == INT_EDGE_RISING)
modeS = "rising" ;
else
modeS = "both" ;
sprintf (pinS, "%d", bcmGpioPin) ;
if ((pid = fork ()) < 0) // Fail
return wiringPiFailure (WPI_FATAL, "wiringPiISR: fork failed: %s\n", strerror (errno)) ;
if (pid == 0) // Child, exec
{
/**/ if (access ("/usr/local/bin/gpio", X_OK) == 0)
{
execl ("/usr/local/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ;
return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ;
}
else if (access ("/usr/bin/gpio", X_OK) == 0)
{
execl ("/usr/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ;
return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ;
}
else
return wiringPiFailure (WPI_FATAL, "wiringPiISR: Can't find gpio program\n") ;
}
else // Parent, wait
wait (NULL) ;
}
// Now pre-open the /sys/class node - but it may already be open if
// we are in Sys mode...
if (sysFds [bcmGpioPin] == -1)
{
sprintf (fName, "/sys/class/gpio/gpio%d/value", bcmGpioPin) ;
if ((sysFds [bcmGpioPin] = open (fName, O_RDWR)) < 0)
return wiringPiFailure (WPI_FATAL, "wiringPiISR: unable to open %s: %s\n", fName, strerror (errno)) ;
}
// Clear any initial pending interrupt
ioctl (sysFds [bcmGpioPin], FIONREAD, &count) ;
for (i = 0 ; i < count ; ++i)
read (sysFds [bcmGpioPin], &c, 1) ;
isrFunctions [pin] = function ;
pthread_mutex_lock (&pinMutex) ;
pinPass = pin ;
pthread_create (&threadId, NULL, interruptHandler, NULL) ;
while (pinPass != -1)
delay (1) ;
pthread_mutex_unlock (&pinMutex) ;
return 0 ;
}
/*
* initialiseEpoch:
* Initialise our start-of-time variable to be the current unix
* time in milliseconds and microseconds.
*********************************************************************************
*/
static void initialiseEpoch (void)
{
struct timeval tv ;
gettimeofday (&tv, NULL) ;
epochMilli = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ;
epochMicro = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)(tv.tv_usec) ;
}
/*
* delay:
* Wait for some number of milliseconds
*********************************************************************************
*/
void delay (unsigned int howLong)
{
struct timespec sleeper, dummy ;
sleeper.tv_sec = (time_t)(howLong / 1000) ;
sleeper.tv_nsec = (long)(howLong % 1000) * 1000000 ;
nanosleep (&sleeper, &dummy) ;
}
/*
* delayMicroseconds:
* This is somewhat intersting. It seems that on the Pi, a single call
* to nanosleep takes some 80 to 130 microseconds anyway, so while
* obeying the standards (may take longer), it's not always what we
* want!
*
* So what I'll do now is if the delay is less than 100uS we'll do it
* in a hard loop, watching a built-in counter on the ARM chip. This is
* somewhat sub-optimal in that it uses 100% CPU, something not an issue
* in a microcontroller, but under a multi-tasking, multi-user OS, it's
* wastefull, however we've no real choice )-:
*
* Plan B: It seems all might not be well with that plan, so changing it
* to use gettimeofday () and poll on that instead...
*********************************************************************************
*/
void delayMicrosecondsHard (unsigned int howLong)
{
struct timeval tNow, tLong, tEnd ;
gettimeofday (&tNow, NULL) ;
tLong.tv_sec = howLong / 1000000 ;
tLong.tv_usec = howLong % 1000000 ;
timeradd (&tNow, &tLong, &tEnd) ;
while (timercmp (&tNow, &tEnd, <))
gettimeofday (&tNow, NULL) ;
}
void delayMicroseconds (unsigned int howLong)
{
struct timespec sleeper ;
unsigned int uSecs = howLong % 1000000 ;
unsigned int wSecs = howLong / 1000000 ;
/**/ if (howLong == 0)
return ;
else if (howLong < 100)
delayMicrosecondsHard (howLong) ;
else
{
sleeper.tv_sec = wSecs ;
sleeper.tv_nsec = (long)(uSecs * 1000L) ;
nanosleep (&sleeper, NULL) ;
}
}
/*
* millis:
* Return a number of milliseconds as an unsigned int.
*********************************************************************************
*/
unsigned int millis (void)
{
struct timeval tv ;
uint64_t now ;
gettimeofday (&tv, NULL) ;
now = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ;
return (uint32_t)(now - epochMilli) ;
}
/*
* micros:
* Return a number of microseconds as an unsigned int.
*********************************************************************************
*/
unsigned int micros (void)
{
struct timeval tv ;
uint64_t now ;
gettimeofday (&tv, NULL) ;
now = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)tv.tv_usec ;
return (uint32_t)(now - epochMicro) ;
}
/*
* wiringPiSetup:
* Must be called once at the start of your program execution.
*
* Default setup: Initialises the system into wiringPi Pin mode and uses the
* memory mapped hardware directly.
*
* Changed now to revert to "gpio" mode if we're running on a Compute Module.
*********************************************************************************
*/
int wiringPiSetup (void)
{
int fd ;
int boardRev ;
int model, rev, mem, maker, overVolted ;
if (getenv (ENV_DEBUG) != NULL)
wiringPiDebug = TRUE ;
if (getenv (ENV_CODES) != NULL)
wiringPiReturnCodes = TRUE ;
if (geteuid () != 0)
(void)wiringPiFailure (WPI_FATAL, "wiringPiSetup: Must be root. (Did you forget sudo?)\n") ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetup called\n") ;
boardRev = piBoardRev () ;
/**/ if (boardRev == 1) // A, B, Rev 1, 1.1
{
pinToGpio = pinToGpioR1 ;
physToGpio = physToGpioR1 ;
}
else // A, B, Rev 2, B+, CM, Pi2
{
if (piModel2)
BCM2708_PERI_BASE = 0x3F000000 ;
pinToGpio = pinToGpioR2 ;
physToGpio = physToGpioR2 ;
}
// Open the master /dev/memory device
if ((fd = open ("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC) ) < 0)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: Unable to open /dev/mem: %s\n", strerror (errno)) ;
// GPIO:
gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_BASE) ;
if ((int32_t)gpio == -1)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (GPIO) failed: %s\n", strerror (errno)) ;
// PWM
pwm = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PWM) ;
if ((int32_t)pwm == -1)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PWM) failed: %s\n", strerror (errno)) ;
// Clock control (needed for PWM)
clk = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, CLOCK_BASE) ;
if ((int32_t)clk == -1)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (CLOCK) failed: %s\n", strerror (errno)) ;
// The drive pads
pads = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PADS) ;
if ((int32_t)pads == -1)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PADS) failed: %s\n", strerror (errno)) ;
#ifdef USE_TIMER
// The system timer
timer = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_TIMER) ;
if ((int32_t)timer == -1)
return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (TIMER) failed: %s\n", strerror (errno)) ;
// Set the timer to free-running, 1MHz.
// 0xF9 is 249, the timer divide is base clock / (divide+1)
// so base clock is 250MHz / 250 = 1MHz.
*(timer + TIMER_CONTROL) = 0x0000280 ;
*(timer + TIMER_PRE_DIV) = 0x00000F9 ;
timerIrqRaw = timer + TIMER_IRQ_RAW ;
#endif
initialiseEpoch () ;
// If we're running on a compute module, then wiringPi pin numbers don't really many anything...
piBoardId (&model, &rev, &mem, &maker, &overVolted) ;
if (model == PI_MODEL_CM)
wiringPiMode = WPI_MODE_GPIO ;
else
wiringPiMode = WPI_MODE_PINS ;
return 0 ;
}
/*
* wiringPiSetupGpio:
* Must be called once at the start of your program execution.
*
* GPIO setup: Initialises the system into GPIO Pin mode and uses the
* memory mapped hardware directly.
*********************************************************************************
*/
int wiringPiSetupGpio (void)
{
(void)wiringPiSetup () ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupGpio called\n") ;
wiringPiMode = WPI_MODE_GPIO ;
return 0 ;
}
/*
* wiringPiSetupPhys:
* Must be called once at the start of your program execution.
*
* Phys setup: Initialises the system into Physical Pin mode and uses the
* memory mapped hardware directly.
*********************************************************************************
*/
int wiringPiSetupPhys (void)
{
(void)wiringPiSetup () ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupPhys called\n") ;
wiringPiMode = WPI_MODE_PHYS ;
return 0 ;
}
/*
* wiringPiSetupSys:
* Must be called once at the start of your program execution.
*
* Initialisation (again), however this time we are using the /sys/class/gpio
* interface to the GPIO systems - slightly slower, but always usable as
* a non-root user, assuming the devices are already exported and setup correctly.
*/
int wiringPiSetupSys (void)
{
int boardRev ;
int pin ;
char fName [128] ;
if (getenv (ENV_DEBUG) != NULL)
wiringPiDebug = TRUE ;
if (getenv (ENV_CODES) != NULL)
wiringPiReturnCodes = TRUE ;
if (wiringPiDebug)
printf ("wiringPi: wiringPiSetupSys called\n") ;
boardRev = piBoardRev () ;
if (boardRev == 1)
{
pinToGpio = pinToGpioR1 ;
physToGpio = physToGpioR1 ;
}
else
{
pinToGpio = pinToGpioR2 ;
physToGpio = physToGpioR2 ;
}
// Open and scan the directory, looking for exported GPIOs, and pre-open
// the 'value' interface to speed things up for later
for (pin = 0 ; pin < 64 ; ++pin)
{
sprintf (fName, "/sys/class/gpio/gpio%d/value", pin) ;
sysFds [pin] = open (fName, O_RDWR) ;
}
initialiseEpoch () ;
wiringPiMode = WPI_MODE_GPIO_SYS ;
return 0 ;
}