1895 lines
60 KiB
C

/*
* PicoDrive
* (C) notaz, 2013
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*/
#include <stdio.h>
#include <math.h>
#include <SDL/SDL_ttf.h>
#include "../libpicofe/input.h"
#include "../libpicofe/plat.h"
#include "../libpicofe/plat_sdl.h"
#include "../libpicofe/in_sdl.h"
#include "../libpicofe/gl.h"
#include "emu.h"
#include "configfile_fk.h"
#include "menu_pico.h"
#include "input_pico.h"
#include "plat_sdl.h"
#include "version.h"
#include <pico/pico_int.h>
#define RES_HW_SCREEN_HORIZONTAL 240
#define RES_HW_SCREEN_VERTICAL 240
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define ABS(x) (((x) < 0) ? (-x) : (x))
#define AVERAGE(z, x) ((((z) & 0xF7DEF7DE) >> 1) + (((x) & 0xF7DEF7DE) >> 1))
#define AVERAGEHI(AB) ((((AB) & 0xF7DE0000) >> 1) + (((AB) & 0xF7DE) << 15))
#define AVERAGELO(CD) ((((CD) & 0xF7DE) >> 1) + (((CD) & 0xF7DE0000) >> 17))
// Support math
#define Half(A) (((A) >> 1) & 0x7BEF)
#define Quarter(A) (((A) >> 2) & 0x39E7)
// Error correction expressions to piece back the lower bits together
#define RestHalf(A) ((A) & 0x0821)
#define RestQuarter(A) ((A) & 0x1863)
// Error correction expressions for quarters of pixels
#define Corr1_3(A, B) Quarter(RestQuarter(A) + (RestHalf(B) << 1) + RestQuarter(B))
#define Corr3_1(A, B) Quarter((RestHalf(A) << 1) + RestQuarter(A) + RestQuarter(B))
// Error correction expressions for halves
#define Corr1_1(A, B) ((A) & (B) & 0x0821)
// Quarters
#define Weight1_3(A, B) (Quarter(A) + Half(B) + Quarter(B) + Corr1_3(A, B))
#define Weight3_1(A, B) (Half(A) + Quarter(A) + Quarter(B) + Corr3_1(A, B))
// Halves
#define Weight1_1(A, B) (Half(A) + Half(B) + Corr1_1(A, B))
static void *shadow_fb;
static struct area { int w, h; } area;
static struct in_pdata in_sdl_platform_data = {
.defbinds = in_sdl_defbinds,
.key_map = in_sdl_key_map,
.joy_map = in_sdl_joy_map,
};
static struct in_pdata in_sdl_platform_data_SMS = {
.defbinds = in_sdl_defbinds_SMS,
.key_map = in_sdl_key_map,
.joy_map = in_sdl_joy_map,
};
/* YUV stuff */
static int yuv_ry[32], yuv_gy[32], yuv_by[32];
static unsigned char yuv_u[32 * 2], yuv_v[32 * 2];
static unsigned char yuv_y[256];
static struct uyvy { uint32_t y:8; uint32_t vyu:24; } yuv_uyvy[65536];
SDL_Surface * hw_screen = NULL;
SDL_Surface * virtual_hw_screen = NULL;
SDL_Surface * sms_game_screen = NULL;
void clear_screen(SDL_Surface *surface, uint16_t color)
{
if(surface){
uint16_t *dest_ptr = (uint16_t *)surface->pixels;
uint32_t x, y;
for(y = 0; y < surface->h; y++)
{
for(x = 0; x < surface->w; x++, dest_ptr++)
{
*dest_ptr = color;
}
}
}
}
void bgr_to_uyvy_init(void)
{
int i, v;
/* init yuv converter:
y0 = (int)((0.299f * r0) + (0.587f * g0) + (0.114f * b0));
y1 = (int)((0.299f * r1) + (0.587f * g1) + (0.114f * b1));
u = (int)(8 * 0.565f * (b0 - y0)) + 128;
v = (int)(8 * 0.713f * (r0 - y0)) + 128;
*/
for (i = 0; i < 32; i++) {
yuv_ry[i] = (int)(0.299f * i * 65536.0f + 0.5f);
yuv_gy[i] = (int)(0.587f * i * 65536.0f + 0.5f);
yuv_by[i] = (int)(0.114f * i * 65536.0f + 0.5f);
}
for (i = -32; i < 32; i++) {
v = (int)(8 * 0.565f * i) + 128;
if (v < 0)
v = 0;
if (v > 255)
v = 255;
yuv_u[i + 32] = v;
v = (int)(8 * 0.713f * i) + 128;
if (v < 0)
v = 0;
if (v > 255)
v = 255;
yuv_v[i + 32] = v;
}
// valid Y range seems to be 16..235
for (i = 0; i < 256; i++) {
yuv_y[i] = 16 + 219 * i / 32;
}
// everything combined into one large array for speed
for (i = 0; i < 65536; i++) {
int r = (i >> 11) & 0x1f, g = (i >> 6) & 0x1f, b = (i >> 0) & 0x1f;
int y = (yuv_ry[r] + yuv_gy[g] + yuv_by[b]) >> 16;
yuv_uyvy[i].y = yuv_y[y];
#if CPU_IS_LE
yuv_uyvy[i].vyu = (yuv_v[r-y + 32] << 16) | (yuv_y[y] << 8) | yuv_u[b-y + 32];
#else
yuv_uyvy[i].vyu = (yuv_v[b-y + 32] << 16) | (yuv_y[y] << 8) | yuv_u[r-y + 32];
#endif
}
}
void rgb565_to_uyvy(void *d, const void *s, int w, int h, int pitch, int x2)
{
uint32_t *dst = d;
const uint16_t *src = s;
int i;
if (x2) while (h--) {
for (i = w; i > 0; src += 4, dst += 4, i -= 4)
{
struct uyvy *uyvy0 = yuv_uyvy + src[0], *uyvy1 = yuv_uyvy + src[1];
struct uyvy *uyvy2 = yuv_uyvy + src[2], *uyvy3 = yuv_uyvy + src[3];
#if CPU_IS_LE
dst[0] = (uyvy0->y << 24) | uyvy0->vyu;
dst[1] = (uyvy1->y << 24) | uyvy1->vyu;
dst[2] = (uyvy2->y << 24) | uyvy2->vyu;
dst[3] = (uyvy3->y << 24) | uyvy3->vyu;
#else
dst[0] = uyvy0->y | (uyvy0->vyu << 8);
dst[1] = uyvy1->y | (uyvy1->vyu << 8);
dst[2] = uyvy2->y | (uyvy2->vyu << 8);
dst[3] = uyvy3->y | (uyvy3->vyu << 8);
#endif
}
src += pitch - w;
} else while (h--) {
for (i = w; i > 0; src += 4, dst += 2, i -= 4)
{
struct uyvy *uyvy0 = yuv_uyvy + src[0], *uyvy1 = yuv_uyvy + src[1];
struct uyvy *uyvy2 = yuv_uyvy + src[2], *uyvy3 = yuv_uyvy + src[3];
#if CPU_IS_LE
dst[0] = (uyvy1->y << 24) | uyvy0->vyu;
dst[1] = (uyvy3->y << 24) | uyvy2->vyu;
#else
dst[0] = uyvy1->y | (uyvy0->vyu << 8);
dst[1] = uyvy3->y | (uyvy2->vyu << 8);
#endif
}
src += pitch - w;
}
}
// Nearest neighboor
void flip_NN(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w2=new_w;
int h2=new_h;
int x_ratio = (int)((virtual_screen->w<<16)/w2) +1;
int y_ratio = (int)((virtual_screen->h<<16)/h2) +1;
//int x_ratio = (int)((w1<<16)/w2) ;
//int y_ratio = (int)((h1<<16)/h2) ;
//printf("virtual_screen->w=%d, virtual_screen->h=%d\n", virtual_screen->w, virtual_screen->h);
int x2, y2 ;
for (int i=0;i<h2;i++) {
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
//printf("\n\ny=%d\n", i);
for (int j=0;j<w2;j++) {
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
//printf("x=%d, ",j);
x2 = ((j*x_ratio)>>16) ;
y2 = ((i*y_ratio)>>16) ;
//printf("y=%d, x=%d, y2=%d, x2=%d, (y2*virtual_screen->w)+x2=%d\n", i, j, y2, x2, (y2*virtual_screen->w)+x2);
*(uint16_t*)(hardware_screen->pixels+(i* ((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2 ) +j)*sizeof(uint16_t)) =
*(uint16_t*)(virtual_screen->pixels + ((y2*virtual_screen->w)+x2) *sizeof(uint16_t)) ;
}
}
}
// Nearest neighboor with possible out of screen coordinates (for cropping)
void flip_NN_AllowOutOfScreen(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w2=new_w;
int h2=new_h;
int x_ratio = (int)((virtual_screen->w<<16)/w2) +1;
int y_ratio = (int)((virtual_screen->h<<16)/h2) +1;
//int x_ratio = (int)((w1<<16)/w2) ;
//int y_ratio = (int)((h1<<16)/h2) ;
//printf("virtual_screen->w=%d, virtual_screen->h=%d\n", virtual_screen->w, virtual_screen->h);
int x2, y2 ;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
for (int i=0;i<h2;i++) {
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
//printf("\n\ny=%d\n", i);
for (int j=0;j<w2;j++) {
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
//printf("x=%d, ",j);
x2 = ((j*x_ratio)>>16) ;
y2 = ((i*y_ratio)>>16) ;
//printf("y=%d, x=%d, y2=%d, x2=%d, (y2*virtual_screen->w)+x2=%d\n", i, j, y2, x2, (y2*virtual_screen->w)+x2);
*(uint16_t*)(hardware_screen->pixels+(i* ((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2 ) +j)*sizeof(uint16_t)) =
*(uint16_t*)(virtual_screen->pixels + ((y2*virtual_screen->w)+x2 + x_padding) *sizeof(uint16_t)) ;
}
}
}
/// Nearest neighboor optimized with possible out of screen coordinates (for cropping)
void flip_NNOptimized_AllowOutOfScreen(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
//int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int x_ratio = (int)((virtual_screen->w<<16)/w2);
int y_ratio = (int)((virtual_screen->h<<16)/h2);
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((virtual_screen->w<<16)/w2);
//int y_ratio = (int)((virtual_screen->h<<16)/h2);
int x2, y2 ;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
//printf("virtual_screen->h=%d, h2=%d\n", virtual_screen->h, h2);
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+((i+y_padding)* ((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2) )*sizeof(uint16_t));
y2 = ((i*y_ratio)>>16);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y2*w1 + x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
x2 = (rat>>16);
*t++ = p[x2];
rat += x_ratio;
//printf("y=%d, x=%d, y2=%d, x2=%d, (y2*virtual_screen->w)+x2=%d\n", i, j, y2, x2, (y2*virtual_screen->w)+x2);
}
}
}
/// Nearest neighboor with 2D bilinear and interp by the number of pixel diff, not 2
void flip_NNOptimized_MissingPixelsBilinear(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((w1<<16)/w2) +1;
//int y_ratio = (int)((h1<<16)/h2) +1;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
/*int cnt_yes_x_yes_y, cnt_yes_x_no_y, cnt_no_x_yes_y, cnt_no_x_no_y;
cnt_yes_x_yes_y= cnt_yes_x_no_y= cnt_no_x_yes_y= cnt_no_x_no_y = 0;*/
for (int i=0;i<h2;i++)
{
uint16_t* t = (uint16_t*)(hardware_screen->pixels+((i+y_padding)*w2)*sizeof(uint16_t));
y1 = ((i*y_ratio)>>16);
int px_diff_next_y = MAX( (((i+1)*y_ratio)>>16) - y1, 1);
//printf("px_diff_next_y:%d\n", px_diff_next_y);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
// ------ current x value ------
x1 = (rat>>16);
int px_diff_next_x = MAX( ((rat+x_ratio)>>16) - x1, 1);
// ------ optimized bilinear (to put in function) -------
uint16_t * cur_p;
int cur_y_offset;
uint32_t red_comp = 0;
uint32_t green_comp = 0;
uint32_t blue_comp = 0;
for(int cur_px_diff_y=0; cur_px_diff_y<px_diff_next_y; cur_px_diff_y++){
cur_y_offset = (y1+cur_px_diff_y<h1)?(w1*cur_px_diff_y):0;
for(int cur_px_diff_x=0; cur_px_diff_x<px_diff_next_x; cur_px_diff_x++){
cur_p = (x1+cur_px_diff_x<w1)?(p+x1+cur_px_diff_x+cur_y_offset):(p+x1+cur_y_offset);
red_comp += (*cur_p)&0xF800;
green_comp += (*cur_p)&0x07E0;
blue_comp += (*cur_p)&0x001F;
}
}
red_comp = (red_comp / (px_diff_next_x*px_diff_next_y) )&0xF800;
green_comp = (green_comp / (px_diff_next_x*px_diff_next_y) )&0x07E0;
blue_comp = (blue_comp / (px_diff_next_x*px_diff_next_y) )&0x001F;
*t++ = red_comp+green_comp+blue_comp;
// ------ next pixel ------
rat += x_ratio;
}
}
}
/// Nearest neighbor with 2D bilinear and interpolation with left and right pixels, pseudo gaussian weighting
void flip_NNOptimized_LeftAndRightBilinear(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((w1<<16)/w2) +1;
//int y_ratio = (int)((h1<<16)/h2) +1;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
uint16_t green_mask = 0x07E0;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// --- Interp params ---
int px_diff_prev_x = 0;
int px_diff_next_x = 0;
uint32_t ponderation_factor;
uint16_t * cur_p;
uint16_t * cur_p_left;
uint16_t * cur_p_right;
uint32_t red_comp, green_comp, blue_comp;
//int cnt_interp = 0; int cnt_no_interp = 0;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
y1 = ((i*y_ratio)>>16);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1 + x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current x value ------
x1 = (rat>>16);
px_diff_next_x = ((rat+x_ratio)>>16) - x1;
// ------ adapted bilinear with 3x3 gaussian blur -------
cur_p = p+x1;
if(px_diff_prev_x > 1 || px_diff_next_x > 1){
red_comp=((*cur_p)&0xF800) << 1;
green_comp=((*cur_p)&0x07E0) << 1;
blue_comp=((*cur_p)&0x001F) << 1;
ponderation_factor = 2;
// ---- Interpolate current and left ----
if(px_diff_prev_x > 1 && x1>0){
cur_p_left = p+x1-1;
red_comp += ((*cur_p_left)&0xF800);
green_comp += ((*cur_p_left)&0x07E0);
blue_comp += ((*cur_p_left)&0x001F);
ponderation_factor++;
}
// ---- Interpolate current and right ----
if(px_diff_next_x > 1 && x1+1<w1){
cur_p_right = p+x1+1;
red_comp += ((*cur_p_right)&0xF800);
green_comp += ((*cur_p_right)&0x07E0);
blue_comp += ((*cur_p_right)&0x001F);
ponderation_factor++;
}
/// --- Compute new px value ---
if(ponderation_factor==4){
red_comp = (red_comp >> 2)&0xF800;
green_comp = (green_comp >> 2)&green_mask;
blue_comp = (blue_comp >> 2)&0x001F;
}
else if(ponderation_factor==2){
red_comp = (red_comp >> 1)&0xF800;
green_comp = (green_comp >> 1)&green_mask;
blue_comp = (blue_comp >> 1)&0x001F;
}
else{
red_comp = (red_comp / ponderation_factor )&0xF800;
green_comp = (green_comp / ponderation_factor )&green_mask;
blue_comp = (blue_comp / ponderation_factor )&0x001F;
}
/// --- write pixel ---
*t++ = red_comp+green_comp+blue_comp;
}
else{
/// --- copy pixel ---
*t++ = (*cur_p);
}
/// save number of pixels to interpolate
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
}
//printf("cnt_interp = %d, int cnt_no_interp = %d\n", cnt_interp, cnt_no_interp);
}
/// Nearest neighbor with 2D bilinear and interpolation with left, right, up and down pixels, pseudo gaussian weighting
void flip_NNOptimized_LeftRightUpDownBilinear(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((w1<<16)/w2) +1;
//int y_ratio = (int)((h1<<16)/h2) +1;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
uint16_t green_mask = 0x07E0;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// --- Interp params ---
int px_diff_prev_x = 0;
int px_diff_next_x = 0;
int px_diff_prev_y = 0;
int px_diff_next_y = 0;
uint32_t ponderation_factor;
uint16_t * cur_p;
uint16_t * cur_p_left;
uint16_t * cur_p_right;
uint16_t * cur_p_up;
uint16_t * cur_p_down;
uint32_t red_comp, green_comp, blue_comp;
//int cnt_interp = 0; int cnt_no_interp = 0;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
///Debug
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
px_diff_next_y = MAX( (((i+1)*y_ratio)>>16) - y1, 1);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1+x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current x value ------
x1 = (rat>>16);
px_diff_next_x = ((rat+x_ratio)>>16) - x1;
// ------ adapted bilinear with 3x3 gaussian blur -------
cur_p = p+x1;
if(px_diff_prev_x > 1 || px_diff_next_x > 1 || px_diff_prev_y > 1 || px_diff_next_y > 1){
red_comp=((*cur_p)&0xF800) << 1;
green_comp=((*cur_p)&0x07E0) << 1;
blue_comp=((*cur_p)&0x001F) << 1;
ponderation_factor = 2;
// ---- Interpolate current and left ----
if(px_diff_prev_x > 1 && x1>0){
cur_p_left = p+x1-1;
red_comp += ((*cur_p_left)&0xF800);
green_comp += ((*cur_p_left)&0x07E0);
blue_comp += ((*cur_p_left)&0x001F);
ponderation_factor++;
}
// ---- Interpolate current and right ----
if(px_diff_next_x > 1 && x1+1<w1){
cur_p_right = p+x1+1;
red_comp += ((*cur_p_right)&0xF800);
green_comp += ((*cur_p_right)&0x07E0);
blue_comp += ((*cur_p_right)&0x001F);
ponderation_factor++;
}
// ---- Interpolate current and up ----
if(px_diff_prev_y > 1 && y1 > 0){
cur_p_up = p+x1-w1;
red_comp += ((*cur_p_up)&0xF800);
green_comp += ((*cur_p_up)&0x07E0);
blue_comp += ((*cur_p_up)&0x001F);
ponderation_factor++;
}
// ---- Interpolate current and down ----
if(px_diff_next_y > 1 && y1 + 1 < h1){
cur_p_down = p+x1+w1;
red_comp += ((*cur_p_down)&0xF800);
green_comp += ((*cur_p_down)&0x07E0);
blue_comp += ((*cur_p_down)&0x001F);
ponderation_factor++;
}
/// --- Compute new px value ---
if(ponderation_factor==4){
red_comp = (red_comp >> 2)&0xF800;
green_comp = (green_comp >> 2)&green_mask;
blue_comp = (blue_comp >> 2)&0x001F;
}
else if(ponderation_factor==2){
red_comp = (red_comp >> 1)&0xF800;
green_comp = (green_comp >> 1)&green_mask;
blue_comp = (blue_comp >> 1)&0x001F;
}
else{
red_comp = (red_comp / ponderation_factor )&0xF800;
green_comp = (green_comp / ponderation_factor )&green_mask;
blue_comp = (blue_comp / ponderation_factor )&0x001F;
}
/// --- write pixel ---
*t++ = red_comp+green_comp+blue_comp;
}
else{
/// --- copy pixel ---
*t++ = (*cur_p);
}
/// save number of pixels to interpolate
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
px_diff_prev_y = px_diff_next_y;
}
//printf("cnt_interp = %d, int cnt_no_interp = %d\n", cnt_interp, cnt_no_interp);
}
/// Nearest neighbor with 2D bilinear and interpolation with left, right, up and down pixels, pseudo gaussian weighting
void flip_NNOptimized_LeftRightUpDownBilinear_Optimized4(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
uint16_t green_mask = 0x07E0;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// --- Interp params ---
int px_diff_prev_x = 0;
int px_diff_next_x = 0;
int px_diff_prev_y = 0;
int px_diff_next_y = 0;
uint32_t ponderation_factor;
uint8_t left_px_missing, right_px_missing, up_px_missing, down_px_missing;
int supposed_pond_factor;
uint16_t * cur_p;
uint16_t * cur_p_left;
uint16_t * cur_p_right;
uint16_t * cur_p_up;
uint16_t * cur_p_down;
uint32_t red_comp, green_comp, blue_comp;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
///Debug
/*int occurence_pond[7];
memset(occurence_pond, 0, 7*sizeof(int));*/
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
px_diff_next_y = MAX( (((i+1)*y_ratio)>>16) - y1, 1);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1+x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current x value ------
x1 = (rat>>16);
px_diff_next_x = ((rat+x_ratio)>>16) - x1;
// ------ adapted bilinear with 3x3 gaussian blur -------
cur_p = p+x1;
if(px_diff_prev_x > 1 || px_diff_next_x > 1 || px_diff_prev_y > 1 || px_diff_next_y > 1){
red_comp=((*cur_p)&0xF800) << 1;
green_comp=((*cur_p)&0x07E0) << 1;
blue_comp=((*cur_p)&0x001F) << 1;
ponderation_factor = 2;
left_px_missing = (px_diff_prev_x > 1 && x1>0);
right_px_missing = (px_diff_next_x > 1 && x1+1<w1);
up_px_missing = (px_diff_prev_y > 1 && y1 > 0);
down_px_missing = (px_diff_next_y > 1 && y1 + 1 < h1);
supposed_pond_factor = 2 + left_px_missing + right_px_missing +
up_px_missing + down_px_missing;
// ---- Interpolate current and up ----
if(up_px_missing){
cur_p_up = p+x1-w1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_up)&0xF800) << 1;
green_comp += ((*cur_p_up)&0x07E0) << 1;
blue_comp += ((*cur_p_up)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor==4 ||
(supposed_pond_factor==5 && !down_px_missing )){
red_comp += ((*cur_p_up)&0xF800);
green_comp += ((*cur_p_up)&0x07E0);
blue_comp += ((*cur_p_up)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and left ----
if(left_px_missing){
cur_p_left = p+x1-1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_left)&0xF800) << 1;
green_comp += ((*cur_p_left)&0x07E0) << 1;
blue_comp += ((*cur_p_left)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor==4 ||
(supposed_pond_factor==5 && !right_px_missing )){
red_comp += ((*cur_p_left)&0xF800);
green_comp += ((*cur_p_left)&0x07E0);
blue_comp += ((*cur_p_left)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and down ----
if(down_px_missing){
cur_p_down = p+x1+w1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_down)&0xF800) << 1;
green_comp += ((*cur_p_down)&0x07E0) << 1;
blue_comp += ((*cur_p_down)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor>=4){
red_comp += ((*cur_p_down)&0xF800);
green_comp += ((*cur_p_down)&0x07E0);
blue_comp += ((*cur_p_down)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and right ----
if(right_px_missing){
cur_p_right = p+x1+1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_right)&0xF800) << 1;
green_comp += ((*cur_p_right)&0x07E0) << 1;
blue_comp += ((*cur_p_right)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor>=4){
red_comp += ((*cur_p_right)&0xF800);
green_comp += ((*cur_p_right)&0x07E0);
blue_comp += ((*cur_p_right)&0x001F);
ponderation_factor++;
}
}
/// --- Compute new px value ---
if(ponderation_factor==4){
red_comp = (red_comp >> 2)&0xF800;
green_comp = (green_comp >> 2)&green_mask;
blue_comp = (blue_comp >> 2)&0x001F;
}
else if(ponderation_factor==2){
red_comp = (red_comp >> 1)&0xF800;
green_comp = (green_comp >> 1)&green_mask;
blue_comp = (blue_comp >> 1)&0x001F;
}
else{
red_comp = (red_comp / ponderation_factor )&0xF800;
green_comp = (green_comp / ponderation_factor )&green_mask;
blue_comp = (blue_comp / ponderation_factor )&0x001F;
}
/// Debug
//occurence_pond[ponderation_factor] += 1;
/// --- write pixel ---
*t++ = red_comp+green_comp+blue_comp;
}
else{
/// --- copy pixel ---
*t++ = (*cur_p);
/// Debug
//occurence_pond[1] += 1;
}
/// save number of pixels to interpolate
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
px_diff_prev_y = px_diff_next_y;
}
/// Debug
/*printf("pond: [%d, %d, %d, %d, %d, %d]\n", occurence_pond[1], occurence_pond[2], occurence_pond[3],
occurence_pond[4], occurence_pond[5], occurence_pond[6]);*/
}
/// Nearest neighbor with 2D bilinear and interpolation with left, right, up and down pixels, pseudo gaussian weighting
void flip_NNOptimized_LeftRightUpDownBilinear_Optimized8(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((w1<<16)/w2) +1;
//int y_ratio = (int)((h1<<16)/h2) +1;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
#ifdef BLACKER_BLACKS
/// Optimization for blacker blacks (our screen do not handle green value of 1 very well)
uint16_t green_mask = 0x07C0;
#else
uint16_t green_mask = 0x07E0;
#endif
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// --- Interp params ---
int px_diff_prev_x = 0;
int px_diff_next_x = 0;
int px_diff_prev_y = 0;
int px_diff_next_y = 0;
uint32_t ponderation_factor;
uint8_t left_px_missing, right_px_missing, up_px_missing, down_px_missing;
int supposed_pond_factor;
uint16_t * cur_p;
uint16_t * cur_p_left;
uint16_t * cur_p_right;
uint16_t * cur_p_up;
uint16_t * cur_p_down;
uint32_t red_comp, green_comp, blue_comp;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
///Debug
/*int occurence_pond[9];
memset(occurence_pond, 0, 9*sizeof(int));*/
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
px_diff_next_y = MAX( (((i+1)*y_ratio)>>16) - y1, 1);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1+x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current x value ------
x1 = (rat>>16);
px_diff_next_x = ((rat+x_ratio)>>16) - x1;
// ------ adapted bilinear with 3x3 gaussian blur -------
cur_p = p+x1;
if(px_diff_prev_x > 1 || px_diff_next_x > 1 || px_diff_prev_y > 1 || px_diff_next_y > 1){
red_comp=((*cur_p)&0xF800) << 1;
green_comp=((*cur_p)&0x07E0) << 1;
blue_comp=((*cur_p)&0x001F) << 1;
ponderation_factor = 2;
left_px_missing = (px_diff_prev_x > 1 && x1>0);
right_px_missing = (px_diff_next_x > 1 && x1+1<w1);
up_px_missing = (px_diff_prev_y > 1 && y1 > 0);
down_px_missing = (px_diff_next_y > 1 && y1 + 1 < h1);
supposed_pond_factor = 2 + left_px_missing + right_px_missing +
up_px_missing + down_px_missing;
// ---- Interpolate current and up ----
if(up_px_missing){
cur_p_up = p+x1-w1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_up)&0xF800) << 1;
green_comp += ((*cur_p_up)&0x07E0) << 1;
blue_comp += ((*cur_p_up)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor == 4 ||
(supposed_pond_factor == 5 && !down_px_missing) ||
supposed_pond_factor == 6 ){
red_comp += ((*cur_p_up)&0xF800);
green_comp += ((*cur_p_up)&0x07E0);
blue_comp += ((*cur_p_up)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and left ----
if(left_px_missing){
cur_p_left = p+x1-1;
if(supposed_pond_factor==3){
red_comp += ((*cur_p_left)&0xF800) << 1;
green_comp += ((*cur_p_left)&0x07E0) << 1;
blue_comp += ((*cur_p_left)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor == 4 ||
(supposed_pond_factor == 5 && !right_px_missing) ||
supposed_pond_factor == 6 ){
red_comp += ((*cur_p_left)&0xF800);
green_comp += ((*cur_p_left)&0x07E0);
blue_comp += ((*cur_p_left)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and down ----
if(down_px_missing){
cur_p_down = p+x1+w1;
if(supposed_pond_factor==3 || supposed_pond_factor==6){
red_comp += ((*cur_p_down)&0xF800) << 1;
green_comp += ((*cur_p_down)&0x07E0) << 1;
blue_comp += ((*cur_p_down)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor >= 4 && supposed_pond_factor != 6){
red_comp += ((*cur_p_down)&0xF800);
green_comp += ((*cur_p_down)&0x07E0);
blue_comp += ((*cur_p_down)&0x001F);
ponderation_factor++;
}
}
// ---- Interpolate current and right ----
if(right_px_missing){
cur_p_right = p+x1+1;
if(supposed_pond_factor==3 || supposed_pond_factor==6){
red_comp += ((*cur_p_right)&0xF800) << 1;
green_comp += ((*cur_p_right)&0x07E0) << 1;
blue_comp += ((*cur_p_right)&0x001F) << 1;
ponderation_factor+=2;
}
else if(supposed_pond_factor >= 4 && supposed_pond_factor != 6){
red_comp += ((*cur_p_right)&0xF800);
green_comp += ((*cur_p_right)&0x07E0);
blue_comp += ((*cur_p_right)&0x001F);
ponderation_factor++;
}
}
/// --- Compute new px value ---
if(ponderation_factor==8){
red_comp = (red_comp >> 3)&0xF800;
green_comp = (green_comp >> 3)&green_mask;
blue_comp = (blue_comp >> 3)&0x001F;
}
else if(ponderation_factor==4){
red_comp = (red_comp >> 2)&0xF800;
green_comp = (green_comp >> 2)&green_mask;
blue_comp = (blue_comp >> 2)&0x001F;
}
else if(ponderation_factor==2){
red_comp = (red_comp >> 1)&0xF800;
green_comp = (green_comp >> 1)&green_mask;
blue_comp = (blue_comp >> 1)&0x001F;
}
else{
red_comp = (red_comp / ponderation_factor )&0xF800;
green_comp = (green_comp / ponderation_factor )&green_mask;
blue_comp = (blue_comp / ponderation_factor )&0x001F;
}
/// Debug
//occurence_pond[ponderation_factor] += 1;
/// --- write pixel ---
*t++ = red_comp+green_comp+blue_comp;
}
else{
/// --- copy pixel ---
*t++ = (*cur_p);
/// Debug
//occurence_pond[1] += 1;
}
/// save number of pixels to interpolate
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
px_diff_prev_y = px_diff_next_y;
}
/// Debug
/*printf("pond: [%d, %d, %d, %d, %d, %d, %d, %d]\n", occurence_pond[1], occurence_pond[2], occurence_pond[3],
occurence_pond[4], occurence_pond[5], occurence_pond[6],
occurence_pond[7], occurence_pond[8]);*/
}
/// Nearest neighbor with full 2D uniform bilinear (interpolation with missing left, right, up and down pixels)
void flip_NNOptimized_FullBilinear_Uniform(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
//int x_ratio = (int)((w1<<16)/w2) +1;
//int y_ratio = (int)((h1<<16)/h2) +1;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
int px_diff_prev_x = 1;
int px_diff_prev_y = 1;
//int cnt_interp = 0; int cnt_no_interp = 0;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
/// ---- Compute padding for centering when out of bounds ----
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// ---- Copy and interpolate pixels ----
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
int px_diff_next_y = MAX( (((i+1)*y_ratio)>>16) - y1, 1);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1 + x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current and next x value ------
x1 = (rat>>16);
int px_diff_next_x = MAX( ((rat+x_ratio)>>16) - x1, 1);
// ------ bilinear uniformly weighted --------
uint32_t red_comp=0, green_comp=0, blue_comp=0, ponderation_factor=0;
uint16_t * cur_p;
int cur_y_offset;
//printf("\npx_diff_prev_y=%d, px_diff_prev_x=%d, px_diff_next_y=%d, px_diff_next_x=%d, interp_px=", px_diff_prev_y, px_diff_prev_x, px_diff_next_y, px_diff_next_x);
for(int cur_px_diff_y=-(px_diff_prev_y-1); cur_px_diff_y<px_diff_next_y; cur_px_diff_y++){
if(y1 + cur_px_diff_y >= h1 || y1 < -cur_px_diff_y){
continue;
}
cur_y_offset = w1*cur_px_diff_y;
//printf("cur_diff_y=%d-> ", cur_px_diff_y);
for(int cur_px_diff_x=-(px_diff_prev_x-1); cur_px_diff_x<px_diff_next_x; cur_px_diff_x++){
if(x1 + cur_px_diff_x >= w1 || x1 < -cur_px_diff_x){
continue;
}
cur_p = (p+cur_y_offset+x1+cur_px_diff_x);
//printf("{y=%d,x=%d}, ", y1+cur_px_diff_y, x1+cur_px_diff_x);
red_comp += ((*cur_p)&0xF800);
green_comp += ((*cur_p)&0x07E0);
blue_comp += ((*cur_p)&0x001F);
ponderation_factor++;
}
}
//printf("\n");
/// ------ Ponderation -------
red_comp = (red_comp / ponderation_factor )&0xF800;
green_comp = (green_comp / ponderation_factor )&0x07E0;
blue_comp = (blue_comp / ponderation_factor )&0x001F;
*t++ = red_comp+green_comp+blue_comp;
/// ------ x Interpolation values -------
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
/// ------ y Interpolation values -------
px_diff_prev_y = px_diff_next_y;
}
//printf("cnt_interp = %d, int cnt_no_interp = %d\n", cnt_interp, cnt_no_interp);
}
/// Nearest neighbor with full 2D uniform bilinear (interpolation with missing left, right, up and down pixels)
void flip_NNOptimized_FullBilinear_GaussianWeighted(SDL_Surface *virtual_screen, SDL_Surface *hardware_screen, int new_w, int new_h){
int w1=virtual_screen->w;
int h1=virtual_screen->h;
int w2=new_w;
int h2=new_h;
//printf("virtual_screen->w=%d, virtual_screen->w=%d\n", virtual_screen->w, virtual_screen->h);
int y_padding = (RES_HW_SCREEN_VERTICAL-new_h)/2;
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int x1, y1;
int px_diff_prev_x = 1;
int px_diff_prev_y = 1;
//int cnt_interp = 0; int cnt_no_interp = 0;
/// ---- Compute padding for centering when out of bounds ----
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// ---- Interpolation params ----
uint32_t max_pix_interpolate = 3;
if(max_pix_interpolate > 3 || max_pix_interpolate<1){
printf("ERROR cannot interpolate more than 3x3 px in flip_NNOptimized_FullBilinear_GaussianWeighted\n");
return;
}
/// ---- Convolutional mask ----
int mask_weight_5x5[] = {36, 24, 6, 24, 16, 4, 6, 4, 1};
int mask_weight_3x3[] = {4, 2, 2, 1};
int mask_weight_1x1[] = {1};
int *mask_weight;
if(max_pix_interpolate==3){
mask_weight = mask_weight_5x5;
}
else if(max_pix_interpolate==2){
mask_weight = mask_weight_3x3;
}
else{
mask_weight = mask_weight_1x1;
}
/// ---- Copy and interpolate pixels ----
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(hardware_screen->pixels+( (i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2))*sizeof(uint16_t));
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
int px_diff_next_y = MIN( MAX( (((i+1)*y_ratio)>>16) - y1, 1), max_pix_interpolate);
uint16_t* p = (uint16_t*)(virtual_screen->pixels + (y1*w1 + x_padding_ratio) *sizeof(uint16_t));
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current and next x value ------
x1 = (rat>>16);
int px_diff_next_x = MIN( MAX( ((rat+x_ratio)>>16) - x1, 1), max_pix_interpolate); //we interpolate max "max_pix_interpolate" pix in each dim
// ------ bilinear uniformly weighted --------
uint32_t red_comp=0, green_comp=0, blue_comp=0;
int ponderation_factor=0;
uint16_t * cur_p;
int cur_y_offset;
//printf("\npx_diff_prev_y=%d, px_diff_prev_x=%d, px_diff_next_y=%d, px_diff_next_x=%d, interp_px=", px_diff_prev_y, px_diff_prev_x, px_diff_next_y, px_diff_next_x);
for(int cur_px_diff_y=-(px_diff_prev_y-1); cur_px_diff_y<px_diff_next_y; cur_px_diff_y++){
if(y1 + cur_px_diff_y >= h1 || y1 < -cur_px_diff_y){
continue;
}
cur_y_offset = w1*cur_px_diff_y;
//printf("cur_diff_y=%d-> ", cur_px_diff_y);
for(int cur_px_diff_x=-(px_diff_prev_x-1); cur_px_diff_x<px_diff_next_x; cur_px_diff_x++){
if(x1 + cur_px_diff_x >= w1 || x1 < -cur_px_diff_x){
continue;
}
cur_p = (p+cur_y_offset+x1+cur_px_diff_x);
int weight = mask_weight[ABS(cur_px_diff_y)*max_pix_interpolate+ABS(cur_px_diff_x)];
red_comp += ((*cur_p)&0xF800) * weight;
green_comp += ((*cur_p)&0x07E0) * weight;
blue_comp += ((*cur_p)&0x001F) * weight;
ponderation_factor += weight;
}
}
//printf("\n");
/// ------ Ponderation -------
red_comp = (red_comp / ponderation_factor) & 0xF800;
green_comp = (green_comp / ponderation_factor )&0x07E0;
blue_comp = (blue_comp / ponderation_factor) & 0x001F;
*t++ = red_comp+green_comp+blue_comp;
/// ------ x Interpolation values -------
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
/// ------ y Interpolation values -------
px_diff_prev_y = px_diff_next_y;
}
//printf("cnt_interp = %d, int cnt_no_interp = %d\n", cnt_interp, cnt_no_interp);
}
/// Interpolation with left, right pixels, pseudo gaussian weighting for downscaling - operations on 16bits
void flip_Downscale_LeftRightGaussianFilter_Optimized(SDL_Surface *src_surface, SDL_Surface *dst_surface, int new_w, int new_h){
int w1=src_surface->w;
int h1=src_surface->h;
int w2=dst_surface->w;
int h2=dst_surface->h;
//printf("src = %dx%d\n", w1, h1);
int x_ratio = (int)((w1<<16)/w2);
int y_ratio = (int)((h1<<16)/h2);
int y_padding = (RES_HW_SCREEN_VERTICAL-h2)/2;
int x1, y1;
uint16_t *src_screen = (uint16_t *)src_surface->pixels;
uint16_t *dst_screen = (uint16_t *)dst_surface->pixels;
/// --- Compute padding for centering when out of bounds ---
int x_padding = 0;
if(w2>RES_HW_SCREEN_HORIZONTAL){
x_padding = (w2-RES_HW_SCREEN_HORIZONTAL)/2 + 1;
}
int x_padding_ratio = x_padding*w1/w2;
/// --- Interp params ---
int px_diff_prev_x = 0;
int px_diff_next_x = 0;
uint8_t left_px_missing, right_px_missing;
uint16_t * cur_p;
uint16_t * cur_p_left;
uint16_t * cur_p_right;
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(dst_screen +
(i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2) );
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
uint16_t* p = (uint16_t*)(src_screen + (y1*w1+x_padding_ratio) );
int rat = 0;
for (int j=0;j<w2;j++)
{
if(j>=RES_HW_SCREEN_HORIZONTAL){
continue;
}
// ------ current x value ------
x1 = (rat>>16);
px_diff_next_x = ((rat+x_ratio)>>16) - x1;
//printf("x1=%d, px_diff_prev_x=%d, px_diff_next_x=%d\n", x1, px_diff_prev_x, px_diff_next_x);
// ------ adapted bilinear with 3x3 gaussian blur -------
cur_p = p+x1;
if(px_diff_prev_x > 1 || px_diff_next_x > 1 ){
left_px_missing = (px_diff_prev_x > 1 && x1>0);
right_px_missing = (px_diff_next_x > 1 && x1+1<w1);
cur_p_left = cur_p-1;
cur_p_right = cur_p+1;
// ---- Interpolate current and left ----
if(left_px_missing && !right_px_missing){
*t++ = Weight1_1(*cur_p, *cur_p_left);
//*t++ = Weight1_1(*cur_p, Weight1_3(*cur_p, *cur_p_left));
}
// ---- Interpolate current and right ----
else if(right_px_missing && !left_px_missing){
*t++ = Weight1_1(*cur_p, *cur_p_right);
//*t++ = Weight1_1(*cur_p, Weight1_3(*cur_p, *cur_p_right));
}
// ---- Interpolate with Left and right pixels
else{
*t++ = Weight1_1(Weight1_1(*cur_p, *cur_p_left), Weight1_1(*cur_p, *cur_p_right));
}
}
else{
/// --- copy pixel ---
*t++ = (*cur_p);
/// Debug
//occurence_pond[1] += 1;
}
/// save number of pixels to interpolate
px_diff_prev_x = px_diff_next_x;
// ------ next pixel ------
rat += x_ratio;
}
}
}
/// Interpolation with left, right pixels, pseudo gaussian weighting for downscaling - operations on 16bits
void flip_Downscale_LeftRightGaussianFilter_OptimizedWidth320(SDL_Surface *src_surface, SDL_Surface *dst_surface, int new_w, int new_h){
int w1=src_surface->w;
int h1=src_surface->h;
int w2=dst_surface->w;
int h2=dst_surface->h;
if(w1!=320){
printf("src_surface->w (%d) != 320\n", src_surface->w);
return;
}
//printf("src = %dx%d\n", w1, h1);
int y_ratio = (int)((h1<<16)/h2);
int y_padding = (RES_HW_SCREEN_VERTICAL-h2)/2;
int y1;
uint16_t *src_screen = (uint16_t *)src_surface->pixels;
uint16_t *dst_screen = (uint16_t *)dst_surface->pixels;
/* Interpolation */
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
uint16_t* t = (uint16_t*)(dst_screen +
(i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2) );
// ------ current and next y value ------
y1 = ((i*y_ratio)>>16);
uint16_t* p = (uint16_t*)(src_screen + (y1*w1) );
for (int j=0;j<80;j++)
{
/* Horizontaly:
* Before(4):
* (a)(b)(c)(d)
* After(3):
* (aaab)(bc)(cddd)
*/
uint16_t _a = *(p );
uint16_t _b = *(p + 1);
uint16_t _c = *(p + 2);
uint16_t _d = *(p + 3);
*(t ) = Weight3_1( _a, _b );
*(t + 1) = Weight1_1( _b, _c );
*(t + 2) = Weight1_3( _c, _d );
// ------ next dst pixel ------
t+=3;
p+=4;
}
}
}
/// Interpolation with left, right pixels, pseudo gaussian weighting for downscaling - operations on 16bits
void flip_Downscale_OptimizedWidth320_mergeUpDown(SDL_Surface *src_surface, SDL_Surface *dst_surface, int new_w, int new_h){
int w1=src_surface->w;
int h1=src_surface->h;
int w2=dst_surface->w;
int h2=dst_surface->h;
if(w1!=320){
printf("src_surface->w (%d) != 320\n", src_surface->w);
return;
}
//printf("src = %dx%d\n", w1, h1);
int y_ratio = (int)((h1<<16)/h2);
int y_padding = (RES_HW_SCREEN_VERTICAL-h2)/2;
int y1=0, prev_y1=-1, prev_prev_y1=-2;
uint16_t *src_screen = (uint16_t *)src_surface->pixels;
uint16_t *dst_screen = (uint16_t *)dst_surface->pixels;
uint16_t *prev_t, *t_init=dst_screen;
/* Interpolation */
for (int i=0;i<h2;i++)
{
if(i>=RES_HW_SCREEN_VERTICAL){
continue;
}
prev_t = t_init;
t_init = (uint16_t*)(dst_screen +
(i+y_padding)*((w2>RES_HW_SCREEN_HORIZONTAL)?RES_HW_SCREEN_HORIZONTAL:w2) );
uint16_t *t = t_init;
// ------ current and next y value ------
prev_prev_y1 = prev_y1;
prev_y1 = y1;
y1 = ((i*y_ratio)>>16);
uint16_t* p = (uint16_t*)(src_screen + (y1*w1) );
for (int j=0;j<80;j++)
{
/* Horizontaly:
* Before(4):
* (a)(b)(c)(d)
* After(3):
* (aaab)(bc)(cddd)
*/
uint16_t _a = *(p );
uint16_t _b = *(p + 1);
uint16_t _c = *(p + 2);
uint16_t _d = *(p + 3);
*(t ) = Weight3_1( _a, _b );
*(t + 1) = Weight1_1( _b, _c );
*(t + 2) = Weight1_3( _c, _d );
if(prev_y1 == prev_prev_y1 && y1 != prev_y1){
//printf("we are here %d\n", ++count);
*(prev_t ) = Weight1_1(*(t ), *(prev_t ));
*(prev_t + 1) = Weight1_1(*(t + 1), *(prev_t + 1));
*(prev_t + 2) = Weight1_1(*(t + 2), *(prev_t + 2));
}
// ------ next dst pixel ------
t+=3;
prev_t+=3;
p+=4;
}
}
}
void SDL_Rotate_270(SDL_Surface * hw_surface, SDL_Surface * virtual_hw_surface){
int i, j;
uint16_t *source_pixels = (uint16_t*) virtual_hw_surface->pixels;
uint16_t *dest_pixels = (uint16_t*) hw_surface->pixels;
/// --- Checking for right pixel format ---
//printf("Source bpb = %d, Dest bpb = %d\n", virtual_hw_surface->format->BitsPerPixel, hw_surface->format->BitsPerPixel);
if(virtual_hw_surface->format->BitsPerPixel != 16){
printf("Error in SDL_FastBlit, Wrong virtual_hw_surface pixel format: %d bpb, expected: 16 bpb\n", virtual_hw_surface->format->BitsPerPixel);
return;
}
if(hw_surface->format->BitsPerPixel != 16){
printf("Error in SDL_FastBlit, Wrong hw_surface pixel format: %d bpb, expected: 16 bpb\n", hw_surface->format->BitsPerPixel);
return;
}
/// --- Checking if same dimensions ---
if(hw_surface->w != virtual_hw_surface->w || hw_surface->h != virtual_hw_surface->h){
printf("Error in SDL_FastBlit, hw_surface (%dx%d) and virtual_hw_surface (%dx%d) have different dimensions\n",
hw_surface->w, hw_surface->h, virtual_hw_surface->w, virtual_hw_surface->h);
return;
}
/// --- Pixel copy and rotation (270) ---
uint16_t *cur_p_src, *cur_p_dst;
for(i=0; i<virtual_hw_surface->h; i++){
for(j=0; j<virtual_hw_surface->w; j++){
cur_p_src = source_pixels + i*virtual_hw_surface->w + j;
cur_p_dst = dest_pixels + (hw_surface->h-1-j)*hw_surface->w + i;
*cur_p_dst = *cur_p_src;
}
}
}
static int clear_buf_cnt, clear_stat_cnt;
void plat_video_set_size(int w, int h)
{
if (area.w != w || area.h != h) {
area = (struct area) { w, h };
if (plat_sdl_change_video_mode(w, h, 0) < 0) {
// failed, revert to original resolution
plat_sdl_change_video_mode(g_screen_width, g_screen_height, 0);
w = g_screen_width, h = g_screen_height;
}
if (!plat_sdl_overlay && !plat_sdl_gl_active) {
g_screen_width = w;
g_screen_height = h;
g_screen_ppitch = w;
g_screen_ptr = plat_sdl_screen->pixels;
}
}
}
void plat_video_flip(void)
{
if (plat_sdl_overlay != NULL) {
SDL_Rect dstrect =
{ 0, 0, plat_sdl_screen->w, plat_sdl_screen->h };
SDL_LockYUVOverlay(plat_sdl_overlay);
rgb565_to_uyvy(plat_sdl_overlay->pixels[0], shadow_fb,
area.w, area.h, g_screen_ppitch,
plat_sdl_overlay->w >= 2*area.w);
SDL_UnlockYUVOverlay(plat_sdl_overlay);
SDL_DisplayYUVOverlay(plat_sdl_overlay, &dstrect);
}
else if (plat_sdl_gl_active) {
gl_flip(shadow_fb, g_screen_ppitch, g_screen_height);
}
/*else {
if (SDL_MUSTLOCK(plat_sdl_screen)) {
SDL_UnlockSurface(plat_sdl_screen);
SDL_Flip(plat_sdl_screen);
SDL_LockSurface(plat_sdl_screen);
} else
SDL_Flip(plat_sdl_screen);
g_screen_ptr = plat_sdl_screen->pixels;
plat_video_set_buffer(g_screen_ptr);
if (clear_buf_cnt) {
memset(g_screen_ptr, 0, plat_sdl_screen->w*plat_sdl_screen->h * 2);
clear_buf_cnt--;
}
}*/
else {
if (SDL_MUSTLOCK(plat_sdl_screen))
SDL_UnlockSurface(plat_sdl_screen);
/* Surface with game data */
SDL_Surface *game_surface;
/* Sega Game Gear -> 160*144 res in 320*240 surface */
if ((PicoIn.AHW & PAHW_SMS) && (Pico.m.hardware & 0x3) == 0x3){
/* Copy sms game pixels */
int offset_y = (plat_sdl_screen->h - sms_game_screen->h)/2;
int offset_x = (plat_sdl_screen->w - sms_game_screen->w)/2 - 1;
int y;
for(y=0; y<192; y++){
memcpy((uint16_t*)sms_game_screen->pixels + sms_game_screen->w*y,
(uint16_t*)plat_sdl_screen->pixels + plat_sdl_screen->w*(y+offset_y) + offset_x,
sms_game_screen->w*sizeof(uint16_t));
}
game_surface = sms_game_screen;
}
/* Sega Master System -> 256*192 res in 320*240 surface */
else if (PicoIn.AHW & PAHW_SMS){
/* Copy sms game pixels */
int offset_y = (plat_sdl_screen->h - sms_game_screen->h)/2;
int offset_x = (plat_sdl_screen->w - sms_game_screen->w)/2 + 1;
int y;
for(y=0; y<192; y++){
memcpy((uint16_t*)sms_game_screen->pixels + sms_game_screen->w*y,
(uint16_t*)plat_sdl_screen->pixels + plat_sdl_screen->w*(y+offset_y) + offset_x,
sms_game_screen->w*sizeof(uint16_t));
}
game_surface = sms_game_screen;
}
else{
game_surface = plat_sdl_screen;
}
/// --------------Optimized Flip depending on aspect ratio -------------
static int prev_aspect_ratio;
if(prev_aspect_ratio != aspect_ratio || need_screen_cleared){
//printf("aspect ratio changed: %d\n", aspect_ratio);
clear_screen(virtual_hw_screen, 0);
prev_aspect_ratio = aspect_ratio;
need_screen_cleared = 0;
}
uint16_t hres_max;
switch(aspect_ratio){
case ASPECT_RATIOS_TYPE_STRETCHED:
if(game_surface->w == 320 && game_surface->h < RES_HW_SCREEN_VERTICAL){
flip_Downscale_OptimizedWidth320_mergeUpDown(game_surface, virtual_hw_screen,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);
}
else if(game_surface->w == 320){
flip_Downscale_LeftRightGaussianFilter_OptimizedWidth320(game_surface, virtual_hw_screen,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);
}
else{
flip_Downscale_LeftRightGaussianFilter_Optimized(game_surface, virtual_hw_screen,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);
/*flip_Downscale_LeftRightGaussianFilter(game_surface, hw_screen,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);*/
}
break;
case ASPECT_RATIOS_TYPE_MANUAL:
hres_max= MIN(RES_HW_SCREEN_VERTICAL, game_surface->h);
;uint32_t h_scaled = MIN(game_surface->h*RES_HW_SCREEN_HORIZONTAL/game_surface->w,
RES_HW_SCREEN_VERTICAL);
uint32_t h_zoomed = MIN(h_scaled + aspect_ratio_factor_percent*(hres_max - h_scaled)/100,
RES_HW_SCREEN_VERTICAL);
flip_NNOptimized_LeftRightUpDownBilinear_Optimized8(game_surface, virtual_hw_screen,
MAX(game_surface->w*h_zoomed/game_surface->h, RES_HW_SCREEN_HORIZONTAL),
MIN(h_zoomed, RES_HW_SCREEN_VERTICAL));
break;
case ASPECT_RATIOS_TYPE_CROPPED:
/*flip_NNOptimized_AllowOutOfScreen(game_surface, virtual_hw_screen,
MAX(game_surface->w*RES_HW_SCREEN_VERTICAL/game_surface->h, RES_HW_SCREEN_HORIZONTAL),
RES_HW_SCREEN_VERTICAL);*/
hres_max= MIN(RES_HW_SCREEN_VERTICAL, game_surface->h);
flip_NNOptimized_AllowOutOfScreen(game_surface, virtual_hw_screen,
MAX(game_surface->w*hres_max/game_surface->h, RES_HW_SCREEN_HORIZONTAL),
hres_max);
break;
case ASPECT_RATIOS_TYPE_SCALED:
flip_NNOptimized_LeftRightUpDownBilinear_Optimized8(game_surface, virtual_hw_screen,
RES_HW_SCREEN_HORIZONTAL,
MIN(game_surface->h*RES_HW_SCREEN_HORIZONTAL/game_surface->w, RES_HW_SCREEN_VERTICAL));
break;
default:
printf("Wrong aspect ratio value: %d\n", aspect_ratio);
aspect_ratio = ASPECT_RATIOS_TYPE_STRETCHED;
flip_NNOptimized_LeftRightUpDownBilinear_Optimized8(game_surface, virtual_hw_screen,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);
break;
}
// Rotate
//SDL_Rotate_270(hw_screen, virtual_hw_screen);
//SDL_BlitSurface(virtual_hw_screen, NULL, hw_screen, NULL);
memcpy(hw_screen->pixels, virtual_hw_screen->pixels, hw_screen->w*hw_screen->h*sizeof(uint16_t));
/// --- Real Flip ---
SDL_Flip(hw_screen);
/*g_screen_ptr = plat_sdl_screen->pixels;
PicoDrawSetOutBuf(g_screen_ptr, g_screen_ppitch * 2);*/
}
/*if (clear_stat_cnt) {
unsigned short *d = (unsigned short *)g_screen_ptr + g_screen_ppitch * g_screen_height;
int l = g_screen_ppitch * 8;
memset((int *)(d - l), 0, l * 2);
clear_stat_cnt--;
}*/
}
void plat_video_wait_vsync(void)
{
}
void plat_video_clear_status(void)
{
clear_stat_cnt = 3; // do it thrice in case of triple buffering
}
void plat_video_clear_buffers(void)
{
if (plat_sdl_overlay != NULL || plat_sdl_gl_active)
memset(shadow_fb, 0, plat_sdl_screen->w*plat_sdl_screen->h * 2);
else {
memset(g_screen_ptr, 0, plat_sdl_screen->w*plat_sdl_screen->h * 2);
clear_buf_cnt = 3; // do it thrice in case of triple buffering
}
}
void plat_video_menu_enter(int is_rom_loaded)
{
if (SDL_MUSTLOCK(plat_sdl_screen))
SDL_UnlockSurface(plat_sdl_screen);
plat_sdl_change_video_mode(g_menuscreen_w, g_menuscreen_h, 1);
g_screen_ptr = shadow_fb;
plat_video_set_buffer(g_screen_ptr);
}
void plat_video_menu_begin(void)
{
if (plat_sdl_overlay != NULL || plat_sdl_gl_active) {
g_menuscreen_ptr = shadow_fb;
}
else {
if (SDL_MUSTLOCK(plat_sdl_screen))
SDL_LockSurface(plat_sdl_screen);
g_menuscreen_ptr = plat_sdl_screen->pixels;
}
}
void plat_video_menu_end(void)
{
if (plat_sdl_overlay != NULL) {
SDL_Rect dstrect =
{ 0, 0, plat_sdl_screen->w, plat_sdl_screen->h };
SDL_LockYUVOverlay(plat_sdl_overlay);
rgb565_to_uyvy(plat_sdl_overlay->pixels[0], shadow_fb,
g_menuscreen_w, g_menuscreen_h, g_menuscreen_pp, 0);
SDL_UnlockYUVOverlay(plat_sdl_overlay);
SDL_DisplayYUVOverlay(plat_sdl_overlay, &dstrect);
}
else if (plat_sdl_gl_active) {
gl_flip(g_menuscreen_ptr, g_menuscreen_pp, g_menuscreen_h);
}
else {
if (SDL_MUSTLOCK(plat_sdl_screen))
SDL_UnlockSurface(plat_sdl_screen);
flip_NNOptimized_LeftAndRightBilinear(plat_sdl_screen, virtual_hw_screen, RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL);
memcpy(hw_screen->pixels, virtual_hw_screen->pixels, hw_screen->w*hw_screen->h*sizeof(uint16_t));
SDL_Flip(hw_screen);
//SDL_Rotate_270(hw_screen, virtual_hw_screen);
//SDL_Flip(plat_sdl_screen);
}
g_menuscreen_ptr = NULL;
}
void plat_video_menu_leave(void)
{
}
void plat_video_loop_prepare(void)
{
// take over any new vout settings
plat_sdl_change_video_mode(g_menuscreen_w, g_menuscreen_h, 0);
// switch over to scaled output if available, but keep the aspect ratio
if (plat_sdl_overlay != NULL || plat_sdl_gl_active) {
g_screen_width = (240 * g_menuscreen_w / g_menuscreen_h) & ~1;
g_screen_height = 240;
g_screen_ppitch = g_screen_width;
plat_sdl_change_video_mode(g_screen_width, g_screen_height, 0);
g_screen_ptr = shadow_fb;
}
else {
g_screen_width = g_menuscreen_w;
g_screen_height = g_menuscreen_h;
g_screen_ppitch = g_menuscreen_pp;
if (SDL_MUSTLOCK(plat_sdl_screen))
SDL_LockSurface(plat_sdl_screen);
g_screen_ptr = plat_sdl_screen->pixels;
}
plat_video_set_buffer(g_screen_ptr);
plat_video_set_size(g_screen_width, g_screen_height);
}
void plat_early_init(void)
{
}
static void plat_sdl_quit(void)
{
// for now..
engineState = PGS_Quit;
//exit(1);
}
void plat_init(void)
{
int shadow_size;
int ret;
ret = plat_sdl_init();
if (ret != 0)
exit(1);
SDL_ShowCursor(0);
#if defined(__RG350__) || defined(__GCW0__) || defined(__OPENDINGUX__)
// opendingux on JZ47x0 may falsely report a HW overlay, fix to window
plat_target.vout_method = 0;
#endif
if(TTF_Init())
{
fprintf(stderr, "Error TTF_Init: %s\n", TTF_GetError());
exit(EXIT_FAILURE);
}
hw_screen = SDL_SetVideoMode(RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL, 16, SDL_FULLSCREEN | SDL_HWSURFACE | SDL_DOUBLEBUF);
if(hw_screen == NULL)
{
fprintf(stderr, "Error SDL_SetVideoMode: %s\n", SDL_GetError());
exit(EXIT_FAILURE);
}
plat_sdl_quit_cb = plat_sdl_quit;
SDL_WM_SetCaption("PicoDrive " VERSION, NULL);
virtual_hw_screen = SDL_CreateRGBSurface(SDL_SWSURFACE,
RES_HW_SCREEN_HORIZONTAL, RES_HW_SCREEN_VERTICAL, 16, 0xFFFF, 0xFFFF, 0xFFFF, 0);
if (virtual_hw_screen == NULL) {
fprintf(stderr, "virtual_hw_screen failed: %s\n", SDL_GetError());
}
sms_game_screen = SDL_CreateRGBSurface(SDL_SWSURFACE,
256, 192, 16, 0xFFFF, 0xFFFF, 0xFFFF, 0);
if (sms_game_screen == NULL) {
fprintf(stderr, "sms_game_screen failed: %s\n", SDL_GetError());
}
g_menuscreen_w = plat_sdl_screen->w;
g_menuscreen_h = plat_sdl_screen->h;
g_menuscreen_pp = g_menuscreen_w;
g_menuscreen_ptr = NULL;
shadow_size = g_menuscreen_w * g_menuscreen_h * 2;
if (shadow_size < 320 * 480 * 2)
shadow_size = 320 * 480 * 2;
shadow_fb = calloc(1, shadow_size);
g_menubg_ptr = calloc(1, shadow_size);
if (shadow_fb == NULL || g_menubg_ptr == NULL) {
fprintf(stderr, "OOM\n");
exit(1);
}
g_screen_width = 320;
g_screen_height = 240;
g_screen_ppitch = 320;
g_screen_ptr = shadow_fb;
in_sdl_platform_data.kmap_size = in_sdl_key_map_sz,
in_sdl_platform_data.jmap_size = in_sdl_joy_map_sz,
in_sdl_platform_data.key_names = *in_sdl_key_names,
/** Done later depending on SMS or genesis */
/*in_sdl_init(&in_sdl_platform_data, plat_sdl_event_handler);
in_probe();*/
init_menu_SDL();
bgr_to_uyvy_init();
}
void plat_set_sms_input(void){
in_sdl_init(&in_sdl_platform_data_SMS, plat_sdl_event_handler);
in_probe();
}
void plat_set_genesis_input(void){
in_sdl_init(&in_sdl_platform_data, plat_sdl_event_handler);
in_probe();
}
void plat_finish(void)
{
SDL_FreeSurface(virtual_hw_screen);
SDL_FreeSurface(sms_game_screen);
deinit_menu_SDL();
free(shadow_fb);
shadow_fb = NULL;
free(g_menubg_ptr);
g_menubg_ptr = NULL;
TTF_Quit();
plat_sdl_finish();
}