2021-04-05 14:19:35 +01:00

407 lines
18 KiB
C

/*
* NewOswan
* nec.h:
* Based on the original Oswan-unix
* Copyright (c) 2014-2021 986-Studio. All rights reserved.
*
*/
#ifndef __NEC_H_
#define __NEC_H_
#include <stdint.h>
#include "necintrf.h"
typedef enum
{
ES, CS, SS, DS
} SREGS;
typedef enum
{
AW, CW, DW, BW, SP, BP, IX, IY
} WREGS;
typedef enum
{
AL, AH, CL, CH, DL, DH, BL, BH, SPL, SPH, BPL, BPH, IXL, IXH, IYL, IYH
} BREGS;
#pragma pack(1)
typedef union
{
/* eight general registers */
uint16_t w[8]; /* viewed as 16 bits registers */
uint8_t b[16]; /* or as 8 bit registers */
} necbasicregs;
typedef struct
{
necbasicregs regs;
uint16_t sregs[4];
uint16_t ip;
int32_t SignVal;
int32_t AuxVal, OverVal, ZeroVal, CarryVal, ParityVal; /* 0 or non-0 valued flags */
uint32_t TF, IF, DF, MF; /* 0 or 1 valued flags */ /* OB[19.07.99] added Mode Flag V30 */
uint32_t int_vector;
uint32_t pending_irq;
uint32_t nmi_state;
uint32_t irq_state;
int (*irq_callback)(int irqline);
} nec_Regs;
#pragma pack()
#define NEC_NMI_INT_VECTOR 2
/* Cpu types, steps of 8 to help the cycle count calculation */
#define V33 0
#define V30 8
#define V20 16
#ifndef FALSE
#define FALSE 0
#define TRUE 1
#endif
/* parameter x = result, y = source 1, z = source 2 */
#define SetTF(x) (I.TF = (x))
#define SetIF(x) (I.IF = (x))
#define SetDF(x) (I.DF = (x))
#define SetMD(x) (I.MF = (x)) /* OB [19.07.99] Mode Flag V30 */
#define SetCFB(x) (I.CarryVal = (x) & 0x100)
#define SetCFW(x) (I.CarryVal = (x) & 0x10000)
#define SetAF(x, y, z) (I.AuxVal = ((x) ^ ((y) ^ (z))) & 0x10)
#define SetSF(x) (I.SignVal = (x))
#define SetZF(x) (I.ZeroVal = (x))
#define SetPF(x) (I.ParityVal = (x))
#define SetSZPF_Byte(x) (I.SignVal=I.ZeroVal=I.ParityVal=(int8_t)(x))
#define SetSZPF_Word(x) (I.SignVal=I.ZeroVal=I.ParityVal=(int16_t)(x))
#define SetOFW_Add(x, y, z) (I.OverVal = ((x) ^ (y)) & ((x) ^ (z)) & 0x8000)
#define SetOFB_Add(x, y, z) (I.OverVal = ((x) ^ (y)) & ((x) ^ (z)) & 0x80)
#define SetOFW_Sub(x, y, z) (I.OverVal = ((z) ^ (y)) & ((z) ^ (x)) & 0x8000)
#define SetOFB_Sub(x, y, z) (I.OverVal = ((z) ^ (y)) & ((z) ^ (x)) & 0x80)
#define ADDB { uint32_t res=dst+src; SetCFB(res); SetOFB_Add(res,src,dst); SetAF(res,src,dst); SetSZPF_Byte(res); dst=(uint8_t)res; }
#define ADDW { uint32_t res=dst+src; SetCFW(res); SetOFW_Add(res,src,dst); SetAF(res,src,dst); SetSZPF_Word(res); dst=(uint16_t)res; }
#define SUBB { uint32_t res=dst-src; SetCFB(res); SetOFB_Sub(res,src,dst); SetAF(res,src,dst); SetSZPF_Byte(res); dst=(uint8_t)res; }
#define SUBW { uint32_t res=dst-src; SetCFW(res); SetOFW_Sub(res,src,dst); SetAF(res,src,dst); SetSZPF_Word(res); dst=(uint16_t)res; }
#define ORB dst|=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Byte(dst)
#define ORW dst|=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Word(dst)
#define ANDB dst&=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Byte(dst)
#define ANDW dst&=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Word(dst)
#define XORB dst^=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Byte(dst)
#define XORW dst^=src; I.CarryVal=I.OverVal=I.AuxVal=0; SetSZPF_Word(dst)
#define CF (I.CarryVal!=0)
#define SF (I.SignVal<0)
#define ZF (I.ZeroVal==0)
#define PF parity_table[(uint8_t)I.ParityVal]
#define AF (I.AuxVal!=0)
#define OF (I.OverVal!=0)
#define MD (I.MF!=0)
/************************************************************************/
#define SegBase(Seg) (I.sregs[Seg] << 4)
#define DefaultBase(Seg) ((seg_prefix && (Seg==DS || Seg==SS)) ? prefix_base : I.sregs[Seg] << 4)
#define GetMemB(Seg, Off) (/*nec_ICount-=((Off)&1)?1:0,*/ (uint8_t)cpu_readmem20((DefaultBase(Seg)+(Off))))
#define GetMemW(Seg, Off) (/*nec_ICount-=((Off)&1)?1:0,*/ (uint16_t) cpu_readmem20((DefaultBase(Seg)+(Off))) + (cpu_readmem20((DefaultBase(Seg)+((Off)+1)))<<8) )
#define PutMemB(Seg, Off, x) { /*nec_ICount-=((Off)&1)?1:0*/; cpu_writemem20((DefaultBase(Seg)+(Off)),(x)); }
#define PutMemW(Seg, Off, x) { /*nec_ICount-=((Off)&1)?1:0*/; PutMemB(Seg,Off,(x)&0xff); PutMemB(Seg,(Off)+1,(uint8_t)((x)>>8)); }
/* Todo: Remove these later - plus readword could overflow */
#define ReadByte(ea) (/*nec_ICount-=((ea)&1)?1:0,*/ (uint8_t)cpu_readmem20((ea)))
#define ReadWord(ea) (/*nec_ICount-=((ea)&1)?1:0,*/ cpu_readmem20((ea))+(cpu_readmem20(((ea)+1))<<8))
#define WriteByte(ea, val) { /*nec_ICount-=((ea)&1)?1:0*/; cpu_writemem20((ea),val); }
#define WriteWord(ea, val) { /*nec_ICount-=((ea)&1)?1:0*/; cpu_writemem20((ea),(uint8_t)(val)); cpu_writemem20(((ea)+1),(val)>>8); }
#define read_port(port) cpu_readport(port)
#define write_port(port, val) cpu_writeport(port,val)
#define FETCH (cpu_readop_arg((I.sregs[CS]<<4)+I.ip++))
#define FETCHOP (cpu_readop((I.sregs[CS]<<4)+I.ip++))
#define FETCHWORD(var) { var=cpu_readop_arg((((I.sregs[CS]<<4)+I.ip)))+(cpu_readop_arg((((I.sregs[CS]<<4)+I.ip+1)))<<8); I.ip+=2; }
#define PUSH(val) { I.regs.w[SP]-=2; WriteWord((((I.sregs[SS]<<4)+I.regs.w[SP])),val); }
#define POP(var) { var = ReadWord((((I.sregs[SS]<<4)+I.regs.w[SP]))); I.regs.w[SP]+=2; }
#define PEEK(addr) ((uint8_t)cpu_readop_arg(addr))
#define PEEKOP(addr) ((uint8_t)cpu_readop(addr))
#define GetModRM uint32_t ModRM=cpu_readop_arg((I.sregs[CS]<<4)+I.ip++)
/* Cycle count macros:
CLK - cycle count is the same on all processors
CLKS - cycle count differs between processors, list all counts
CLKW - cycle count for word read/write differs for odd/even source/destination address
CLKM - cycle count for reg/mem instructions
CLKR - cycle count for reg/mem instructions with different counts for odd/even addresses
Prefetch & buswait time is not emulated.
Extra cycles for PUSH'ing or POP'ing registers to odd addresses is not emulated.
#define CLK(all) nec_ICount-=all
#define CLKS(v20,v30,v33) { const uint32_t ccount=(v20<<16)|(v30<<8)|v33; nec_ICount-=(ccount>>cpu_type)&0x7f; }
#define CLKW(v20o,v30o,v33o,v20e,v30e,v33e) { const uint32_t ocount=(v20o<<16)|(v30o<<8)|v33o, ecount=(v20e<<16)|(v30e<<8)|v33e; nec_ICount-=(I.ip&1)?((ocount>>cpu_type)&0x7f):((ecount>>cpu_type)&0x7f); }
#define CLKM(v20,v30,v33,v20m,v30m,v33m) { const uint32_t ccount=(v20<<16)|(v30<<8)|v33, mcount=(v20m<<16)|(v30m<<8)|v33m; nec_ICount-=( ModRM >=0xc0 )?((ccount>>cpu_type)&0x7f):((mcount>>cpu_type)&0x7f); }
#define CLKR(v20o,v30o,v33o,v20e,v30e,v33e,vall) { const uint32_t ocount=(v20o<<16)|(v30o<<8)|v33o, ecount=(v20e<<16)|(v30e<<8)|v33e; if (ModRM >=0xc0) nec_ICount-=vall; else nec_ICount-=(I.ip&1)?((ocount>>cpu_type)&0x7f):((ecount>>cpu_type)&0x7f); }
*/
#define CLKS(v20, v30, v33) { const uint32_t ccount=(v20<<16)|(v30<<8)|v33; nec_ICount-=(ccount>>cpu_type)&0x7f; }
#define CLK(all) nec_ICount-=all
#define CLKW(v30MZo, v30MZe) { nec_ICount-=(I.ip&1)?v30MZo:v30MZe; }
#define CLKM(v30MZm, v30MZ) { nec_ICount-=( ModRM >=0xc0 )?v30MZ:v30MZm; }
#define CLKR(v30MZo, v30MZe, vall) { if (ModRM >=0xc0) nec_ICount-=vall; else nec_ICount-=(I.ip&1)?v30MZo:v30MZe; }
#define CompressFlags() (uint16_t)(CF | (PF << 2) | (AF << 4) | (ZF << 6) \
| (SF << 7) | (I.TF << 8) | (I.IF << 9) \
| (I.DF << 10) | (OF << 11))
#define ExpandFlags(f) \
{ \
I.CarryVal = (f) & 1; \
I.ParityVal = !((f) & 4); \
I.AuxVal = (f) & 16; \
I.ZeroVal = !((f) & 64); \
I.SignVal = (f) & 128 ? -1 : 0; \
I.TF = ((f) & 256) == 256; \
I.IF = ((f) & 512) == 512; \
I.DF = ((f) & 1024) == 1024; \
I.OverVal = (f) & 2048; \
I.MF = ((f) & 0x8000) == 0x8000; \
}
#define IncWordReg(Reg) \
uint16_t tmp = (uint16_t)I.regs.w[Reg]; \
uint16_t tmp1 = tmp+1; \
I.OverVal = (tmp == 0x7fff); \
SetAF(tmp1,tmp,1); \
SetSZPF_Word(tmp1); \
I.regs.w[Reg]=tmp1
#define DecWordReg(Reg) \
uint16_t tmp = (uint16_t)I.regs.w[Reg]; \
uint16_t tmp1 = tmp-1; \
I.OverVal = (tmp == 0x8000); \
SetAF(tmp1,tmp,1); \
SetSZPF_Word(tmp1); \
I.regs.w[Reg]=tmp1
#define JMP(flag) \
int tmp = (int)((int8_t)FETCH); \
if (flag) \
{ \
I.ip = (uint16_t)(I.ip+tmp); \
nec_ICount-=3; \
return; \
}
#define ADJ4(param1, param2) \
if (AF || ((I.regs.b[AL] & 0xf) > 9)) \
{ \
int tmp; \
I.regs.b[AL] = tmp = I.regs.b[AL] + param1; \
I.AuxVal = 1; \
} \
if (CF || (I.regs.b[AL] > 0x9f)) \
{ \
I.regs.b[AL] += param2; \
I.CarryVal = 1; \
} \
SetSZPF_Byte(I.regs.b[AL])
#define ADJB(param1, param2) \
if (AF || ((I.regs.b[AL] & 0xf) > 9)) \
{ \
I.regs.b[AL] += param1; \
I.regs.b[AH] += param2; \
I.AuxVal = 1; \
I.CarryVal = 1; \
} \
else \
{ \
I.AuxVal = 0; \
I.CarryVal = 0; \
} \
I.regs.b[AL] &= 0x0F
#define BITOP_BYTE \
ModRM = FETCH; \
if (ModRM >= 0xc0) { \
tmp=I.regs.b[Mod_RM.RM.b[ModRM]]; \
} \
else { \
(*GetEA[ModRM])(); \
tmp=ReadByte(EA); \
}
#define BITOP_WORD \
ModRM = FETCH; \
if (ModRM >= 0xc0) { \
tmp=I.regs.w[Mod_RM.RM.w[ModRM]]; \
} \
else { \
(*GetEA[ModRM])(); \
tmp=ReadWord(EA); \
}
#define BIT_NOT \
if (tmp & (1<<tmp2)) \
tmp &= ~(1<<tmp2); \
else \
tmp |= (1<<tmp2)
#define XchgAWReg(Reg) \
uint16_t tmp; \
tmp = I.regs.w[Reg]; \
I.regs.w[Reg] = I.regs.w[AW]; \
I.regs.w[AW] = tmp
#define ROL_BYTE I.CarryVal = dst & 0x80; dst = (dst << 1)+CF
#define ROL_WORD I.CarryVal = dst & 0x8000; dst = (dst << 1)+CF
#define ROR_BYTE I.CarryVal = dst & 0x1; dst = (dst >> 1)+(CF<<7)
#define ROR_WORD I.CarryVal = dst & 0x1; dst = (dst >> 1)+(CF<<15)
#define ROLC_BYTE dst = (dst << 1) + CF; SetCFB(dst)
#define ROLC_WORD dst = (dst << 1) + CF; SetCFW(dst)
#define RORC_BYTE dst = (CF<<8)+dst; I.CarryVal = dst & 0x01; dst >>= 1
#define RORC_WORD dst = (CF<<16)+dst; I.CarryVal = dst & 0x01; dst >>= 1
#define SHL_BYTE(c) dst <<= c; SetCFB(dst); SetSZPF_Byte(dst); PutbackRMByte(ModRM,(uint8_t)dst)
#define SHL_WORD(c) dst <<= c; SetCFW(dst); SetSZPF_Word(dst); PutbackRMWord(ModRM,(uint16_t)dst)
#define SHR_BYTE(c) dst >>= c-1; I.CarryVal = dst & 0x1; dst >>= 1; SetSZPF_Byte(dst); PutbackRMByte(ModRM,(uint8_t)dst)
#define SHR_WORD(c) dst >>= c-1; I.CarryVal = dst & 0x1; dst >>= 1; SetSZPF_Word(dst); PutbackRMWord(ModRM,(uint16_t)dst)
#define SHRA_BYTE(c) dst = ((int8_t)dst) >> (c-1); I.CarryVal = dst & 0x1; dst = ((int8_t)((uint8_t)dst)) >> 1; SetSZPF_Byte(dst); PutbackRMByte(ModRM,(uint8_t)dst)
#define SHRA_WORD(c) dst = ((int16_t)dst) >> (c-1); I.CarryVal = dst & 0x1; dst = ((int16_t)((uint16_t)dst)) >> 1; SetSZPF_Word(dst); PutbackRMWord(ModRM,(uint16_t)dst)
#define DIVUB \
uresult = I.regs.w[AW]; \
uresult2 = uresult % tmp; \
if ((uresult /= tmp) > 0xff) { \
nec_interrupt(0,0); break; \
} else { \
I.regs.b[AL] = uresult; \
I.regs.b[AH] = uresult2; \
}
#define DIVB \
result = (int16_t)I.regs.w[AW]; \
result2 = result % (int16_t)((int8_t)tmp); \
if ((result /= (int16_t)((int8_t)tmp)) > 0xff) { \
nec_interrupt(0,0); break; \
} else { \
I.regs.b[AL] = result; \
I.regs.b[AH] = result2; \
}
#define DIVUW \
uresult = (((uint32_t)I.regs.w[DW]) << 16) | I.regs.w[AW];\
uresult2 = uresult % tmp; \
if ((uresult /= tmp) > 0xffff) { \
nec_interrupt(0,0); break; \
} else { \
I.regs.w[AW]=uresult; \
I.regs.w[DW]=uresult2; \
}
#define DIVW \
result = ((uint32_t)I.regs.w[DW] << 16) + I.regs.w[AW]; \
result2 = result % (int32_t)((int16_t)tmp); \
if ((result /= (int32_t)((int16_t)tmp)) > 0xffff) { \
nec_interrupt(0,0); break; \
} else { \
I.regs.w[AW]=result; \
I.regs.w[DW]=result2; \
}
#define ADD4S { \
int i,v1,v2,result; \
int count = (I.regs.b[CL]+1)/2; \
uint16_t di = I.regs.w[IY]; \
uint16_t si = I.regs.w[IX]; \
I.ZeroVal = I.CarryVal = 0; \
for (i=0;i<count;i++) { \
tmp = GetMemB(DS, si); \
tmp2 = GetMemB(ES, di); \
v1 = (tmp>>4)*10 + (tmp&0xf); \
v2 = (tmp2>>4)*10 + (tmp2&0xf); \
result = v1+v2+I.CarryVal; \
I.CarryVal = result > 99 ? 1 : 0; \
result = result % 100; \
v1 = ((result/10)<<4) | (result % 10); \
PutMemB(ES, di,v1); \
if (v1) I.ZeroVal = 1; \
si++; \
di++; \
} \
}
#define SUB4S { \
int count = (I.regs.b[CL]+1)/2; \
int i,v1,v2,result; \
uint16_t di = I.regs.w[IY]; \
uint16_t si = I.regs.w[IX]; \
I.ZeroVal = I.CarryVal = 0; \
for (i=0;i<count;i++) { \
tmp = GetMemB(ES, di); \
tmp2 = GetMemB(DS, si); \
v1 = (tmp>>4)*10 + (tmp&0xf); \
v2 = (tmp2>>4)*10 + (tmp2&0xf); \
if (v1 < (v2+I.CarryVal)) { \
v1+=100; \
result = v1-(v2+I.CarryVal); \
I.CarryVal = 1; \
} else { \
result = v1-(v2+I.CarryVal); \
I.CarryVal = 0; \
} \
v1 = ((result/10)<<4) | (result % 10); \
PutMemB(ES, di,v1); \
if (v1) I.ZeroVal = 1; \
si++; \
di++; \
} \
}
#define CMP4S { \
int count = (I.regs.b[CL]+1)/2; \
int i,v1,v2,result; \
uint16_t di = I.regs.w[IY]; \
uint16_t si = I.regs.w[IX]; \
I.ZeroVal = I.CarryVal = 0; \
for (i=0;i<count;i++) { \
tmp = GetMemB(ES, di); \
tmp2 = GetMemB(DS, si); \
v1 = (tmp>>4)*10 + (tmp&0xf); \
v2 = (tmp2>>4)*10 + (tmp2&0xf); \
if (v1 < (v2+I.CarryVal)) { \
v1+=100; \
result = v1-(v2+I.CarryVal); \
I.CarryVal = 1; \
} else { \
result = v1-(v2+I.CarryVal); \
I.CarryVal = 0; \
} \
v1 = ((result/10)<<4) | (result % 10); \
if (v1) I.ZeroVal = 1; \
si++; \
di++; \
} \
}
#endif /* __NEC_H_ */