2009-09-23 15:58:13 +02:00

224 lines
8.1 KiB
TeX

This section describes how to implement Efsl on a AVR $\mu C$ connected to
an SD-Card (SPI). For getting efsl to compile, the avr-gcc compiler and
avr-libc library are required. On Windows you should install WinAVR
(http://winavr.sourceforge.net/), on Linux you can install the packages
separately (see http://www.nongnu.org/avr-libc/user-manual/install\_tools.html
for a nice howto).
\subsubsection{Hardware}
First, you need set up a prototype in which you connect the CD, CMD, DAT0
\& CLK lines from the SD-Card to /CS, MOSI, MISO \& SCK from the Atmega.
\newline
\includegraphics[scale=0.65]{pics/sdcard.eps}
\newline
%\parbox[c]{.4\textwidth}{\begin{center}\includegraphics[width=.4\textwidth]{pics/sdconnection}\end{center}}
\parbox[c]{.5\textwidth}{
Connect the following lines on the SD-card:
\begin{itemize}
\item{Pin 9 (DAT2) - NC\\(or pull-up to 3.3V)}
\item{Pin 1 (CD) - Any pin on the Atmega128}
\item{Pin 2 (CMD) - MOSI\\(pin 12 on the Atmega128)}
\item{Pin 3 (Vss) - GND}
\item{Pin 4 (Vdd) - +3.3V}
\item{Pin 5 (CLK) - SCK\\(pin 11 on the Atmega128)}
\item{Pin 6 (Vss) - GND}
\item{Pin 7 (DAT0) - MISO\\(pin 12 on the Atmega128)}
\item{Pin 8 (DAT1) - NC\\(or pull-up to 3.3V)}
\end{itemize}
}
\parbox[c]{.5\textwidth}{\begin{center}
\includegraphics[width=.5\textwidth]{pics/sdconnection}
\newline\newline
Remark: this schematic includes pull-up's to 3.3V, which
can be left off.
\end{center}}
\newline
Remark 1: Make sure that your $\mu C$ is running on 3,3V, so you don't
damage your SD-Card.\newline
\newline
Remark 2: CD is currently static set to PB0, but will become variable
in future releases.
\subsubsection{Download \& Compile}
Let's get started:
\begin{enumerate}
\item{Get the latest release of efsl on http://www.sf.net/projects/efsl/}
\item{Unpack the library (on Windows, you can use WinACE or WinRAR)}
\item{Copy in directory \filename{conf} the file
\filename{config-avr.h} to \filename{config.h}}
\item{Copy in directory \filename{conf} the file
\filename{config-avr.makefile} to \filename{config.makefile}}
\item{Compile the library (\code{make avr})}
\end{enumerate}
Now you should have the following files in a directory called {lib}:
\begin{itemize}
\item{\filename{libefsl-base.a}}
\item{\filename{libefsl-fs-vfat.a}}
\item{\filename{libefsl-prot-sdspi.a}}
\item{\filename{libefsl-hwd-atmega\_spi.a}}
\end{itemize}
\subsubsection{Example}
Since Efsl itself is only a library, it's not supposed to do anything out of
the box, than just compile. To get started, we'll show here a small example
program that opens an existing file and writes the content to a new file.
\newline\newline
First, create a new directory in which you put the compiled efsl-library
(\filename{libefsl.a}) and create a new file called \filename{avrtest.c} containing:
\lstset{numbers=left, stepnumber=1, numberstyle=\small, numbersep=5pt, tabsize=4}
\begin{lstlisting}
#include <efs.h>
#include <sd.h>
#include <atmega_spi.h>
void hang(void);
void main(void)
{
efsl_storage_conf storage_conf;
efsl_fs_conf fs_conf;
efsl_storage storage;
efsl_fs fs;
File file_r;
File file_w;
atmegaSpiInterface spi_interface;
SdSpiProtocol sd_protocol;
char buf[512];
unsigned short e;
/* Init */
spi_interface.pinSelect=0x01;
sd_protocol.spiHwInterface=&spi_interface;
sd_protocol.spiHwInit=(void *)atmega_spi_init;
sd_protocol.spiSendByte=(void *)atmega_spi_send;
storage_conf.hwObject=&sd_protocol;
storage_conf.if_init_fptr=(void *)sd_Init;
storage_conf.if_read_fptr=(void *)sd_readSector;
storage_conf.if_write_fptr=(void *)sd_writeSector;
storage_conf.if_ioctl_fptr=(void *)sd_ioctl;
storage_conf.ioman_bufmem=0;
fs_conf.no_partitions=0;
fs_conf.storage=&storage;
if(efsl_initStorage(&storage,&storage_conf)){
hang();
}
if(efsl_initFs(&fs,&fs_conf)){
hang();
}
if(file_fopen(&file_r,&fs.filesystem,"orig.txt",'r')!=0){
hang();
}
if(file_fopen(&file_w,&fs.filesystem,"copy.txt",'w')!=0){
hang();
}
if(file_fopen(&file_r,&efs.myFs,"orig.txt",'r')!=0){
hang();
}
while((e=file_read(&file_r,512,buf))){
file_write(&file_w,e,buf);
}
file_fclose(&file_r);
file_fclose(&file_w);
fs_umount(&fs.filesystem);
hang();
}
void hang(void)
{
while((1))
_NOP();
}
\end{lstlisting}
$ $\newline
Some extra information on the code above: TODO
%\begin{itemize}
% \item{Line 1: The header file for efsl is included here. When using the
% basic efsl functions, \filename{efs.h} is the only header file on the
% efsl library that needs to be included.}
% \item{Line 7: The object efs is created, this object will contain
% information about the hardware layer, the partition table and
% the disc.}
% \item{Line 8: The objects \code{file\_r} and \code{file\_w} are created, these objects
% will contain information about the files that we will open on the
% efs-object.}
% \item{Line 9: A buffer of 512 bytes is allocated. This buffer will be
% used for reading and writing blocks of data.}
% \item{Line 12: Call of \code{efs\_init()}, which will initialize the efs-object.
% To this function we pass:
% \begin{enumerate}
% \item{A pointer to the efs-object.}
% \item{A pointer to the file that contains the partition table /
% file system (in this example, we select a device as file).}
% \end{enumerate}
% If this function returns 0, it means that a valid fat partition is
% found on the SD-card connected.
% If no valid fat-filesystem is found, or the file does not exist, the
% function returns a negative value. In this example we then go to an
% infinite loop to prevent the program to continue.}
% \item{Line 16 \& 20: Call of \code{file\_fopen()}, which will initialize the
% file-objects. To this function we pass:
% \begin{enumerate}
% \item{A pointer to the file-object.}
% \item{A pointer to the filesystem-object.}
% \item{A pointer to the filename.}
% \item{A char containing the the mode (read, write, append).}
% \end{enumerate}
% If this function returns 0, it means the file has successfully been
% opened for reading / writing / appending.
% If the file could not be opened (because for example a file already
% exists), a negative value is returned.}
% \item{Line 24: Call of \code{file\_read()}, which will read a given value of
% bytes (in this example 512) from a file and put it's content into
% the buffer passed (in this example called buf). This function returns
% the amount of bytes read, so the while-loop will be executed as long
% as there are bytes left in the file.}
% \item{Line 25: Call of \code{file\_write()}, which will write a given value
% of bytes (in this example, the amount of bytes that was read
% by \code{file\_read()}) from the buffer passed to a file. This function returns
% the amount of bytes written.}
% \item{Line 28 \& 29: Call of \code{file\_fclose()}, which will close the
% file-objects.}
% \item{Line 31: Call of \code{fs\_umount()}, which will write all buffers to
% the the SD-card.}
%\end{itemize}
\subsubsection{Testing}
So now let's test the program:
\begin{enumerate}
\item
{ Compile the program:
\begin{itemize}
\item{On Linux (with avr-gcc): avr-gcc -I/home/user/src/base/include -I/home/user/src/include -I/home/user/src/fs/vfat/include -I/home/user/src/hwdrivers/atmega\_spi/include -I/home/user/src/protocols/sdcard\_spi/include -I/home/user/conf -ffreestanding -mmcu=atmega128 -Os -o avrtest.o avrtest.c -L/home/user/lib -lefsl-base -lefsl-fs-vfat -lefsl-hwd-atmega\_spi -lefsl-prot-sdspi}
\item{On Windows (with WinAVR): replace all slashes with backslashes}
\end{itemize}
}
\item{Generate a hexfile
(avr-objcopy -j .text -j .data -O ihex avrtest.o avrtest.hex)}
\item{Connect an SD-card to your Atmega128 with a file called
\filename{orig.txt} on it.}
\item
{
Flash the hex file into your $\mu C$.
\begin{itemize}
\item{On Linux: avrdude -P /dev/ttyUSB0 -c stk500 -p m128 -Uflash:w:avrtest.hex}
\item{On Windows: use Atmel AVR-Studio}
\end{itemize}
}
\item{Reset your $\mu C$ and wait some time (depending on how big
the file \filename{orig.txt} is).}
\item{Disconnect the SD-card, so you can put it in your card reader
and find out if the file \filename{orig.txt} is copied to
\filename{copy.txt}.}
\end{enumerate}