2009-05-12 20:05:00 +02:00

270 lines
6.2 KiB
C++
Executable File

#ifdef SSMP_CPP
alwaysinline
uint8 sSMP::ram_read(uint16 addr) {
if(addr < 0xffc0) return memory::apuram[addr];
if(status.iplrom_enabled == false) return memory::apuram[addr];
return iplrom[addr & 0x3f];
}
alwaysinline
void sSMP::ram_write(uint16 addr, uint8 data) {
//writes to $ffc0-$ffff always go to spcram, even if the iplrom is enabled
memory::apuram[addr] = data;
}
//
alwaysinline
uint8 sSMP::port_read(uint8 port) {
return memory::apuram[0xf4 + (port & 3)];
}
alwaysinline
void sSMP::port_write(uint8 port, uint8 data) {
memory::apuram[0xf4 + (port & 3)] = data;
}
//
alwaysinline
uint8 sSMP::op_busread(uint16 addr) {
uint8 r;
if((addr & 0xfff0) == 0x00f0) {
//addr >= 0x00f0 && addr <= 0x00ff
switch(addr) {
case 0xf0: { //TEST -- write-only register
r = 0x00;
} break;
case 0xf1: { //CONTROL -- write-only register
r = 0x00;
} break;
case 0xf2: { //DSPADDR
r = status.dsp_addr;
} break;
case 0xf3: { //DSPDATA
//0x80-0xff are read-only mirrors of 0x00-0x7f
r = dsp.read(status.dsp_addr & 0x7f);
} break;
case 0xf4: //CPUIO0
case 0xf5: //CPUIO1
case 0xf6: //CPUIO2
case 0xf7: { //CPUIO3
scheduler.sync_smpcpu();
r = cpu.port_read(addr & 3);
} break;
case 0xf8: { //???
r = status.smp_f8;
} break;
case 0xf9: { //???
r = status.smp_f9;
} break;
case 0xfa: //T0TARGET
case 0xfb: //T1TARGET
case 0xfc: { //T2TARGET -- write-only registers
r = 0x00;
} break;
case 0xfd: { //T0OUT -- 4-bit counter value
r = t0.stage3_ticks & 15;
t0.stage3_ticks = 0;
} break;
case 0xfe: { //T1OUT -- 4-bit counter value
r = t1.stage3_ticks & 15;
t1.stage3_ticks = 0;
} break;
case 0xff: { //T2OUT -- 4-bit counter value
r = t2.stage3_ticks & 15;
t2.stage3_ticks = 0;
} break;
}
} else {
r = ram_read(addr);
}
return r;
}
alwaysinline
void sSMP::op_buswrite(uint16 addr, uint8 data) {
if((addr & 0xfff0) == 0x00f0) {
//addr >= 0x00f0 && addr >= 0x00ff
if(status.mmio_disabled == true) return;
switch(addr) {
case 0xf0: { //TEST
if(regs.p.p) break; //writes only valid when P flag is clear
//multiplier table may not be 100% accurate, some settings crash
//the processor due to S-SMP <> S-DSP bus access misalignment
//static uint8 clock_speed_tbl[16] =
//{ 3, 5, 9, 17, 4, 6, 10, 18, 6, 8, 12, 20, 10, 12, 16, 24 };
//status.clock_speed = 24 * clock_speed_tbl[data >> 4] / 3;
status.mmio_disabled = !!(data & 0x04);
status.ram_writable = !!(data & 0x02);
//if((data >> 4) != 0) {
//dprintf("* S-SMP critical warning: $00f0 (TEST) clock speed control modified!");
//dprintf("* S-SMP may crash on hardware as a result!");
//}
} break;
case 0xf1: { //CONTROL
status.iplrom_enabled = !!(data & 0x80);
if(data & 0x30) {
//one-time clearing of APU port read registers,
//emulated by simulating CPU writes of 0x00
scheduler.sync_smpcpu();
if(data & 0x20) {
cpu.port_write(2, 0x00);
cpu.port_write(3, 0x00);
}
if(data & 0x10) {
cpu.port_write(0, 0x00);
cpu.port_write(1, 0x00);
}
}
//0->1 transistion resets timers
if(t2.enabled == false && (data & 0x04)) {
t2.stage2_ticks = 0;
t2.stage3_ticks = 0;
}
t2.enabled = !!(data & 0x04);
if(t1.enabled == false && (data & 0x02)) {
t1.stage2_ticks = 0;
t1.stage3_ticks = 0;
}
t1.enabled = !!(data & 0x02);
if(t0.enabled == false && (data & 0x01)) {
t0.stage2_ticks = 0;
t0.stage3_ticks = 0;
}
t0.enabled = !!(data & 0x01);
} break;
case 0xf2: { //DSPADDR
status.dsp_addr = data;
} break;
case 0xf3: { //DSPDATA
//0x80-0xff is a read-only mirror of 0x00-0x7f
if(!(status.dsp_addr & 0x80)) {
dsp.write(status.dsp_addr & 0x7f, data);
}
} break;
case 0xf4: //CPUIO0
case 0xf5: //CPUIO1
case 0xf6: //CPUIO2
case 0xf7: { //CPUIO3
scheduler.sync_smpcpu();
port_write(addr & 3, data);
} break;
case 0xf8: { //???
status.smp_f8 = data;
} break;
case 0xf9: { //???
status.smp_f9 = data;
} break;
case 0xfa: { //T0TARGET
t0.target = data;
} break;
case 0xfb: { //T1TARGET
t1.target = data;
} break;
case 0xfc: { //T2TARGET
t2.target = data;
} break;
case 0xfd: //T0OUT
case 0xfe: //T1OUT
case 0xff: { //T2OUT -- read-only registers
} break;
}
}
//all writes, even to MMIO registers, appear on bus
if(status.ram_writable == true) {
ram_write(addr, data);
}
}
//
void sSMP::op_io() {
add_clocks(24);
tick_timers();
}
uint8 sSMP::op_read(uint16 addr) {
add_clocks(12);
uint8 r = op_busread(addr);
add_clocks(12);
tick_timers();
return r;
}
void sSMP::op_write(uint16 addr, uint8 data) {
add_clocks(24);
op_buswrite(addr, data);
tick_timers();
}
//
alwaysinline
uint8 sSMP::op_readpc() {
return op_read(regs.pc++);
}
alwaysinline
uint8 sSMP::op_readstack() {
return op_read(0x0100 | ++regs.sp);
}
alwaysinline
void sSMP::op_writestack(uint8 data) {
op_write(0x0100 | regs.sp--, data);
}
alwaysinline
uint8 sSMP::op_readaddr(uint16 addr) {
return op_read(addr);
}
alwaysinline
void sSMP::op_writeaddr(uint16 addr, uint8 data) {
op_write(addr, data);
}
alwaysinline
uint8 sSMP::op_readdp(uint8 addr) {
return op_read((unsigned(regs.p.p) << 8) + addr);
}
alwaysinline
void sSMP::op_writedp(uint8 addr, uint8 data) {
op_write((unsigned(regs.p.p) << 8) + addr, data);
}
#endif //ifdef SSMP_CPP