2009-04-22 20:04:28 +02:00

327 lines
6.0 KiB
C++
Executable File

/*
S-DSP emulator
license: LGPLv2
Note: this is basically a C++ cothreaded implementation of Shay Green's (blargg's) S-DSP emulator.
The actual algorithms, timing information, tables, variable names, etc were all from him.
*/
#include <../base.hpp>
#define SDSP_CPP
#define REG(n) state.regs[r_##n]
#define VREG(n) state.regs[v.vidx + v_##n]
#if !defined(USE_STATE_MACHINE)
#define phase_start() while(true) {
#define phase(n)
#define tick() scheduler.addclocks_dsp(3 * 8)
#define phase_end() }
#else
#define phase_start() switch(phase_index) {
#define phase(n) case n:
#define tick() scheduler.addclocks_dsp(3 * 8); break
#define phase_end() } phase_index = (phase_index + 1) & 31;
#endif
#include "gaussian.cpp"
#include "counter.cpp"
#include "envelope.cpp"
#include "brr.cpp"
#include "misc.cpp"
#include "voice.cpp"
#include "echo.cpp"
/* timing */
void sDSP::enter() {
phase_start()
phase(0)
voice_5(voice[0]);
voice_2(voice[1]);
tick();
phase(1)
voice_6(voice[0]);
voice_3(voice[1]);
tick();
phase(2)
voice_7(voice[0]);
voice_4(voice[1]);
voice_1(voice[3]);
tick();
phase(3)
voice_8(voice[0]);
voice_5(voice[1]);
voice_2(voice[2]);
tick();
phase(4)
voice_9(voice[0]);
voice_6(voice[1]);
voice_3(voice[2]);
tick();
phase(5)
voice_7(voice[1]);
voice_4(voice[2]);
voice_1(voice[4]);
tick();
phase(6)
voice_8(voice[1]);
voice_5(voice[2]);
voice_2(voice[3]);
tick();
phase(7)
voice_9(voice[1]);
voice_6(voice[2]);
voice_3(voice[3]);
tick();
phase(8)
voice_7(voice[2]);
voice_4(voice[3]);
voice_1(voice[5]);
tick();
phase(9)
voice_8(voice[2]);
voice_5(voice[3]);
voice_2(voice[4]);
tick();
phase(10)
voice_9(voice[2]);
voice_6(voice[3]);
voice_3(voice[4]);
tick();
phase(11)
voice_7(voice[3]);
voice_4(voice[4]);
voice_1(voice[6]);
tick();
phase(12)
voice_8(voice[3]);
voice_5(voice[4]);
voice_2(voice[5]);
tick();
phase(13)
voice_9(voice[3]);
voice_6(voice[4]);
voice_3(voice[5]);
tick();
phase(14)
voice_7(voice[4]);
voice_4(voice[5]);
voice_1(voice[7]);
tick();
phase(15)
voice_8(voice[4]);
voice_5(voice[5]);
voice_2(voice[6]);
tick();
phase(16)
voice_9(voice[4]);
voice_6(voice[5]);
voice_3(voice[6]);
tick();
phase(17)
voice_1(voice[0]);
voice_7(voice[5]);
voice_4(voice[6]);
tick();
phase(18)
voice_8(voice[5]);
voice_5(voice[6]);
voice_2(voice[7]);
tick();
phase(19)
voice_9(voice[5]);
voice_6(voice[6]);
voice_3(voice[7]);
tick();
phase(20)
voice_1(voice[1]);
voice_7(voice[6]);
voice_4(voice[7]);
tick();
phase(21)
voice_8(voice[6]);
voice_5(voice[7]);
voice_2(voice[0]);
tick();
phase(22)
voice_3a(voice[0]);
voice_9(voice[6]);
voice_6(voice[7]);
echo_22();
tick();
phase(23)
voice_7(voice[7]);
echo_23();
tick();
phase(24)
voice_8(voice[7]);
echo_24();
tick();
phase(25)
voice_3b(voice[0]);
voice_9(voice[7]);
echo_25();
tick();
phase(26)
echo_26();
tick();
phase(27)
misc_27();
echo_27();
tick();
phase(28)
misc_28();
echo_28();
tick();
phase(29)
misc_29();
echo_29();
tick();
phase(30)
misc_30();
voice_3c(voice[0]);
echo_30();
tick();
phase(31)
voice_4(voice[0]);
voice_1(voice[2]);
tick();
phase_end()
}
/* register interface for S-SMP $00f2,$00f3 */
uint8 sDSP::read(uint8 addr) {
return state.regs[addr];
}
void sDSP::write(uint8 addr, uint8 data) {
state.regs[addr] = data;
if((addr & 0x0f) == v_envx) {
state.envx_buf = data;
} else if((addr & 0x0f) == v_outx) {
state.outx_buf = data;
} else if(addr == r_kon) {
state.new_kon = data;
} else if(addr == r_endx) {
//always cleared, regardless of data written
state.endx_buf = 0;
state.regs[r_endx] = 0;
}
}
/* initialization */
void sDSP::power() {
memset(&state.regs, 0, sizeof state.regs);
state.echo_hist_pos = 0;
state.every_other_sample = false;
state.kon = 0;
state.noise = 0;
state.counter = 0;
state.echo_offset = 0;
state.echo_length = 0;
state.new_kon = 0;
state.endx_buf = 0;
state.envx_buf = 0;
state.outx_buf = 0;
state.t_pmon = 0;
state.t_non = 0;
state.t_eon = 0;
state.t_dir = 0;
state.t_koff = 0;
state.t_brr_next_addr = 0;
state.t_adsr0 = 0;
state.t_brr_header = 0;
state.t_brr_byte = 0;
state.t_srcn = 0;
state.t_esa = 0;
state.t_echo_disabled = 0;
state.t_dir_addr = 0;
state.t_pitch = 0;
state.t_output = 0;
state.t_looped = 0;
state.t_echo_ptr = 0;
state.t_main_out[0] = state.t_main_out[1] = 0;
state.t_echo_out[0] = state.t_echo_out[1] = 0;
state.t_echo_in[0] = state.t_echo_in[1] = 0;
for(unsigned i = 0; i < 8; i++) {
voice[i].buf_pos = 0;
voice[i].interp_pos = 0;
voice[i].brr_addr = 0;
voice[i].brr_offset = 1;
voice[i].vbit = 1 << i;
voice[i].vidx = i * 0x10;
voice[i].kon_delay = 0;
voice[i].env_mode = env_release;
voice[i].env = 0;
voice[i].t_envx_out = 0;
voice[i].hidden_env = 0;
}
reset();
}
void sDSP::reset() {
REG(flg) = 0xe0;
state.noise = 0x4000;
state.echo_hist_pos = 0;
state.every_other_sample = 1;
state.echo_offset = 0;
state.counter = 0;
phase_index = 0;
}
sDSP::sDSP() {
static_assert<sizeof(int) >= 32 / 8>(); //int >= 32-bits
static_assert<(int8_t)0x80 == -0x80>(); //8-bit sign extension
static_assert<(int16_t)0x8000 == -0x8000>(); //16-bit sign extension
static_assert<(uint16_t)0xffff0000 == 0>(); //16-bit unsigned clip
static_assert<(-1 >> 1) == -1>(); //arithmetic shift right
//-0x8000 <= n <= +0x7fff
assert(sclamp<16>(+0x8000) == +0x7fff);
assert(sclamp<16>(-0x8001) == -0x8000);
}
sDSP::~sDSP() {
}