socz80-de0/vhdl/top_level.vhd
2014-09-17 00:55:29 +02:00

466 lines
18 KiB
VHDL

--+-----------------------------------+-------------------------------------+--
--| ___ ___ | (c) 2013-2014 William R Sowerbutts |--
--| ___ ___ ___ ___( _ ) / _ \ | will@sowerbutts.com |--
--| / __|/ _ \ / __|_ / _ \| | | | | |--
--| \__ \ (_) | (__ / / (_) | |_| | | A Z80 FPGA computer, just for fun |--
--| |___/\___/ \___/___\___/ \___/ | |--
--| | http://sowerbutts.com/ |--
--+-----------------------------------+-------------------------------------+--
--| Top level module: connects modules to each other and the outside world |--
--+-------------------------------------------------------------------------+--
--
-- See README.txt for more details
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity top_level is
Port ( sysclk_32m : in std_logic;
sys_clk_pad_i : in std_logic;
rst_n_pad_i : in std_logic;
leds : out std_logic_vector(4 downto 0);
reset_button : in std_logic;
console_select : in std_logic;
-- UART0 (to FTDI USB chip, no flow control)
serial_rx : in std_logic;
serial_tx : out std_logic;
-- UART0 (to MAX3232 level shifter chip, hardware flow control)
uart1_rx : in std_logic;
uart1_cts : in std_logic;
uart1_tx : out std_logic;
uart1_rts : out std_logic;
-- SPI flash chip
flash_spi_cs : out std_logic;
flash_spi_clk : out std_logic;
flash_spi_mosi : out std_logic;
flash_spi_miso : in std_logic;
-- SD card socket
sdcard_spi_cs : out std_logic;
sdcard_spi_clk : out std_logic;
sdcard_spi_mosi : out std_logic;
sdcard_spi_miso : in std_logic;
-- SDRAM chip
SDRAM_CLK : out std_logic;
SDRAM_CKE : out std_logic;
SDRAM_CS : out std_logic;
SDRAM_nRAS : out std_logic;
SDRAM_nCAS : out std_logic;
SDRAM_nWE : out std_logic;
SDRAM_DQM : out std_logic_vector( 1 downto 0);
SDRAM_ADDR : out std_logic_vector (12 downto 0);
SDRAM_BA : out std_logic_vector( 1 downto 0);
SDRAM_DQ : inout std_logic_vector (15 downto 0)
);
end top_level;
architecture Behavioral of top_level is
constant clk_freq_mhz : natural := 50; -- this is the frequency which the PLL outputs, in MHz.
-- SDRAM configuration
constant sdram_address_width : natural := 24;
constant sdram_column_bits : natural := 9;
constant cycles_per_refresh : natural := (64000*clk_freq_mhz)/8192-1;
-- For simulation, we don't need a long init stage. but for real DRAM we need approx 101us.
-- The constant below has a different value when interpreted by the synthesis and simulator
-- tools in order to achieve the desired timing in each.
constant sdram_startup_cycles: natural := 101 * clk_freq_mhz
-- pragma translate_off
- 10000 -- reduce the value the simulator uses
-- pragma translate_on
;
-- signals for clocking
signal clk_feedback : std_logic; -- PLL clock feedback
signal clk_unbuffered : std_logic; -- unbuffered system clock
signal clk : std_logic; -- buffered system clock (all logic should be clocked by this)
-- console latch
signal console_select_clk1 : std_logic;
signal console_select_sync : std_logic;
signal swap_uart01 : std_logic := '0';
-- system reset signals
signal power_on_reset : std_logic_vector(1 downto 0) := (others => '1');
signal system_reset : std_logic;
signal reset_button_clk1 : std_logic;
signal reset_button_sync : std_logic; -- reset button signal, synchronised to our clock
signal reset_request_uart : std_logic; -- reset request signal from FTDI UART (when you send "!~!~!~" to the UART, this line is asserted)
-- CPU control
signal coldboot : std_logic;
signal cpu_clk_enable : std_logic;
signal cpu_m1_cycle : std_logic;
signal cpu_req_mem : std_logic;
signal cpu_req_io : std_logic;
signal req_mem : std_logic;
signal req_io : std_logic;
signal req_read : std_logic;
signal req_write : std_logic;
signal virtual_address : std_logic_vector(15 downto 0);
signal physical_address : std_logic_vector(25 downto 0);
signal mem_wait : std_logic;
signal cpu_wait : std_logic;
signal dram_wait : std_logic;
signal mmu_wait : std_logic;
signal spimaster0_wait : std_logic;
signal spimaster1_wait : std_logic;
-- chip selects
signal mmu_cs : std_logic;
signal rom_cs : std_logic;
signal sram_cs : std_logic;
signal dram_cs : std_logic;
signal uartA_cs : std_logic;
signal uartB_cs : std_logic;
signal uart0_cs : std_logic;
signal uart1_cs : std_logic;
signal timer_cs : std_logic;
signal spimaster0_cs : std_logic;
signal spimaster1_cs : std_logic;
signal clkscale_cs : std_logic;
signal gpio_cs : std_logic;
-- data bus
signal cpu_data_in : std_logic_vector(7 downto 0);
signal cpu_data_out : std_logic_vector(7 downto 0);
signal rom_data_out : std_logic_vector(7 downto 0);
signal sram_data_out : std_logic_vector(7 downto 0);
signal dram_data_out : std_logic_vector(7 downto 0);
signal uart0_data_out : std_logic_vector(7 downto 0);
signal uart1_data_out : std_logic_vector(7 downto 0);
signal timer_data_out : std_logic_vector(7 downto 0);
signal spimaster0_data_out : std_logic_vector(7 downto 0);
signal spimaster1_data_out : std_logic_vector(7 downto 0);
signal mmu_data_out : std_logic_vector(7 downto 0);
signal clkscale_out : std_logic_vector(7 downto 0);
signal gpio_data_out : std_logic_vector(7 downto 0);
-- GPIO
signal gpio_input : std_logic_vector(7 downto 0);
signal gpio_output : std_logic_vector(7 downto 0);
-- Interrupts
signal cpu_interrupt_in : std_logic;
signal timer_interrupt : std_logic;
signal uart0_interrupt : std_logic;
signal uart1_interrupt : std_logic;
begin
-- Hold CPU reset high for 8 clock cycles on startup,
-- and when the user presses their reset button.
process(clk)
begin
if rising_edge(clk) then
-- Xilinx advises using two flip-flops are used to bring external
-- signals which feed control logic into our clock domain.
reset_button_clk1 <= reset_button;
reset_button_sync <= reset_button_clk1;
console_select_clk1 <= console_select;
console_select_sync <= console_select_clk1;
-- reset the system when requested
if (power_on_reset(0) = '1') then
system_reset <= '1';
else
system_reset <= '0';
end if;
-- shift 0s into the power_on_reset shift register from the MSB
power_on_reset <= '0' & power_on_reset(power_on_reset'length-1 downto 1);
-- During reset, latch the console select jumper. This is used to
-- optionally swap over the UART roles and move the system console to
-- the second serial port on the IO board.
if system_reset = '1' then
swap_uart01 <= console_select_sync;
else
swap_uart01 <= swap_uart01;
end if;
end if;
end process;
-- GPIO input signal routing
gpio_input <= coldboot & swap_uart01 & "000000";
-- GPIO output signal routing
leds(0) <= gpio_output(0);
leds(1) <= gpio_output(1);
leds(2) <= gpio_output(2);
leds(3) <= gpio_output(3);
-- User LED (LED1) on Papilio Pro indicates when the CPU is being asked to wait (eg by the SDRAM cache)
leds(4) <= cpu_wait;
-- Interrupt signal for the CPU
cpu_interrupt_in <= (timer_interrupt or uart0_interrupt or uart1_interrupt);
-- Z80 CPU core
cpu: entity work.Z80cpu
port map (
reset => system_reset,
clk => clk,
clk_enable => cpu_clk_enable,
m1_cycle => cpu_m1_cycle,
interrupt => cpu_interrupt_in,
nmi => '0',
req_mem => cpu_req_mem,
req_io => cpu_req_io,
req_read => req_read,
req_write => req_write,
mem_wait => cpu_wait,
address => virtual_address,
data_in => cpu_data_in,
data_out => cpu_data_out
);
-- Memory management unit
mmu: entity work.MMU
port map (
reset => system_reset,
clk => clk,
address_in => virtual_address,
address_out => physical_address,
cpu_data_in => cpu_data_out,
cpu_data_out => mmu_data_out,
req_mem_in => cpu_req_mem,
req_io_in => cpu_req_io,
req_mem_out => req_mem,
req_io_out => req_io,
req_read => req_read,
req_write => req_write,
io_cs => mmu_cs,
cpu_wait => mmu_wait,
access_violated => open -- for now!!
);
-- This process determines which IO or memory device the CPU is addressing
-- and asserts the appropriate chip select signals.
cs_process: process(req_mem, req_io, physical_address, virtual_address, uartA_cs, uartB_cs, swap_uart01)
begin
-- memory chip selects: default to unselected
rom_cs <= '0';
sram_cs <= '0';
dram_cs <= '0';
-- io chip selects: default to unselected
uartA_cs <= '0';
uartB_cs <= '0';
mmu_cs <= '0';
timer_cs <= '0';
spimaster0_cs <= '0';
spimaster1_cs <= '0';
clkscale_cs <= '0';
gpio_cs <= '0';
-- memory address decoding
-- address space is organised as:
-- 0x0 000 000 - 0x0 FFF FFF 16MB DRAM (cached) (mapped to 8MB DRAM twice)
-- 0x1 000 000 - 0x1 FFF FFF 16MB DRAM (uncached) (mapped to 8MB DRAM twice)
-- 0x2 000 000 - 0x2 000 FFF 4KB monitor ROM (FPGA block RAM)
-- 0x2 001 000 - 0x2 001 FFF 4KB SRAM (FPGA block RAM)
-- 0x2 002 000 - 0x3 FFF FFF unused space for future expansion
if physical_address(25) = '0' then
-- bottom 32MB: DRAM handles this
dram_cs <= req_mem;
else
-- top 32MB: other memory devices
case physical_address(24 downto 12) is
when "0000000000000" => rom_cs <= req_mem;
when "0000000000001" => sram_cs <= req_mem;
when others => -- undecoded memory space
end case;
end if;
-- IO address decoding
case virtual_address(7 downto 3) is
when "00000" => uartA_cs <= req_io; -- 00 ... 07
when "00010" => timer_cs <= req_io; -- 10 ... 17
when "00011" => spimaster0_cs <= req_io; -- 18 ... 1F
when "00100" => gpio_cs <= req_io; -- 20 ... 27
when "00101" => uartB_cs <= req_io; -- 28 ... 2F
when "00110" => spimaster1_cs <= req_io; -- 30 ... 37
-- unused ports
when "11110" => clkscale_cs <= req_io; -- F0 ... F7
when "11111" => mmu_cs <= req_io; -- F8 ... FF
when others =>
end case;
-- send the UART chip select to the appropriate UART depending
-- on whether they have been swapped over or not.
if swap_uart01 = '0' then
uart0_cs <= uartB_cs;
uart1_cs <= uartA_cs;
else
uart0_cs <= uartA_cs;
uart1_cs <= uartB_cs;
end if;
end process;
-- the selected memory device can request the CPU to wait
mem_wait <=
dram_wait when dram_cs='1' else
spimaster0_wait when spimaster0_cs='1' else
spimaster1_wait when spimaster1_cs='1' else
'0';
-- the MMU can, at any time, request the CPU wait (this is used when
-- translating IO to memory requests, to implement a wait state for
-- the "17th page")
cpu_wait <= (mem_wait or mmu_wait);
-- input mux for CPU data bus
cpu_data_in <=
rom_data_out when rom_cs='1' else
dram_data_out when dram_cs='1' else
sram_data_out when sram_cs='1' else
uart0_data_out when uart0_cs='1' else
uart1_data_out when uart1_cs='1' else
timer_data_out when timer_cs='1' else
mmu_data_out when mmu_cs='1' else
spimaster0_data_out when spimaster0_cs='1' else
spimaster1_data_out when spimaster1_cs='1' else
clkscale_out when clkscale_cs='1' else
gpio_data_out when gpio_cs='1' else
rom_data_out; -- default case
dram: entity work.DRAM
generic map(
sdram_address_width => sdram_address_width,
sdram_column_bits => sdram_column_bits,
sdram_startup_cycles=> sdram_startup_cycles,
cycles_per_refresh => cycles_per_refresh
)
port map(
clk => clk,
reset => '0', -- important to note that we DO NOT reset the SDRAM controller on reset (it would stop refreshing, which would be bad)
-- interface to synthetic CPU
cs => dram_cs,
req_read => req_read,
req_write => req_write,
mem_address => physical_address(24 downto 0),
mem_wait => dram_wait,
data_in => cpu_data_out,
data_out => dram_data_out,
coldboot => coldboot,
-- interface to hardware SDRAM chip
SDRAM_CLK => open,
SDRAM_CKE => SDRAM_CKE,
SDRAM_CS => SDRAM_CS,
SDRAM_nRAS => SDRAM_nRAS,
SDRAM_nCAS => SDRAM_nCAS,
SDRAM_nWE => SDRAM_nWE,
SDRAM_DQM => SDRAM_DQM,
SDRAM_BA => SDRAM_BA,
SDRAM_ADDR => SDRAM_ADDR,
SDRAM_DQ => SDRAM_DQ
);
-- 4KB system ROM implemented in block RAM
rom: entity work.MonZ80
port map(
clk => clk,
A => physical_address(11 downto 0),
D => rom_data_out
);
-- 4KB SRAM memory implemented in block RAM
sram: entity work.SSRAM
generic map(
AddrWidth => 12
)
port map(
clk => clk,
ce => sram_cs,
we => req_write,
A => physical_address(11 downto 0),
DIn => cpu_data_out,
DOut => sram_data_out
);
-- UART connected to FTDI USB UART
uart0: entity work.uart_interface
generic map ( watch_for_reset => 1, clk_frequency => (clk_freq_mhz * 1000000) )
port map(
clk => clk,
reset => system_reset,
reset_out => reset_request_uart, -- result of watching for reset sequence on the input
serial_in => serial_rx,
serial_out => serial_tx,
serial_rts => open,
serial_cts => '0',
cpu_address => virtual_address(2 downto 0),
cpu_data_in => cpu_data_out,
cpu_data_out => uart0_data_out,
enable => uart0_cs,
interrupt => uart0_interrupt,
req_read => req_read,
req_write => req_write
);
-- Timer device (internally scales the clock to 1MHz)
timer: entity work.timer
generic map ( clk_frequency => (clk_freq_mhz * 1000000) )
port map(
clk => clk,
reset => system_reset,
cpu_address => virtual_address(2 downto 0),
data_in => cpu_data_out,
data_out => timer_data_out,
enable => timer_cs,
req_read => req_read,
req_write => req_write,
interrupt => timer_interrupt
);
-- GPIO to FPGA pins and/or internal signals
gpio: entity work.gpio
port map(
clk => clk,
reset => system_reset,
cpu_address => virtual_address(2 downto 0),
data_in => cpu_data_out,
data_out => gpio_data_out,
enable => gpio_cs,
read_notwrite => req_read,
input_pins => gpio_input,
output_pins => gpio_output
);
-- An attempt to allow the CPU clock to be scaled back to run
-- at slower speeds without affecting the clock signal sent to
-- IO devices. Basically this was an attempt to make CP/M games
-- playable :) Very limited success. Might be simpler to remove
-- this entirely.
clkscale: entity work.clkscale
port map (
clk => clk,
reset => system_reset,
cpu_address => virtual_address(2 downto 0),
data_in => cpu_data_out,
data_out => clkscale_out,
enable => clkscale_cs,
read_notwrite => req_read,
clk_enable => cpu_clk_enable
);
pll: entity work.pll
port map (
areset => open,
inclk0 => sys_clk_pad_i,
c0 => sdram_clk, -- 100 Mhz - 180 deg
c1 => clk, -- 100 Mhz
locked => open
);
end Behavioral;