o add missing files

o add usbload
This commit is contained in:
David Voswinkel 2009-05-12 19:01:03 +02:00
parent 67a25941a7
commit 9cf6eae076
34 changed files with 7149 additions and 536 deletions

View File

@ -1,71 +1,86 @@
/* Name: opendevice.c
* Project: V-USB host-side library
* Author: Christian Starkjohann
* Creation Date: 2008-04-10
* Tabsize: 4
* Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
* This Revision: $Id: opendevice.c 740 2009-04-13 18:23:31Z cs $
/*
* Name: opendevice.c Project: V-USB host-side library Author: Christian
* Starkjohann Creation Date: 2008-04-10 Tabsize: 4 Copyright: (c) 2008 by
* OBJECTIVE DEVELOPMENT Software GmbH License: GNU GPL v2 (see License.txt),
* GNU GPL v3 or proprietary (CommercialLicense.txt) This Revision: $Id:
* opendevice.c 740 2009-04-13 18:23:31Z cs $
*/
/*
General Description:
The functions in this module can be used to find and open a device based on
libusb or libusb-win32.
*/
* General Description: The functions in this module can be used to find and
* open a device based on libusb or libusb-win32.
*/
#include <stdio.h>
#include "opendevice.h"
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/
#define MATCH_SUCCESS 1
#define MATCH_FAILED 0
#define MATCH_ABORT -1
/* private interface: match text and p, return MATCH_SUCCESS, MATCH_FAILED, or MATCH_ABORT. */
static int _shellStyleMatch(char *text, char *p)
/*
* private interface: match text and p, return MATCH_SUCCESS, MATCH_FAILED, or
* MATCH_ABORT.
*/
static int _shellStyleMatch(char *text, char *p)
{
int last, matched, reverse;
int last,
matched,
reverse;
for(; *p; text++, p++){
if(*text == 0 && *p != '*')
for (; *p; text++, p++) {
if (*text == 0 && *p != '*')
return MATCH_ABORT;
switch(*p){
switch (*p) {
case '\\':
/* Literal match with following character. */
/*
* Literal match with following character.
*/
p++;
/* FALLTHROUGH */
/*
* FALLTHROUGH
*/
default:
if(*text != *p)
if (*text != *p)
return MATCH_FAILED;
continue;
case '?':
/* Match anything. */
/*
* Match anything.
*/
continue;
case '*':
while(*++p == '*')
/* Consecutive stars act just like one. */
while (*++p == '*')
/*
* Consecutive stars act just like one.
*/
continue;
if(*p == 0)
/* Trailing star matches everything. */
if (*p == 0)
/*
* Trailing star matches everything.
*/
return MATCH_SUCCESS;
while(*text)
if((matched = _shellStyleMatch(text++, p)) != MATCH_FAILED)
while (*text)
if ((matched = _shellStyleMatch(text++, p)) != MATCH_FAILED)
return matched;
return MATCH_ABORT;
case '[':
reverse = p[1] == '^';
if(reverse) /* Inverted character class. */
if (reverse) /* Inverted character class. */
p++;
matched = MATCH_FAILED;
if(p[1] == ']' || p[1] == '-')
if(*++p == *text)
if (p[1] == ']' || p[1] == '-')
if (*++p == *text)
matched = MATCH_SUCCESS;
for(last = *p; *++p && *p != ']'; last = *p)
if (*p == '-' && p[1] != ']' ? *text <= *++p && *text >= last : *text == *p)
for (last = *p; *++p && *p != ']'; last = *p)
if (*p == '-' && p[1] != ']' ? *text <= *++p
&& *text >= last : *text == *p)
matched = MATCH_SUCCESS;
if(matched == reverse)
if (matched == reverse)
return MATCH_FAILED;
continue;
}
@ -73,110 +88,174 @@ int last, matched, reverse;
return *text == 0;
}
/* public interface for shell style matching: returns 0 if fails, 1 if matches */
/*
* public interface for shell style matching: returns 0 if fails, 1 if matches
*/
static int shellStyleMatch(char *text, char *pattern)
{
if(pattern == NULL) /* NULL pattern is synonymous to "*" */
if (pattern == NULL) /* NULL pattern is synonymous to "*" */
return 1;
return _shellStyleMatch(text, pattern) == MATCH_SUCCESS;
}
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/
int usbGetStringAscii(usb_dev_handle *dev, int index, char *buf, int buflen)
int usbGetStringAscii(usb_dev_handle * dev, int index, char *buf, int buflen)
{
char buffer[256];
int rval, i;
char buffer[256];
int rval,
i;
if((rval = usb_get_string_simple(dev, index, buf, buflen)) >= 0) /* use libusb version if it works */
if ((rval = usb_get_string_simple(dev, index, buf, buflen)) >= 0) /* use
* libusb
* version
* if
* it
* works
*/
return rval;
if((rval = usb_control_msg(dev, USB_ENDPOINT_IN, USB_REQ_GET_DESCRIPTOR, (USB_DT_STRING << 8) + index, 0x0409, buffer, sizeof(buffer), 5000)) < 0)
if ((rval =
usb_control_msg(dev, USB_ENDPOINT_IN, USB_REQ_GET_DESCRIPTOR,
(USB_DT_STRING << 8) + index, 0x0409, buffer,
sizeof(buffer), 5000)) < 0)
return rval;
if(buffer[1] != USB_DT_STRING){
if (buffer[1] != USB_DT_STRING) {
*buf = 0;
return 0;
}
if((unsigned char)buffer[0] < rval)
rval = (unsigned char)buffer[0];
if ((unsigned char) buffer[0] < rval)
rval = (unsigned char) buffer[0];
rval /= 2;
/* lossy conversion to ISO Latin1: */
for(i=1;i<rval;i++){
if(i > buflen) /* destination buffer overflow */
/*
* lossy conversion to ISO Latin1:
*/
for (i = 1; i < rval; i++) {
if (i > buflen) /* destination buffer overflow */
break;
buf[i-1] = buffer[2 * i];
if(buffer[2 * i + 1] != 0) /* outside of ISO Latin1 range */
buf[i-1] = '?';
buf[i - 1] = buffer[2 * i];
if (buffer[2 * i + 1] != 0) /* outside of ISO Latin1 range */
buf[i - 1] = '?';
}
buf[i-1] = 0;
return i-1;
buf[i - 1] = 0;
return i - 1;
}
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/
int usbOpenDevice(usb_dev_handle **device, int vendorID, char *vendorNamePattern, int productID, char *productNamePattern, char *serialNamePattern, FILE *printMatchingDevicesFp, FILE *warningsFp)
int usbOpenDevice(usb_dev_handle ** device, int vendorID,
char *vendorNamePattern, int productID,
char *productNamePattern, char *serialNamePattern,
FILE * printMatchingDevicesFp, FILE * warningsFp)
{
struct usb_bus *bus;
struct usb_device *dev;
usb_dev_handle *handle = NULL;
int errorCode = USBOPEN_ERR_NOTFOUND;
struct usb_bus *bus;
struct usb_device *dev;
usb_dev_handle *handle = NULL;
int errorCode = USBOPEN_ERR_NOTFOUND;
usb_find_busses();
usb_find_devices();
for(bus = usb_get_busses(); bus; bus = bus->next){
for(dev = bus->devices; dev; dev = dev->next){ /* iterate over all devices on all busses */
if((vendorID == 0 || dev->descriptor.idVendor == vendorID)
&& (productID == 0 || dev->descriptor.idProduct == productID)){
char vendor[256], product[256], serial[256];
int len;
handle = usb_open(dev); /* we need to open the device in order to query strings */
if(!handle){
for (bus = usb_get_busses(); bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) { /* iterate over
* all devices
* on all
* busses */
if ((vendorID == 0 || dev->descriptor.idVendor == vendorID)
&& (productID == 0 || dev->descriptor.idProduct == productID)) {
char vendor[256],
product[256],
serial[256];
int len;
handle = usb_open(dev); /* we need to open the device in order
* to query strings */
if (!handle) {
errorCode = USBOPEN_ERR_ACCESS;
if(warningsFp != NULL)
fprintf(warningsFp, "Warning: cannot open VID=0x%04x PID=0x%04x: %s\n", dev->descriptor.idVendor, dev->descriptor.idProduct, usb_strerror());
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot open VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct, usb_strerror());
continue;
}
/* now check whether the names match: */
/*
* now check whether the names match:
*/
len = vendor[0] = 0;
if(dev->descriptor.iManufacturer > 0){
len = usbGetStringAscii(handle, dev->descriptor.iManufacturer, vendor, sizeof(vendor));
if (dev->descriptor.iManufacturer > 0) {
len =
usbGetStringAscii(handle, dev->descriptor.iManufacturer,
vendor, sizeof(vendor));
}
if(len < 0){
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if(warningsFp != NULL)
fprintf(warningsFp, "Warning: cannot query manufacturer for VID=0x%04x PID=0x%04x: %s\n", dev->descriptor.idVendor, dev->descriptor.idProduct, usb_strerror());
}else{
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query manufacturer for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct, usb_strerror());
} else {
errorCode = USBOPEN_ERR_NOTFOUND;
/* printf("seen device from vendor ->%s<-\n", vendor); */
if(shellStyleMatch(vendor, vendorNamePattern)){
/*
* printf("seen device from vendor ->%s<-\n", vendor);
*/
if (shellStyleMatch(vendor, vendorNamePattern)) {
len = product[0] = 0;
if(dev->descriptor.iProduct > 0){
len = usbGetStringAscii(handle, dev->descriptor.iProduct, product, sizeof(product));
if (dev->descriptor.iProduct > 0) {
len =
usbGetStringAscii(handle,
dev->descriptor.iProduct,
product, sizeof(product));
}
if(len < 0){
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if(warningsFp != NULL)
fprintf(warningsFp, "Warning: cannot query product for VID=0x%04x PID=0x%04x: %s\n", dev->descriptor.idVendor, dev->descriptor.idProduct, usb_strerror());
}else{
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query product for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
usb_strerror());
} else {
errorCode = USBOPEN_ERR_NOTFOUND;
/* printf("seen product ->%s<-\n", product); */
if(shellStyleMatch(product, productNamePattern)){
/*
* printf("seen product ->%s<-\n", product);
*/
if (shellStyleMatch(product, productNamePattern)) {
len = serial[0] = 0;
if(dev->descriptor.iSerialNumber > 0){
len = usbGetStringAscii(handle, dev->descriptor.iSerialNumber, serial, sizeof(serial));
if (dev->descriptor.iSerialNumber > 0) {
len =
usbGetStringAscii(handle,
dev->descriptor.
iSerialNumber, serial,
sizeof(serial));
}
if(len < 0){
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if(warningsFp != NULL)
fprintf(warningsFp, "Warning: cannot query serial for VID=0x%04x PID=0x%04x: %s\n", dev->descriptor.idVendor, dev->descriptor.idProduct, usb_strerror());
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query serial for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
usb_strerror());
}
if(shellStyleMatch(serial, serialNamePattern)){
if(printMatchingDevicesFp != NULL){
if(serial[0] == 0){
fprintf(printMatchingDevicesFp, "VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\"\n", dev->descriptor.idVendor, dev->descriptor.idProduct, vendor, product);
}else{
fprintf(printMatchingDevicesFp, "VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\" serial=\"%s\"\n", dev->descriptor.idVendor, dev->descriptor.idProduct, vendor, product, serial);
if (shellStyleMatch(serial, serialNamePattern)) {
if (printMatchingDevicesFp != NULL) {
if (serial[0] == 0) {
fprintf(printMatchingDevicesFp,
"VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\"\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
vendor, product);
} else {
fprintf(printMatchingDevicesFp,
"VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\" serial=\"%s\"\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
vendor, product, serial);
}
}else{
} else {
break;
}
}
@ -188,16 +267,19 @@ int errorCode = USBOPEN_ERR_NOTFOUND;
handle = NULL;
}
}
if(handle) /* we have found a deice */
if (handle) /* we have found a deice */
break;
}
if(handle != NULL){
if (handle != NULL) {
errorCode = 0;
*device = handle;
}
if(printMatchingDevicesFp != NULL) /* never return an error for listing only */
if (printMatchingDevicesFp != NULL) /* never return an error for listing
* only */
errorCode = 0;
return errorCode;
}
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/

View File

@ -7,14 +7,12 @@
*/
/*
General Description:
This is the host-side driver for the custom-class example device. It searches
the USB for the LEDControl device and sends the requests understood by this
device.
This program must be linked with libusb on Unix and libusb-win32 on Windows.
See http://libusb.sourceforge.net/ or http://libusb-win32.sourceforge.net/
respectively.
*/
* General Description: This is the host-side driver for the custom-class
* example device. It searches the USB for the LEDControl device and sends the
* requests understood by this device. This program must be linked with libusb
* on Unix and libusb-win32 on Windows. See http://libusb.sourceforge.net/ or
* http://libusb-win32.sourceforge.net/ respectively.
*/
#define READ_BUFFER_SIZE 1024
@ -33,108 +31,95 @@ respectively.
#include "../usbconfig.h" /* device's VID/PID and names */
void
dump_packet (uint32_t addr, uint32_t len, uint8_t * packet)
void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet)
{
uint16_t i, j;
uint16_t i,
j;
uint16_t sum = 0;
uint8_t clear = 0;
for (i = 0; i < len; i += 16)
{
for (i = 0; i < len; i += 16) {
sum = 0;
for (j = 0; j < 16; j++)
{
sum += packet[i + j];
}
if (!sum)
{
clear = 1;
continue;
}
if (clear)
{
printf ("*\n");
clear = 0;
}
printf ("%08x:", addr + i);
for (j = 0; j < 16; j++)
{
printf (" %02x", packet[i + j]);
}
printf (" |");
for (j = 0; j < 16; j++)
{
if (packet[i + j] >= 33 && packet[i + j] <= 126)
printf ("%c", packet[i + j]);
else
printf (".");
}
printf ("|\n");
}
sum = 0;
for (j = 0; j < 16; j++) {
sum += packet[i + j];
}
if (!sum) {
clear = 1;
continue;
}
if (clear) {
printf("*\n");
clear = 0;
}
printf("%08x:", addr + i);
for (j = 0; j < 16; j++) {
printf(" %02x", packet[i + j]);
}
printf(" |");
for (j = 0; j < 16; j++) {
if (packet[i + j] >= 33 && packet[i + j] <= 126)
printf("%c", packet[i + j]);
else
printf(".");
}
printf("|\n");
}
}
uint16_t
crc_xmodem_update (uint16_t crc, uint8_t data)
uint16_t crc_xmodem_update(uint16_t crc, uint8_t data)
{
int i;
crc = crc ^ ((uint16_t) data << 8);
for (i = 0; i < 8; i++)
{
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
for (i = 0; i < 8; i++) {
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
return crc;
}
uint16_t
do_crc (uint8_t * data, uint16_t size)
uint16_t do_crc(uint8_t * data, uint16_t size)
{
uint16_t crc = 0;
uint16_t i;
for (i = 0; i < size; i++)
{
crc = crc_xmodem_update (crc, data[i]);
}
for (i = 0; i < size; i++) {
crc = crc_xmodem_update(crc, data[i]);
}
return crc;
}
uint16_t
do_crc_update (uint16_t crc, uint8_t * data, uint16_t size)
uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size)
{
uint16_t i;
for (i = 0; i < size; i++)
crc = crc_xmodem_update (crc, data[i]);
crc = crc_xmodem_update(crc, data[i]);
return crc;
}
static void
usage (char *name)
static void usage(char *name)
{
fprintf (stderr, "usage:\n");
fprintf (stderr, " %s upload filename.. upload\n", name);
fprintf(stderr, "usage:\n");
fprintf(stderr, " %s upload filename.. upload\n", name);
}
int
main (int argc, char **argv)
int main(int argc, char **argv)
{
usb_dev_handle *handle = NULL;
const unsigned char rawVid[2] = { USB_CFG_VENDOR_ID }, rawPid[2] =
{
const unsigned char rawVid[2] = { USB_CFG_VENDOR_ID }, rawPid[2] = {
USB_CFG_DEVICE_ID};
char vendor[] = { USB_CFG_VENDOR_NAME, 0 }, product[] =
{
char vendor[] = { USB_CFG_VENDOR_NAME, 0 }, product[] = {
USB_CFG_DEVICE_NAME, 0};
int cnt, vid, pid;
int cnt,
vid,
pid;
int cnt_crc = 0;
uint8_t *read_buffer;
uint8_t *crc_buffer;
@ -146,126 +131,114 @@ main (int argc, char **argv)
uint8_t bank = 0;
FILE *fp;
usb_init ();
if (argc < 2)
{ /* we need at least one argument */
usage (argv[0]);
exit (1);
}
usb_init();
if (argc < 2) { /* we need at least one argument */
usage(argv[0]);
exit(1);
}
/*
* compute VID/PID from usbconfig.h so that there is a central source
* of information
*/
vid = rawVid[1] * 256 + rawVid[0];
pid = rawPid[1] * 256 + rawPid[0];
/* The following function is in opendevice.c: */
if (usbOpenDevice (&handle, vid, vendor, pid, product, NULL, NULL, NULL) != 0)
{
fprintf (stderr, "Could not find USB device \"%s\" with vid=0x%x pid=0x%x\n", product, vid, pid);
exit (1);
}
printf ("Open USB device \"%s\" with vid=0x%x pid=0x%x\n", product, vid, pid);
if (strcasecmp (argv[1], "upload") == 0)
{
if (argc < 3)
{ /* we need at least one argument */
usage (argv[0]);
exit (1);
}
fp = fopen (argv[2], "r");
if (fp == NULL)
{
fprintf (stderr, "Cannot open file %s ", argv[2]);
exit (1);
}
read_buffer = (unsigned char *) malloc (READ_BUFFER_SIZE);
crc_buffer = (unsigned char *) malloc (BUFFER_CRC);
memset (crc_buffer, 0, BUFFER_CRC);
addr = 0x000000;
/*
* The following function is in opendevice.c:
*/
if (usbOpenDevice(&handle, vid, vendor, pid, product, NULL, NULL, NULL) !=
0) {
fprintf(stderr,
"Could not find USB device \"%s\" with vid=0x%x pid=0x%x\n",
product, vid, pid);
exit(1);
}
printf("Open USB device \"%s\" with vid=0x%x pid=0x%x\n", product, vid,
pid);
if (strcasecmp(argv[1], "upload") == 0) {
if (argc < 3) { /* we need at least one argument */
usage(argv[0]);
exit(1);
}
fp = fopen(argv[2], "r");
if (fp == NULL) {
fprintf(stderr, "Cannot open file %s ", argv[2]);
exit(1);
}
read_buffer = (unsigned char *) malloc(READ_BUFFER_SIZE);
crc_buffer = (unsigned char *) malloc(BUFFER_CRC);
memset(crc_buffer, 0, BUFFER_CRC);
addr = 0x000000;
usb_control_msg (handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT, USB_UPLOAD_INIT, 0, 0, NULL, 0, 5000);
usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT,
USB_UPLOAD_INIT, 0, 0, NULL, 0, 5000);
while ((cnt = fread (read_buffer, READ_BUFFER_SIZE, 1, fp)) > 0)
{
for (step = 0; step < READ_BUFFER_SIZE; step += SEND_BUFFER_SIZE)
{
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0xff;
usb_control_msg (handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT,
USB_UPLOAD_ADDR, addr_hi, addr_lo,
(char *) read_buffer + step, SEND_BUFFER_SIZE, 5000);
while ((cnt = fread(read_buffer, READ_BUFFER_SIZE, 1, fp)) > 0) {
for (step = 0; step < READ_BUFFER_SIZE; step += SEND_BUFFER_SIZE) {
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0xff;
usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_UPLOAD_ADDR, addr_hi,
addr_lo, (char *) read_buffer + step,
SEND_BUFFER_SIZE, 5000);
#if 0
dump_packet (addr, SEND_BUFFER_SIZE, read_buffer + step);
dump_packet(addr, SEND_BUFFER_SIZE, read_buffer + step);
#endif
addr += SEND_BUFFER_SIZE;
}
memcpy (crc_buffer + cnt_crc, read_buffer, READ_BUFFER_SIZE);
cnt_crc += READ_BUFFER_SIZE;
if (cnt_crc >= BANK_SIZE)
{
crc = do_crc (crc_buffer, BANK_SIZE);
printf ("Addr: 0x%06x Bank: 0x%02x HiAddr: 0x%02x LoAddr: 0x%04x Crc: 0x%04x\n", addr, bank,
addr_hi, addr_lo, crc);
memset (crc_buffer, 0, BUFFER_CRC);
bank++;
cnt_crc = 0;
}
addr += SEND_BUFFER_SIZE;
}
cnt = usb_control_msg (handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT,
USB_CRC, addr_hi, addr_lo, NULL, 0, 5000);
if (cnt < 1)
{
if (cnt < 0)
{
fprintf (stderr, "USB error: %s\n", usb_strerror ());
}
else
{
fprintf (stderr, "only %d bytes received.\n", cnt);
}
memcpy(crc_buffer + cnt_crc, read_buffer, READ_BUFFER_SIZE);
cnt_crc += READ_BUFFER_SIZE;
if (cnt_crc >= BANK_SIZE) {
crc = do_crc(crc_buffer, BANK_SIZE);
printf
("Addr: 0x%06x Bank: 0x%02x HiAddr: 0x%02x LoAddr: 0x%04x Crc: 0x%04x\n",
addr, bank, addr_hi, addr_lo, crc);
memset(crc_buffer, 0, BUFFER_CRC);
bank++;
cnt_crc = 0;
}
}
else if (strcasecmp (argv[1], "crc") == 0)
{
/*
if(argc < 2){
usage(argv[0]);
exit(1);
}
*/
addr = 0x000000;
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0xff;
printf ("Request CRC for Addr: 0x%06x\n", addr);
}
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_CRC, addr_hi, addr_lo, NULL,
0, 5000);
cnt = usb_control_msg (handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT,
USB_CRC_ADDR, addr_hi, addr_lo, NULL, (1 << 15) / 4, 5000);
if (cnt < 1)
{
if (cnt < 0)
{
fprintf (stderr, "USB error: %s\n", usb_strerror ());
}
else
{
fprintf (stderr, "only %d bytes received.\n", cnt);
}
if (cnt < 1) {
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
} else {
fprintf(stderr, "only %d bytes received.\n", cnt);
}
}
else
{
usage (argv[0]);
exit (1);
}
usb_close (handle);
}
} else if (strcasecmp(argv[1], "crc") == 0) {
/*
* if(argc < 2){ usage(argv[0]); exit(1); }
*/
addr = 0x000000;
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0xff;
printf("Request CRC for Addr: 0x%06x\n", addr);
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_CRC_ADDR, addr_hi, addr_lo,
NULL, (1 << 15) / 4, 5000);
if (cnt < 1) {
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
} else {
fprintf(stderr, "only %d bytes received.\n", cnt);
}
}
} else {
usage(argv[0]);
exit(1);
}
usb_close(handle);
return 0;
}

View File

@ -1,17 +1,16 @@
#include <stdlib.h>
#include <stdint.h>
#include <stdint.h>
#include "crc.h"
#include "uart.h"
extern FILE uart_stdout;
uint16_t crc_xmodem_update (uint16_t crc, uint8_t data)
uint16_t crc_xmodem_update(uint16_t crc, uint8_t data)
{
int i;
crc = crc ^ ((uint16_t)data << 8);
for (i=0; i<8; i++)
{
crc = crc ^ ((uint16_t) data << 8);
for (i = 0; i < 8; i++) {
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
@ -21,23 +20,22 @@ uint16_t crc_xmodem_update (uint16_t crc, uint8_t data)
return crc;
}
uint16_t do_crc(uint8_t * data,uint16_t size)
uint16_t do_crc(uint8_t * data, uint16_t size)
{
uint16_t crc =0;
uint16_t i;
for (i=0; i<size; i++){
crc = crc_xmodem_update(crc,data[i]);
//printf("%x : %x\n",crc,data[i]);
}
return crc;
uint16_t crc = 0;
uint16_t i;
for (i = 0; i < size; i++) {
crc = crc_xmodem_update(crc, data[i]);
// printf("%x : %x\n",crc,data[i]);
}
return crc;
}
uint16_t do_crc_update(uint16_t crc,uint8_t * data,uint16_t size)
uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size)
{
uint16_t i;
for (i=0; i<size; i++)
crc = crc_xmodem_update(crc,data[i]);
return crc;
uint16_t i;
for (i = 0; i < size; i++)
crc = crc_xmodem_update(crc, data[i]);
return crc;
}

View File

@ -1,5 +1,5 @@
#include <stdlib.h>
#include <stdint.h>
#include <stdint.h>
#include "debug.h"
#include "uart.h"
@ -7,36 +7,38 @@
extern FILE uart_stdout;
void dump_packet(uint32_t addr,uint32_t len,uint8_t *packet){
uint16_t i,j;
uint16_t sum = 0;
uint8_t clear=0;
for (i=0;i<len;i+=16) {
sum = 0;
for (j=0;j<16;j++) {
sum +=packet[i+j];
}
if (!sum){
clear=1;
continue;
}
if (clear){
printf("*\n");
clear = 0;
}
printf("%08lx:", addr + i);
for (j=0;j<16;j++) {
printf(" %02x", packet[i+j]);
}
printf(" |");
for (j=0;j<16;j++) {
if (packet[i+j]>=33 && packet[i+j]<=126 )
printf("%c", packet[i+j]);
else
printf(".");
}
printf("|\n");
}
void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet)
{
uint16_t i,
j;
uint16_t sum = 0;
uint8_t clear = 0;
for (i = 0; i < len; i += 16) {
sum = 0;
for (j = 0; j < 16; j++) {
sum += packet[i + j];
}
if (!sum) {
clear = 1;
continue;
}
if (clear) {
printf("*\n");
clear = 0;
}
printf("%08lx:", addr + i);
for (j = 0; j < 16; j++) {
printf(" %02x", packet[i + j]);
}
printf(" |");
for (j = 0; j < 16; j++) {
if (packet[i + j] >= 33 && packet[i + j] <= 126)
printf("%c", packet[i + j]);
else
printf(".");
}
printf("|\n");
}
}

View File

@ -1,13 +1,14 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h> /* for sei() */
#include <util/delay.h> /* for _delay_ms() */
#include <avr/interrupt.h> /* for sei() */
#include <util/delay.h> /* for _delay_ms() */
#include <stdlib.h>
#include <avr/pgmspace.h> /* required by usbdrv.h */
#include <avr/pgmspace.h> /* required by usbdrv.h */
#include "usbdrv.h"
#include "oddebug.h" /* This is also an example for using debug macros */
#include "requests.h" /* The custom request numbers we use */
#include "oddebug.h" /* This is also an example for using debug
* macros */
#include "requests.h" /* The custom request numbers we use */
#include "uart.h"
#include "sram.h"
#include "debug.h"
@ -21,137 +22,149 @@
extern FILE uart_stdout;
uint8_t read_buffer[BUFFER_SIZE];
uint32_t req_addr = 0;
uint32_t req_size;
uint8_t req_bank;
uint32_t req_bank_size;
uint8_t req_state = REQ_IDLE;
uint8_t rx_remaining = 0;
uint8_t tx_remaining = 0;
uint16_t sync_errors = 0;
uint8_t tx_buffer[32];
uint8_t data_buffer[4];
uint32_t addr;
uint8_t read_buffer[BUFFER_SIZE];
uint32_t req_addr = 0;
uint32_t req_size;
uint8_t req_bank;
uint32_t req_bank_size;
uint8_t req_state = REQ_IDLE;
uint8_t rx_remaining = 0;
uint8_t tx_remaining = 0;
uint16_t sync_errors = 0;
uint8_t tx_buffer[32];
uint8_t data_buffer[4];
uint32_t addr;
void crc_check_memory(uint32_t top_addr){
uint16_t crc = 0;
void crc_check_memory(uint32_t top_addr)
{
uint16_t crc = 0;
uint32_t addr;
req_bank = 0;
for (addr=0x000000; addr < top_addr; addr+=BUFFER_SIZE) {
sram_read_buffer(addr,read_buffer,BUFFER_SIZE);
crc = do_crc_update(crc,read_buffer,BUFFER_SIZE);
if (addr && addr%32768 == 0){
printf("crc_check_memory: req_bank: 0x%x Addr: 0x%lx CRC: %x\n",req_bank,addr,crc);
req_bank = 0;
for (addr = 0x000000; addr < top_addr; addr += BUFFER_SIZE) {
sram_read_buffer(addr, read_buffer, BUFFER_SIZE);
crc = do_crc_update(crc, read_buffer, BUFFER_SIZE);
if (addr && addr % 32768 == 0) {
printf("crc_check_memory: req_bank: 0x%x Addr: 0x%lx CRC: %x\n",
req_bank, addr, crc);
req_bank++;
crc = 0;
}
crc = 0;
}
}
}
void crc_check_memory_range(uint32_t start_addr,uint32_t size){
uint16_t crc = 0;
void crc_check_memory_range(uint32_t start_addr, uint32_t size)
{
uint16_t crc = 0;
uint32_t addr;
req_bank = 0;
for (addr=start_addr; addr < start_addr + size; addr+=BUFFER_SIZE) {
sram_read_buffer(addr,read_buffer,BUFFER_SIZE);
crc = do_crc_update(crc,read_buffer,BUFFER_SIZE);
}
req_bank = 0;
for (addr = start_addr; addr < start_addr + size; addr += BUFFER_SIZE) {
sram_read_buffer(addr, read_buffer, BUFFER_SIZE);
crc = do_crc_update(crc, read_buffer, BUFFER_SIZE);
}
tx_buffer[0] = crc & 0xff;
tx_buffer[1] = (crc >> 8) & 0xff;
printf("crc_check_memory_range: Addr: 0x%lx CRC: %x\n",addr,crc);
printf("crc_check_memory_range: Addr: 0x%lx CRC: %x\n", addr, crc);
}
usbMsgLen_t usbFunctionSetup(uchar data[8]){
usbRequest_t *rq = (void *)data;
usbMsgLen_t usbFunctionSetup(uchar data[8])
{
usbRequest_t *rq = (void *) data;
uint8_t ret_len = 0;
if(rq->bRequest == USB_UPLOAD_INIT){
req_bank =0;
rx_remaining=0;
req_bank_size= 1 << rq->wValue.word;
sync_errors=0;
printf("USB_UPLOAD_INIT: bank size %li\n",req_bank_size);
}else if(rq->bRequest == USB_UPLOAD_ADDR){ /* echo -- used for reliability tests */
if (rq->bRequest == USB_UPLOAD_INIT) {
req_bank = 0;
rx_remaining = 0;
req_bank_size = 1 << rq->wValue.word;
sync_errors = 0;
printf("USB_UPLOAD_INIT: bank size %li\n", req_bank_size);
} else if (rq->bRequest == USB_UPLOAD_ADDR) { /* echo -- used for
* reliability tests */
req_state = REQ_UPLOAD;
req_addr = rq->wValue.word;
req_addr = req_addr << 16;
req_addr = req_addr | rq->wIndex.word;
if (rx_remaining){
if (rx_remaining) {
sync_errors++;
printf("USB_UPLOAD_ADDR: Out of sync Addr=0x%lx remain=%i packet=%i sync_error=%i\n",req_addr,rx_remaining,rq->wLength.word,sync_errors );
ret_len=0;
}
rx_remaining = rq->wLength.word;
printf
("USB_UPLOAD_ADDR: Out of sync Addr=0x%lx remain=%i packet=%i sync_error=%i\n",
req_addr, rx_remaining, rq->wLength.word, sync_errors);
ret_len = 0;
}
rx_remaining = rq->wLength.word;
ret_len = 0xff;
if (req_addr && req_addr % req_bank_size== 0){
printf("USB_UPLOAD_ADDR: req_bank: 0x%x Addr: 0x%08lx \n",req_bank,req_addr);
if (req_addr && req_addr % req_bank_size == 0) {
printf("USB_UPLOAD_ADDR: req_bank: 0x%x Addr: 0x%08lx \n",
req_bank, req_addr);
req_bank++;
}
ret_len=0xff;
}else if(rq->bRequest == USB_DOWNLOAD_INIT){
}
ret_len = 0xff;
} else if (rq->bRequest == USB_DOWNLOAD_INIT) {
printf("USB_DOWNLOAD_INIT\n");
}else if(rq->bRequest == USB_DOWNLOAD_ADDR){
} else if (rq->bRequest == USB_DOWNLOAD_ADDR) {
printf("USB_DOWNLOAD_ADDR\n");
}else if(rq->bRequest == USB_CRC){
} else if (rq->bRequest == USB_CRC) {
req_addr = rq->wValue.word;
req_addr = req_addr << 16;
req_addr = req_addr | rq->wIndex.word;
printf("USB_CRC: Addr 0x%lx \n", req_addr);
printf("USB_CRC: Addr 0x%lx \n", req_addr);
cli();
crc_check_memory(req_addr);
sei();
}else if(rq->bRequest == USB_CRC_ADDR){
} else if (rq->bRequest == USB_CRC_ADDR) {
req_addr = rq->wValue.word;
req_addr = req_addr << 16;
req_addr = req_addr | rq->wIndex.word;
printf("USB_CRC_ADDR: Addr: 0x%lx Size: %i\n", req_addr,rq->wLength.word);
printf("USB_CRC_ADDR: Addr: 0x%lx Size: %i\n", req_addr,
rq->wLength.word);
req_size = rq->wLength.word;
req_size = req_size << 2;
tx_remaining = 2;
printf("USB_CRC_ADDR: Addr: 0x%lx Size: %li\n", req_addr,req_size);
printf("USB_CRC_ADDR: Addr: 0x%lx Size: %li\n", req_addr, req_size);
cli();
//crc_check_memory_range(req_addr,req_size);
// crc_check_memory_range(req_addr,req_size);
sei();
ret_len=2;
ret_len = 2;
}
usbMsgPtr = data_buffer;
return ret_len; /* default for not implemented requests: return no data back to host */
return ret_len; /* default for not implemented requests: return
* no data back to host */
}
uint8_t usbFunctionWrite(uint8_t *data, uint8_t len)
uint8_t usbFunctionWrite(uint8_t * data, uint8_t len)
{
if (len > rx_remaining){
printf("usbFunctionWrite more data than expected remain: %i len: %i\n",rx_remaining,len);
len = rx_remaining;
}
if (req_state==REQ_UPLOAD){
if (len > rx_remaining) {
printf("usbFunctionWrite more data than expected remain: %i len: %i\n",
rx_remaining, len);
len = rx_remaining;
}
if (req_state == REQ_UPLOAD) {
rx_remaining -= len;
#if 1
printf("usbFunctionWrite addr: 0x%08lx len: %i rx_remaining=%i\n",req_addr,len,rx_remaining);
#endif
#if 1
printf("usbFunctionWrite addr: 0x%08lx len: %i rx_remaining=%i\n",
req_addr, len, rx_remaining);
#endif
cli();
sram_copy(req_addr,data,len);
sram_copy(req_addr, data, len);
sei();
req_addr +=len;
req_addr += len;
}
return len;
}
uint8_t usbFunctionRead(uint8_t *data, uint8_t len)
uint8_t usbFunctionRead(uint8_t * data, uint8_t len)
{
uint8_t i;
if(len > tx_remaining)
if (len > tx_remaining)
len = tx_remaining;
tx_remaining -= len;
#if 1
printf("usbFunctionRead len=%i tx_remaining=%i \n",len,tx_remaining);
#endif
#if 1
printf("usbFunctionRead len=%i tx_remaining=%i \n", len, tx_remaining);
#endif
for (i = 0; i < len; i++) {
*data = tx_buffer[len];
data++;
@ -159,7 +172,9 @@ uint8_t usbFunctionRead(uint8_t *data, uint8_t len)
return len;
}
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/
int main(void)
{
@ -168,27 +183,30 @@ int main(void)
uart_init();
stdout = &uart_stdout;
sram_init();
printf("SRAM Init\n");
spi_init();
printf("SPI Init\n");
printf("SRAM Init\n");
spi_init();
printf("SPI Init\n");
usbInit();
printf("USB Init\n");
usbDeviceDisconnect(); /* enforce re-enumeration, do this while interrupts are disabled! */
printf("USB disconnect\n");
printf("USB Init\n");
usbDeviceDisconnect(); /* enforce re-enumeration, do this while
* interrupts are disabled! */
printf("USB disconnect\n");
i = 10;
while(--i){ /* fake USB disconnect for > 250 ms */
while (--i) { /* fake USB disconnect for > 250 ms */
wdt_reset();
_delay_ms(1);
}
usbDeviceConnect();
printf("USB connect\n");
printf("USB connect\n");
sei();
printf("USB poll\n");
for(;;){ /* main event loop */
printf("USB poll\n");
for (;;) { /* main event loop */
wdt_reset();
usbPoll();
}
return 0;
}
/* ------------------------------------------------------------------------- */
/*
* -------------------------------------------------------------------------
*/

View File

@ -1,5 +1,5 @@
#include <stdlib.h>
#include <stdint.h>
#include <stdint.h>
#include <avr/io.h>
#include "sram.h"
@ -8,150 +8,165 @@
void spi_init(void)
{
/* Set MOSI and SCK output, all others input */
SPI_DIR |= ((1<<S_MOSI) | (1<<S_SCK) | (1<<S_LATCH));
SPI_DIR &= ~(1<<S_MISO);
SPI_PORT |= (1<<S_MISO);
/* Enable SPI, Master*/
SPCR = ((1<<SPE) | (1<<MSTR));
/*
* Set MOSI and SCK output, all others input
*/
SPI_DIR |= ((1 << S_MOSI) | (1 << S_SCK) | (1 << S_LATCH));
SPI_DIR &= ~(1 << S_MISO);
SPI_PORT |= (1 << S_MISO);
/*
* Enable SPI, Master
*/
SPCR = ((1 << SPE) | (1 << MSTR));
}
void spi_master_transmit(unsigned char cData)
{
/* Start transmission */
SPDR = cData;
/*
* Start transmission
*/
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & (1<<SPIF)));
/*
* Wait for transmission complete
*/
while (!(SPSR & (1 << SPIF)));
}
void sram_set_addr(uint32_t addr)
{
spi_master_transmit((uint8_t)(addr>>16));
spi_master_transmit((uint8_t)(addr>>8));
spi_master_transmit((uint8_t)(addr>>0));
spi_master_transmit((uint8_t) (addr >> 16));
spi_master_transmit((uint8_t) (addr >> 8));
spi_master_transmit((uint8_t) (addr >> 0));
LATCH_PORT |= (1<<S_LATCH);
LATCH_PORT &= ~(1<<S_LATCH);
LATCH_PORT |= (1 << S_LATCH);
LATCH_PORT &= ~(1 << S_LATCH);
}
uint8_t sram_read(uint32_t addr)
{
uint8_t byte;
uint8_t byte;
RAM_DIR = 0x00;
RAM_PORT = 0xff;
RAM_DIR = 0x00;
RAM_PORT = 0xff;
CTRL_PORT |= (1<<R_RD);
CTRL_PORT |= (1<<R_WR);
CTRL_PORT |= (1 << R_RD);
CTRL_PORT |= (1 << R_WR);
spi_master_transmit((uint8_t)(addr>>16));
spi_master_transmit((uint8_t)(addr>>8));
spi_master_transmit((uint8_t)(addr>>0));
spi_master_transmit((uint8_t) (addr >> 16));
spi_master_transmit((uint8_t) (addr >> 8));
spi_master_transmit((uint8_t) (addr >> 0));
LATCH_PORT |= (1<<S_LATCH);
LATCH_PORT &= ~(1<<S_LATCH);
CTRL_PORT &= ~(1<<R_RD);
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
LATCH_PORT |= (1 << S_LATCH);
LATCH_PORT &= ~(1 << S_LATCH);
CTRL_PORT &= ~(1 << R_RD);
byte = RAM_REG;
CTRL_PORT |= (1<<R_RD);
RAM_DIR =0x00;
RAM_PORT =0x00;
return byte;
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
byte = RAM_REG;
CTRL_PORT |= (1 << R_RD);
RAM_DIR = 0x00;
RAM_PORT = 0x00;
return byte;
}
void sram_write(uint32_t addr, uint8_t data)
{
RAM_DIR = 0xff;
RAM_DIR = 0xff;
CTRL_PORT |= (1<<R_RD);
CTRL_PORT |= (1<<R_WR);
CTRL_PORT |= (1 << R_RD);
CTRL_PORT |= (1 << R_WR);
spi_master_transmit((uint8_t)(addr>>16));
spi_master_transmit((uint8_t)(addr>>8));
spi_master_transmit((uint8_t)(addr>>0));
spi_master_transmit((uint8_t) (addr >> 16));
spi_master_transmit((uint8_t) (addr >> 8));
spi_master_transmit((uint8_t) (addr >> 0));
LATCH_PORT |= (1<<S_LATCH);
LATCH_PORT &= ~(1<<S_LATCH);
LATCH_PORT |= (1 << S_LATCH);
LATCH_PORT &= ~(1 << S_LATCH);
CTRL_PORT &= ~(1<<R_WR);
RAM_PORT = data;
CTRL_PORT |= (1<<R_WR);
CTRL_PORT &= ~(1 << R_WR);
RAM_DIR = 0x00;
RAM_PORT = 0x00;
RAM_PORT = data;
CTRL_PORT |= (1 << R_WR);
RAM_DIR = 0x00;
RAM_PORT = 0x00;
}
void sram_init(void){
RAM_DIR = 0x00;
RAM_PORT = 0x00;
void sram_init(void)
{
CTRL_DIR |= ((1<<R_WR) | (1<<R_RD));
CTRL_PORT |= (1<<R_RD);
CTRL_PORT |= (1<<R_WR);
RAM_DIR = 0x00;
RAM_PORT = 0x00;
LED_PORT |= (1<<D_LED0);
CTRL_DIR |= ((1 << R_WR) | (1 << R_RD));
CTRL_PORT |= (1 << R_RD);
CTRL_PORT |= (1 << R_WR);
LED_PORT |= (1 << D_LED0);
}
void sram_snes_mode01(void){
CTRL_PORT |= (1<<R_WR);
CTRL_PORT &= ~(1<<R_RD);
void sram_snes_mode01(void)
{
CTRL_PORT |= (1 << R_WR);
CTRL_PORT &= ~(1 << R_RD);
}
void sram_snes_mode02(void){
CTRL_DIR |= (1<<R_WR);
CTRL_PORT |= (1<<R_WR);
//CTRL_PORT &= ~(1<<R_RD);
CTRL_DIR &= ~(1<<R_RD);
CTRL_PORT &= ~(1<<R_RD);
void sram_snes_mode02(void)
{
CTRL_DIR |= (1 << R_WR);
CTRL_PORT |= (1 << R_WR);
// CTRL_PORT &= ~(1<<R_RD);
CTRL_DIR &= ~(1 << R_RD);
CTRL_PORT &= ~(1 << R_RD);
}
void sram_clear(uint32_t addr, uint32_t len){
void sram_clear(uint32_t addr, uint32_t len)
{
uint32_t i;
for (i=addr; i<(addr + len);i++ ){
if (0==i%0xfff)
printf("sram_clear %lx\n\r",i);
sram_write(i, 0x00);
}
uint32_t i;
for (i = addr; i < (addr + len); i++) {
if (0 == i % 0xfff)
printf("sram_clear %lx\n\r", i);
sram_write(i, 0x00);
}
}
void sram_copy(uint32_t addr,uint8_t *src, uint32_t len){
void sram_copy(uint32_t addr, uint8_t * src, uint32_t len)
{
uint32_t i;
uint8_t *ptr = src;
for (i=addr; i<(addr + len);i++ )
sram_write(i, *ptr++);
uint32_t i;
uint8_t *ptr = src;
for (i = addr; i < (addr + len); i++)
sram_write(i, *ptr++);
}
void sram_read_buffer(uint32_t addr,uint8_t *dst, uint32_t len){
void sram_read_buffer(uint32_t addr, uint8_t * dst, uint32_t len)
{
uint32_t i;
uint8_t *ptr = dst;
for (i=addr; i<(addr + len);i++ ){
*ptr = sram_read(i);
ptr++;
}
uint32_t i;
uint8_t *ptr = dst;
for (i = addr; i < (addr + len); i++) {
*ptr = sram_read(i);
ptr++;
}
}
uint8_t sram_check(uint8_t *buffer, uint32_t len){
uint8_t sram_check(uint8_t * buffer, uint32_t len)
{
uint16_t cnt;
for (cnt=0; cnt<len; cnt++)
if (buffer[cnt])
return 1;
return 0;
for (cnt = 0; cnt < len; cnt++)
if (buffer[cnt])
return 1;
return 0;
}

View File

@ -5,13 +5,11 @@
#include "uart.h"
#include "fifo.h"
volatile struct
{
uint8_t tmr_int: 1;
uint8_t adc_int: 1;
uint8_t rx_int: 1;
}
intflags;
volatile struct {
uint8_t tmr_int:1;
uint8_t adc_int:1;
uint8_t rx_int:1;
} intflags;
/*
* * Last character read from the UART.
@ -24,9 +22,10 @@ FILE uart_stdout = FDEV_SETUP_STREAM(uart_stream, NULL, _FDEV_SETUP_WRITE);
void uart_init(void)
{
UCSRA = _BV(U2X); /* improves baud rate error @ F_CPU = 1 MHz */
UCSRB = _BV(TXEN)|_BV(RXEN)|_BV(RXCIE); /* tx/rx enable, rx complete intr */
UBRRL = (F_CPU / (8 * 115200UL)) - 1; /* 9600 Bd */
UCSRA = _BV(U2X); /* improves baud rate error @ F_CPU = 1 MHz */
UCSRB = _BV(TXEN) | _BV(RXEN) | _BV(RXCIE); /* tx/rx enable, rx complete
* intr */
UBRRL = (F_CPU / (8 * 115200UL)) - 1; /* 9600 Bd */
}
@ -35,14 +34,14 @@ ISR(USART_RXC_vect)
{
uint8_t c;
c = UDR;
if (bit_is_clear(UCSRA, FE)){
if (bit_is_clear(UCSRA, FE)) {
rxbuff = c;
intflags.rx_int = 1;
}
}
void uart_putc(uint8_t c)
void uart_putc(uint8_t c)
{
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
@ -68,7 +67,7 @@ void uart_puts_P(PGM_P s)
}
}
static int uart_stream(char c, FILE *stream)
static int uart_stream(char c, FILE * stream)
{
if (c == '\n')
uart_putc('\r');
@ -76,4 +75,3 @@ static int uart_stream(char c, FILE *stream)
UDR = c;
return 0;
}

107
tools/usbload/Makefile Normal file
View File

@ -0,0 +1,107 @@
# microcontroller and project specific settings
TARGET = usbload
F_CPU = 20000000UL
MCU = atmega168
SRC = usbload.c
ASRC = usbdrv/usbdrvasm.S interrupts.S
OBJECTS += $(patsubst %.c,%.o,${SRC})
OBJECTS += $(patsubst %.S,%.o,${ASRC})
HEADERS += $(shell echo *.h)
# CFLAGS += -Werror
LDFLAGS += -L/usr/local/avr/avr/lib
CFLAGS += -Iusbdrv -I.
CFLAGS += -DHARDWARE_REV=$(HARDWARE_REV)
ASFLAGS += -x assembler-with-cpp
ASFLAGS += -Iusbdrv -I.
# use own linkerscript, for special interrupt table handling
LDFLAGS += -T ./ldscripts/avr5.x
# no safe mode checks
AVRDUDE_FLAGS += -u
# set name for dependency-file
MAKEFILE = Makefile
# bootloader section start
# (see datasheet)
ifeq ($(MCU),atmega168)
# atmega168 with 1024 words bootloader:
# bootloader section starts at 0x1c00 (word-address) == 0x3800 (byte-address)
BOOT_SECTION_START = 0x3800
else ifeq ($(MCU),atmega88)
# atmega88 with 1024 words bootloader:
# bootloader section starts at 0xc00 (word-address) == 0x1800 (byte-address)
BOOT_SECTION_START = 0x1800
endif
LDFLAGS += -Wl,--section-start=.text=$(BOOT_SECTION_START)
CFLAGS += -DBOOT_SECTION_START=$(BOOT_SECTION_START)
include avr.mk
.PHONY: all
all: $(TARGET).hex $(TARGET).lss
@echo "==============================="
@echo "$(TARGET) compiled for: $(MCU)"
@echo -n "size is: "
@$(SIZE) -A $(TARGET).hex | grep "\.sec1" | tr -s " " | cut -d" " -f2
@echo "==============================="
$(TARGET): $(OBJECTS) $(TARGET).o
%.o: $(HEADERS)
.PHONY: install lock fuses-atmega168-unzap bootstrap
# install: program-serial-$(TARGET) program-serial-eeprom-$(TARGET)
install: program-isp-$(TARGET)
lock:
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U lock:w:0x2f:m
fuses-atmega168-unzap:
echo "sck 5" | $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -F -u -t
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U lfuse:w:0xe7:m -U hfuse:w:0xd5:m -U efuse:w:0x00:m
echo "sck 0.2" | $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -F -u -t
fuses-atmega168-rumpus:
echo "sck 5" | $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -F -u -t
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U lfuse:w:0xe7:m -U efuse:w:0x00:m
echo "sck 0.2" | $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -F -u -t
bootstrap: fuses-atmega168-unzap install lock
.PHONY: clean clean-$(TARGET) clean-uploadtest
clean: clean-$(TARGET) clean-uploadtest
clean-$(TARGET):
$(RM) $(TARGET) $(OBJECTS)
clean-uploadtest:
rm -f datatestfile{512,14k}.raw
.PHONY: depend test uploadtest
depend:
$(CC) $(CFLAGS) -M $(CDEFS) $(CINCS) $(SRC) >> $(MAKEFILE).dep
datatestfile14k.raw:
dd if=/dev/urandom of=datatestfile14k.raw bs=1 count=14336
datatestfile512.raw:
dd if=/dev/urandom of=datatestfile512.raw bs=1 count=512
test/test.hex:
$(MAKE) -C test test.hex
uploadtest: datatestfile14k.raw datatestfile512.raw
$(AVRDUDE) -p $(AVRDUDE_MCU) -c usbasp -P usb -U flash:w:datatestfile14k.raw -U eeprom:w:datatestfile512.raw
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U flash:v:datatestfile14k.raw -U eeprom:v:datatestfile512.raw
-include $(MAKEFILE).dep

99
tools/usbload/avr.mk Normal file
View File

@ -0,0 +1,99 @@
# Programmer used for In System Programming
ISP_PROG = dapa
# device the ISP programmer is connected to
ISP_DEV = /dev/parport0
# Programmer used for serial programming (using the bootloader)
SERIAL_PROG = avr109
# device the serial programmer is connected to
SERIAL_DEV = /dev/ttyS0
# programs
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AS = avr-as
CP = cp
RM = rm -f
AVRDUDE = avrdude
AVRDUDE_BAUDRATE = 19200
SIZE = avr-size
-include $(CURDIR)/config.mk
# flags for avrdude
ifeq ($(MCU),atmega8)
AVRDUDE_MCU=m8
endif
ifeq ($(MCU),atmega48)
AVRDUDE_MCU=m48
endif
ifeq ($(MCU),atmega88)
AVRDUDE_MCU=m88
endif
ifeq ($(MCU),atmega168)
AVRDUDE_MCU=m168
endif
AVRDUDE_FLAGS += -p $(AVRDUDE_MCU) -b $(AVRDUDE_BAUDRATE)
# flags for the compiler
CFLAGS += -g -Os -finline-limit=800 -mmcu=$(MCU) -DF_CPU=$(F_CPU) -std=gnu99
ASFLAGS += -g -mmcu=$(MCU) -DF_CPU=$(F_CPU)
# flags for the linker
LDFLAGS += -mmcu=$(MCU)
ifneq ($(DEBUG),)
CFLAGS += -Wall -W -Wchar-subscripts -Wmissing-prototypes
CFLAGS += -Wmissing-declarations -Wredundant-decls
CFLAGS += -Wstrict-prototypes -Wshadow -Wbad-function-cast
CFLAGS += -Winline -Wpointer-arith -Wsign-compare
#CFLAGS += -Wunreachable-code -Wdisabled-optimization -Werror
CFLAGS += -Wunreachable-code -Wdisabled-optimization
CFLAGS += -Wcast-align -Wwrite-strings -Wnested-externs -Wundef
CFLAGS += -Wa,-adhlns=$(basename $@).lst
CFLAGS += -DDEBUG
endif
all:
$(OBJECTS):
clean:
$(RM) *.hex *.eep.hex *.o *.lst *.lss
interactive-isp:
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -t
interactive-serial:
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(SERIAL_PROG) -P $(SERIAL_DEV) -t
.PHONY: all clean interactive-isp interactive-serial launch-bootloader
program-isp-%: %.hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U flash:w:$<
program-isp-eeprom-%: %.eep.hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U eeprom:w:$<
program-serial-%: %.hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(SERIAL_PROG) -P $(SERIAL_DEV) -U flash:w:$<
program-serial-eeprom-%: %.eep.hex launch-bootloader
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(SERIAL_PROG) -P $(SERIAL_DEV) -U eeprom:w:$<
%.hex: %
$(OBJCOPY) -O ihex -R .eeprom $< $@
%.eep.hex: %
$(OBJCOPY) --set-section-flags=.eeprom="alloc,load" --change-section-lma .eeprom=0 -O ihex -j .eeprom $< $@
%.lss: %
$(OBJDUMP) -h -S $< > $@
%-size: %.hex
$(SIZE) $<
launch-bootloader:
launch-bootloader $(SERIAL_DEV) $(AVRDUDE_BAUDRATE)

18
tools/usbload/config.h Normal file
View File

@ -0,0 +1,18 @@
/* configuratino file for usbload */
/* after this timeout, the main application ist started, if no usb
* connection is detected */
#define TIMEOUT 50
/* uncomment this if you need to define some other signature bytes */
//#define SIGNATURE_BYTES 0x23, 0x24, 0x25, 0
/* uncomment this if you want to catch the eeprom isp bytewise read/write
* commands. costs ~34 byte */
//#define ENABLE_CATCH_EEPROM_ISP
/* uncomment this if you want a usb echo function (for communication testing) */
//#define ENABLE_ECHO_FUNC
/* uncomment this for debug information via uart */
//#define DEBUG_UART

21
tools/usbload/fuses.txt Normal file
View File

@ -0,0 +1,21 @@
additional fuse bit settings for using this bootloader:
=======================================================
atmega88/168:
extended fuse byte:
1024 words bootloader size: BOOTSZ0 = 0
BOOTSZ1 = 0
reset vector, jump to bootloader on reset: BOOTRST = 0
-> default: 0b001 = 0x01
new: 0b000 = 0x00
lock byte:
SPM is not allowed to write to the Boot Loader section BLB12 = 1
BLB11 = 0
-> default: 0b111111 = 0x3f
new: 0b101111 = 0x2f

View File

@ -0,0 +1,9 @@
.extern __init, __vector_1
.global __vector_default, exit
.section .vectors.bootloader
/* micro-jumptable, we are using just reset and int0 vectors */
exit:
__vector_default:
jmp __init
jmp __vector_1

View File

@ -0,0 +1,174 @@
/* Default linker script, for normal executables */
OUTPUT_FORMAT("elf32-avr","elf32-avr","elf32-avr")
OUTPUT_ARCH(avr:5)
MEMORY
{
text (rx) : ORIGIN = 0, LENGTH = 128K
data (rw!x) : ORIGIN = 0x800060, LENGTH = 0xffa0
eeprom (rw!x) : ORIGIN = 0x810000, LENGTH = 64K
}
SECTIONS
{
/* Read-only sections, merged into text segment: */
.hash : { *(.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rel.init : { *(.rel.init) }
.rela.init : { *(.rela.init) }
.rel.text :
{
*(.rel.text)
*(.rel.text.*)
*(.rel.gnu.linkonce.t*)
}
.rela.text :
{
*(.rela.text)
*(.rela.text.*)
*(.rela.gnu.linkonce.t*)
}
.rel.fini : { *(.rel.fini) }
.rela.fini : { *(.rela.fini) }
.rel.rodata :
{
*(.rel.rodata)
*(.rel.rodata.*)
*(.rel.gnu.linkonce.r*)
}
.rela.rodata :
{
*(.rela.rodata)
*(.rela.rodata.*)
*(.rela.gnu.linkonce.r*)
}
.rel.data :
{
*(.rel.data)
*(.rel.data.*)
*(.rel.gnu.linkonce.d*)
}
.rela.data :
{
*(.rela.data)
*(.rela.data.*)
*(.rela.gnu.linkonce.d*)
}
.rel.ctors : { *(.rel.ctors) }
.rela.ctors : { *(.rela.ctors) }
.rel.dtors : { *(.rel.dtors) }
.rela.dtors : { *(.rela.dtors) }
.rel.got : { *(.rel.got) }
.rela.got : { *(.rela.got) }
.rel.bss : { *(.rel.bss) }
.rela.bss : { *(.rela.bss) }
.rel.plt : { *(.rel.plt) }
.rela.plt : { *(.rela.plt) }
/DISCARD/ : { *(.vectors) }
/DISCARD/ : { *(.fini9)
*(.fini6)
*(.fini0)
}
/* Internal text space or external memory */
.text :
{
*(.vectors.bootloader)
__ctors_start = . ;
*(.ctors)
__ctors_end = . ;
__dtors_start = . ;
*(.dtors)
__dtors_end = . ;
*(.progmem.gcc*)
*(.progmem*)
. = ALIGN(2);
*(.init0) /* Start here after reset. */
*(.init1)
*(.init2) /* Clear __zero_reg__, set up stack pointer. */
*(.init3)
*(.init4) /* Initialize data and BSS. */
*(.init5)
*(.init6) /* C++ constructors. */
*(.init7)
*(.init8)
*(.init9) /* Call main(). */
*(.text)
. = ALIGN(2);
*(.text.*)
. = ALIGN(2);
*(.fini9) /* _exit() starts here. */
*(.fini8)
*(.fini7)
*(.fini6) /* C++ destructors. */
*(.fini5)
*(.fini4)
*(.fini3)
*(.fini2)
*(.fini1)
*(.fini0) /* Infinite loop after program termination. */
_etext = . ;
} > text
.data : AT (ADDR (.text) + SIZEOF (.text))
{
PROVIDE (__data_start = .) ;
*(.data)
*(.gnu.linkonce.d*)
. = ALIGN(2);
_edata = . ;
PROVIDE (__data_end = .) ;
} > data
.bss SIZEOF(.data) + ADDR(.data) :
{
PROVIDE (__bss_start = .) ;
*(.bss)
*(COMMON)
PROVIDE (__bss_end = .) ;
} > data
__data_load_start = LOADADDR(.data);
__data_load_end = __data_load_start + SIZEOF(.data);
/* Global data not cleared after reset. */
.noinit SIZEOF(.bss) + ADDR(.bss) :
{
PROVIDE (__noinit_start = .) ;
*(.noinit*)
PROVIDE (__noinit_end = .) ;
_end = . ;
PROVIDE (__heap_start = .) ;
} > data
.eeprom :
{
*(.eeprom*)
__eeprom_end = . ;
} > eeprom
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info) *(.gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
}

291
tools/usbload/usbconfig.h Normal file
View File

@ -0,0 +1,291 @@
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file contains parts of the USB driver which can be configured and can or
must be adapted to your hardware.
Please note that the usbdrv contains a usbconfig-prototype.h file now. We
recommend that you use that file as a template because it will always list
the newest features and options.
*/
#include "config.h"
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in MHz. Legal values are 12000, 15000, 16000, 16500
* and 20000. The 16.5 MHz version of the code requires no crystal, it
* tolerates +/- 1% deviation from the nominal frequency. All other rates
* require a precision of 2000 ppm and thus a crystal!
* Default if not specified: 12 MHz
*/
/* ----------------------- Optional Hardware Config ------------------------ */
#define USB_CFG_PULLUP_IOPORTNAME B
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
#define USB_CFG_PULLUP_BIT 0
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_INTR_POLL_INTERVAL 200
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 100
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 1
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* 5824 in dec, stands for VOTI */
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you use obdev's free shared
* VID/PID pair. Be sure to read USBID-License.txt for rules!
*/
#define USB_CFG_DEVICE_ID 0xdc, 0x05 /* 1500 in dec, obdev's free PID */
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you use obdev's free shared VID/PID pair. Be sure to read the rules in
* USBID-License.txt!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'w', 'w', 'w', '.', 'f', 'i', 's', 'c', 'h', 'l', '.', 'd', 'e'
#define USB_CFG_VENDOR_NAME_LEN 13
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USBID-License.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'U', 'S', 'B', 'a', 's', 'p'
#define USB_CFG_DEVICE_NAME_LEN 6
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USBID-License.txt before you assign a name.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 42 */
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
#define USB_PUBLIC static
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor().
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
#endif /* __usbconfig_h_included__ */

View File

@ -0,0 +1,233 @@
This file documents changes in the firmware-only USB driver for atmel's AVR
microcontrollers. New entries are always appended to the end of the file.
Scroll down to the bottom to see the most recent changes.
2005-04-01:
- Implemented endpoint 1 as interrupt-in endpoint.
- Moved all configuration options to usbconfig.h which is not part of the
driver.
- Changed interface for usbVendorSetup().
- Fixed compatibility with ATMega8 device.
- Various minor optimizations.
2005-04-11:
- Changed interface to application: Use usbFunctionSetup(), usbFunctionRead()
and usbFunctionWrite() now. Added configuration options to choose which
of these functions to compile in.
- Assembler module delivers receive data non-inverted now.
- Made register and bit names compatible with more AVR devices.
2005-05-03:
- Allow address of usbRxBuf on any memory page as long as the buffer does
not cross 256 byte page boundaries.
- Better device compatibility: works with Mega88 now.
- Code optimization in debugging module.
- Documentation updates.
2006-01-02:
- Added (free) default Vendor- and Product-IDs bought from voti.nl.
- Added USBID-License.txt file which defines the rules for using the free
shared VID/PID pair.
- Added Readme.txt to the usbdrv directory which clarifies administrative
issues.
2006-01-25:
- Added "configured state" to become more standards compliant.
- Added "HALT" state for interrupt endpoint.
- Driver passes the "USB Command Verifier" test from usb.org now.
- Made "serial number" a configuration option.
- Minor optimizations, we now recommend compiler option "-Os" for best
results.
- Added a version number to usbdrv.h
2006-02-03:
- New configuration variable USB_BUFFER_SECTION for the memory section where
the USB rx buffer will go. This defaults to ".bss" if not defined. Since
this buffer MUST NOT cross 256 byte pages (not even touch a page at the
end), the user may want to pass a linker option similar to
"-Wl,--section-start=.mybuffer=0x800060".
- Provide structure for usbRequest_t.
- New defines for USB constants.
- Prepared for HID implementations.
- Increased data size limit for interrupt transfers to 8 bytes.
- New macro usbInterruptIsReady() to query interrupt buffer state.
2006-02-18:
- Ensure that the data token which is sent as an ack to an OUT transfer is
always zero sized. This fixes a bug where the host reports an error after
sending an out transfer to the device, although all data arrived at the
device.
- Updated docs in usbdrv.h to reflect changed API in usbFunctionWrite().
* Release 2006-02-20
- Give a compiler warning when compiling with debugging turned on.
- Added Oleg Semyonov's changes for IAR-cc compatibility.
- Added new (optional) functions usbDeviceConnect() and usbDeviceDisconnect()
(also thanks to Oleg!).
- Rearranged tests in usbPoll() to save a couple of instructions in the most
likely case that no actions are pending.
- We need a delay between the SET ADDRESS request until the new address
becomes active. This delay was handled in usbPoll() until now. Since the
spec says that the delay must not exceed 2ms, previous versions required
aggressive polling during the enumeration phase. We have now moved the
handling of the delay into the interrupt routine.
- We must not reply with NAK to a SETUP transaction. We can only achieve this
by making sure that the rx buffer is empty when SETUP tokens are expected.
We therefore don't pass zero sized data packets from the status phase of
a transfer to usbPoll(). This change MAY cause troubles if you rely on
receiving a less than 8 bytes long packet in usbFunctionWrite() to
identify the end of a transfer. usbFunctionWrite() will NEVER be called
with a zero length.
* Release 2006-03-14
- Improved IAR C support: tiny memory model, more devices
- Added template usbconfig.h file under the name usbconfig-prototype.h
* Release 2006-03-26
- Added provision for one more interrupt-in endpoint (endpoint 3).
- Added provision for one interrupt-out endpoint (endpoint 1).
- Added flowcontrol macros for USB.
- Added provision for custom configuration descriptor.
- Allow ANY two port bits for D+ and D-.
- Merged (optional) receive endpoint number into global usbRxToken variable.
- Use USB_CFG_IOPORTNAME instead of USB_CFG_IOPORT. We now construct the
variable name from the single port letter instead of computing the address
of related ports from the output-port address.
* Release 2006-06-26
- Updated documentation in usbdrv.h and usbconfig-prototype.h to reflect the
new features.
- Removed "#warning" directives because IAR does not understand them. Use
unused static variables instead to generate a warning.
- Do not include <avr/io.h> when compiling with IAR.
- Introduced USB_CFG_DESCR_PROPS_* in usbconfig.h to configure how each
USB descriptor should be handled. It is now possible to provide descriptor
data in Flash, RAM or dynamically at runtime.
- STALL is now a status in usbTxLen* instead of a message. We can now conform
to the spec and leave the stall status pending until it is cleared.
- Made usbTxPacketCnt1 and usbTxPacketCnt3 public. This allows the
application code to reset data toggling on interrupt pipes.
* Release 2006-07-18
- Added an #if !defined __ASSEMBLER__ to the warning in usbdrv.h. This fixes
an assembler error.
- usbDeviceDisconnect() takes pull-up resistor to high impedance now.
* Release 2007-02-01
- Merged in some code size improvements from usbtiny (thanks to Dick
Streefland for these optimizations!)
- Special alignment requirement for usbRxBuf not required any more. Thanks
again to Dick Streefland for this hint!
- Reverted to "#warning" instead of unused static variables -- new versions
of IAR CC should handle this directive.
- Changed Open Source license to GNU GPL v2 in order to make linking against
other free libraries easier. We no longer require publication of the
circuit diagrams, but we STRONGLY encourage it. If you improve the driver
itself, PLEASE grant us a royalty free license to your changes for our
commercial license.
* Release 2007-03-29
- New configuration option "USB_PUBLIC" in usbconfig.h.
- Set USB version number to 1.10 instead of 1.01.
- Code used USB_CFG_DESCR_PROPS_STRING_DEVICE and
USB_CFG_DESCR_PROPS_STRING_PRODUCT inconsistently. Changed all occurrences
to USB_CFG_DESCR_PROPS_STRING_PRODUCT.
- New assembler module for 16.5 MHz RC oscillator clock with PLL in receiver
code.
- New assembler module for 16 MHz crystal.
- usbdrvasm.S contains common code only, clock-specific parts have been moved
to usbdrvasm12.S, usbdrvasm16.S and usbdrvasm165.S respectively.
* Release 2007-06-25
- 16 MHz module: Do SE0 check in stuffed bits as well.
* Release 2007-07-07
- Define hi8(x) for IAR compiler to limit result to 8 bits. This is necessary
for negative values.
- Added 15 MHz module contributed by V. Bosch.
- Interrupt vector name can now be configured. This is useful if somebody
wants to use a different hardware interrupt than INT0.
* Release 2007-08-07
- Moved handleIn3 routine in usbdrvasm16.S so that relative jump range is
not exceeded.
- More config options: USB_RX_USER_HOOK(), USB_INITIAL_DATATOKEN,
USB_COUNT_SOF
- USB_INTR_PENDING can now be a memory address, not just I/O
* Release 2007-09-19
- Split out common parts of assembler modules into separate include file
- Made endpoint numbers configurable so that given interface definitions
can be matched. See USB_CFG_EP3_NUMBER in usbconfig-prototype.h.
- Store endpoint number for interrupt/bulk-out so that usbFunctionWriteOut()
can handle any number of endpoints.
- Define usbDeviceConnect() and usbDeviceDisconnect() even if no
USB_CFG_PULLUP_IOPORTNAME is defined. Directly set D+ and D- to 0 in this
case.
* Release 2007-12-01
- Optimize usbDeviceConnect() and usbDeviceDisconnect() for less code size
when USB_CFG_PULLUP_IOPORTNAME is not defined.
* Release 2007-12-13
- Renamed all include-only assembler modules from *.S to *.inc so that
people don't add them to their project sources.
- Distribute leap bits in tx loop more evenly for 16 MHz module.
- Use "macro" and "endm" instead of ".macro" and ".endm" for IAR
- Avoid compiler warnings for constant expr range by casting some values in
USB descriptors.
* Release 2008-01-21
- Fixed bug in 15 and 16 MHz module where the new address set with
SET_ADDRESS was already accepted at the next NAK or ACK we send, not at
the next data packet we send. This caused problems when the host polled
too fast. Thanks to Alexander Neumann for his help and patience debugging
this issue!
* Release 2008-02-05
- Fixed bug in 16.5 MHz module where a register was used in the interrupt
handler before it was pushed. This bug was introduced with version
2007-09-19 when common parts were moved to a separate file.
- Optimized CRC routine (thanks to Reimar Doeffinger).
* Release 2008-02-16
- Removed outdated IAR compatibility stuff (code sections).
- Added hook macros for USB_RESET_HOOK() and USB_SET_ADDRESS_HOOK().
- Added optional routine usbMeasureFrameLength() for calibration of the
internal RC oscillator.
* Release 2008-02-28
- USB_INITIAL_DATATOKEN defaults to USBPID_DATA1 now, which means that we
start with sending USBPID_DATA0.
- Changed defaults in usbconfig-prototype.h
- Added free USB VID/PID pair for MIDI class devices
- Restructured AVR-USB as separate package, not part of PowerSwitch any more.
* Release 2008-04-18
- Restructured usbdrv.c so that it is easier to read and understand.
- Better code optimization with gcc 4.
- If a second interrupt in endpoint is enabled, also add it to config
descriptor.
- Added config option for long transfers (above 254 bytes), see
USB_CFG_LONG_TRANSFERS in usbconfig.h.
- Added 20 MHz module contributed by Jeroen Benschop.
* Release 2008-05-13

View File

@ -0,0 +1,156 @@
AVR-USB Driver Software License Agreement
Version 2008-04-15
THIS LICENSE AGREEMENT GRANTS YOU CERTAIN RIGHTS IN A SOFTWARE. YOU CAN
ENTER INTO THIS AGREEMENT AND ACQUIRE THE RIGHTS OUTLINED BELOW BY PAYING
THE AMOUNT ACCORDING TO SECTION 4 ("PAYMENT") TO OBJECTIVE DEVELOPMENT.
1 DEFINITIONS
1.1 "OBJECTIVE DEVELOPMENT" shall mean OBJECTIVE DEVELOPMENT Software GmbH,
Grosse Schiffgasse 1A/7, 1020 Wien, AUSTRIA.
1.2 "You" shall mean the Licensee.
1.3 "AVR-USB" shall mean all files included in the package distributed under
the name "avrusb" by OBJECTIVE DEVELOPMENT (http://www.obdev.at/avrusb/)
unless otherwise noted. This includes the firmware-only USB device
implementation for Atmel AVR microcontrollers, some simple device examples
and host side software examples and libraries.
2 LICENSE GRANTS
2.1 Source Code. OBJECTIVE DEVELOPMENT shall furnish you with the source
code of AVR-USB.
2.2 Distribution and Use. OBJECTIVE DEVELOPMENT grants you the
non-exclusive right to use and distribute AVR-USB with your hardware
product(s), restricted by the limitations in section 3 below.
2.3 Modifications. OBJECTIVE DEVELOPMENT grants you the right to modify
your copy of AVR-USB according to your needs.
2.4 USB IDs. OBJECTIVE DEVELOPMENT grants you the exclusive rights to use
USB Product ID(s) sent to you in e-mail after receiving your payment in
conjunction with USB Vendor ID 5824. OBJECTIVE DEVELOPMENT has acquired an
exclusive license for this pair of USB identifiers from Wouter van Ooijen
(www.voti.nl), who has licensed the VID from the USB Implementers Forum,
Inc. (www.usb.org).
3 LICENSE RESTRICTIONS
3.1 Number of Units. Only one of the following three definitions is
applicable. Which one is determined by the amount you pay to OBJECTIVE
DEVELOPMENT, see section 4 ("Payment") below.
Hobby License: You may use AVR-USB according to section 2 above in no more
than 5 hardware units. These units must not be sold for profit.
Entry Level License: You may use AVR-USB according to section 2 above in no
more than 150 hardware units.
Professional License: You may use AVR-USB according to section 2 above in
any number of hardware units, except for large scale production ("unlimited
fair use"). Quantities below 10,000 units are not considered large scale
production. If your reach quantities which are obviously large scale
production, you must pay a license fee of 0.10 EUR per unit for all units
above 10,000.
3.2 Rental. You may not rent, lease, or lend AVR-USB or otherwise encumber
any copy of AVR-USB, or any of the rights granted herein.
3.3 Transfer. You may not transfer your rights under this Agreement to
another party without OBJECTIVE DEVELOPMENT's prior written consent. If
such consent is obtained, you may permanently transfer this License to
another party. The recipient of such transfer must agree to all terms and
conditions of this Agreement.
3.4 Reservation of Rights. OBJECTIVE DEVELOPMENT retains all rights not
expressly granted.
3.5 Non-Exclusive Rights. Your license rights under this Agreement are
non-exclusive.
3.6 Third Party Rights. This Agreement cannot grant you rights controlled
by third parties. In particular, you are not allowed to use the USB logo or
other trademarks owned by the USB Implementers Forum, Inc. without their
consent. Since such consent depends on USB certification, it should be
noted that AVR-USB will not pass certification because it does not
implement checksum verification and the microcontroller ports do not meet
the electrical specifications.
4 PAYMENT
The payment amount depends on the variation of this agreement (according to
section 3.1) into which you want to enter. Concrete prices are listed on
OBJECTIVE DEVELOPMENT's web site, usually at
http://www.obdev.at/avrusb/license.html. You agree to pay the amount listed
there to OBJECTIVE DEVELOPMENT or OBJECTIVE DEVELOPMENT's payment processor
or reseller.
5 COPYRIGHT AND OWNERSHIP
AVR-USB is protected by copyright laws and international copyright
treaties, as well as other intellectual property laws and treaties. AVR-USB
is licensed, not sold.
6 TERM AND TERMINATION
6.1 Term. This Agreement shall continue indefinitely. However, OBJECTIVE
DEVELOPMENT may terminate this Agreement and revoke the granted license and
USB-IDs if you fail to comply with any of its terms and conditions.
6.2 Survival of Terms. All provisions regarding secrecy, confidentiality
and limitation of liability shall survive termination of this agreement.
7 DISCLAIMER OF WARRANTY AND LIABILITY
LIMITED WARRANTY. AVR-USB IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, OBJECTIVE
DEVELOPMENT AND ITS SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO AVR-USB, AND THE PROVISION OF OR FAILURE
TO PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO
STATE/JURISDICTION.
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL OBJECTIVE DEVELOPMENT OR ITS SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE AVR-USB OR THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF OBJECTIVE
DEVELOPMENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
CASE, OBJECTIVE DEVELOPMENT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR AVR-USB.
8 MISCELLANEOUS TERMS
8.1 Marketing. OBJECTIVE DEVELOPMENT has the right to mention for marketing
purposes that you entered into this agreement.
8.2 Entire Agreement. This document represents the entire agreement between
OBJECTIVE DEVELOPMENT and you. It may only be modified in writing signed by
an authorized representative of both, OBJECTIVE DEVELOPMENT and you.
8.3 Severability. In case a provision of these terms and conditions should
be or become partly or entirely invalid, ineffective, or not executable,
the validity of all other provisions shall not be affected.
8.4 Applicable Law. This agreement is governed by the laws of the Republic
of Austria.
8.5 Responsible Courts. The responsible courts in Vienna/Austria will have
exclusive jurisdiction regarding all disputes in connection with this
agreement.

View File

@ -0,0 +1,359 @@
OBJECTIVE DEVELOPMENT GmbH's AVR-USB driver software is distributed under the
terms and conditions of the GNU GPL version 2, see the text below. In addition
to the requirements in the GPL, we STRONGLY ENCOURAGE you to do the following:
(1) Publish your entire project on a web site and drop us a note with the URL.
Use the form at http://www.obdev.at/avrusb/feedback.html for your submission.
(2) Adhere to minimum publication standards. Please include AT LEAST:
- a circuit diagram in PDF, PNG or GIF format
- full source code for the host software
- a Readme.txt file in ASCII format which describes the purpose of the
project and what can be found in which directories and which files
- a reference to http://www.obdev.at/avrusb/
(3) If you improve the driver firmware itself, please give us a free license
to your modifications for our commercial license offerings.
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

View File

@ -0,0 +1,146 @@
This is the Readme file to Objective Development's firmware-only USB driver
for Atmel AVR microcontrollers. For more information please visit
http://www.obdev.at/avrusb/
This directory contains the USB firmware only. Copy it as-is to your own
project and add all .c and .S files to your project (these files are marked
with an asterisk in the list below). Then copy usbconfig-prototype.h as
usbconfig.h to your project and edit it according to your configuration.
TECHNICAL DOCUMENTATION
=======================
The technical documentation (API) for the firmware driver is contained in the
file "usbdrv.h". Please read all of it carefully! Configuration options are
documented in "usbconfig-prototype.h".
The driver consists of the following files:
Readme.txt ............. The file you are currently reading.
Changelog.txt .......... Release notes for all versions of the driver.
usbdrv.h ............... Driver interface definitions and technical docs.
* usbdrv.c ............... High level language part of the driver. Link this
module to your code!
* usbdrvasm.S ............ Assembler part of the driver. This module is mostly
a stub and includes one of the usbdrvasm*.S files
depending on processor clock. Link this module to
your code!
usbdrvasm*.inc ......... Assembler routines for particular clock frequencies.
Included by usbdrvasm.S, don't link it directly!
asmcommon.inc .......... Common assembler routines. Included by
usbdrvasm*.inc, don't link it directly!
usbconfig-prototype.h .. Prototype for your own usbdrv.h file.
* oddebug.c .............. Debug functions. Only used when DEBUG_LEVEL is
defined to a value greater than 0. Link this module
to your code!
oddebug.h .............. Interface definitions of the debug module.
iarcompat.h ............ Compatibility definitions for IAR C-compiler.
usbdrvasm.asm .......... Compatibility stub for IAR-C-compiler. Use this
module instead of usbdrvasm.S when you assembler
with IAR's tools.
License.txt ............ Open Source license for this driver.
CommercialLicense.txt .. Optional commercial license for this driver.
USBID-License.txt ...... Terms and conditions for using particular USB ID
values for particular purposes.
(*) ... These files should be linked to your project.
CPU CORE CLOCK FREQUENCY
========================
We supply assembler modules for clock frequencies of 12 MHz, 15 MHz, 16 MHz and
16.5 MHz. Other clock rates are not supported. The actual clock rate must be
configured in usbdrv.h unless you use the default 12 MHz.
12 MHz Clock
This is the traditional clock rate of AVR-USB because it's the lowest clock
rate where the timing constraints of the USB spec can be met.
15 MHz Clock
Similar to 12 MHz, but some NOPs inserted. On the other hand, the higher clock
rate allows for some loops which make the resulting code size somewhat smaller
than the 12 MHz version.
16 MHz Clock
This clock rate has been added for users of the Arduino board and other
ready-made boards which come with a fixed 16 MHz crystal. It's also an option
if you need the slightly higher clock rate for performance reasons. Since
16 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
is somewhat tricky and has to insert a leap cycle every third byte.
16.5 MHz Clock
The assembler module for this clock rate differs from the other modules because
it has been built for an RC oscillator with only 1% precision. The receiver
code inserts leap cycles to compensate for clock deviations. 1% is also the
precision which can be achieved by calibrating the internal RC oscillator of
the AVR. Please note that only AVRs with internal 64 MHz PLL oscillator can be
used since the 8 MHz RC oscillator cannot be trimmed up to 16.5 MHz. This
includes the very popular ATTiny25, ATTiny45, ATTiny85 series as well as the
ATTiny26.
See the EasyLogger example at http://www.obdev.at/avrusb/easylogger.html for
code which calibrates the RC oscillator based on the USB frame clock.
20 MHz Clock
This module is for people who won't do it with less than the maximum. Since
20 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
uses similar tricks as the 16 MHz module to insert leap cycles.
USB IDENTIFIERS
===============
Every USB device needs a vendor- and a product-identifier (VID and PID). VIDs
are obtained from usb.org for a price of 1,500 USD. Once you have a VID, you
can assign PIDs at will.
Since an entry level cost of 1,500 USD is too high for most small companies
and hobbyists, we provide some VID/PID pairs for free. See the file
USBID-License.txt for details.
Objective Development also has some license offerings which include product
IDs. See http://www.obdev.at/avrusb/ for details.
DEVELOPMENT SYSTEM
==================
This driver has been developed and optimized for the GNU compiler version 3
(gcc 3). It does work well with gcc 4, but with bigger code size. We recommend
that you use the GNU compiler suite because it is freely available. AVR-USB
has also been ported to the IAR compiler and assembler. It has been tested
with IAR 4.10B/W32 and 4.12A/W32 on an ATmega8 with the "small" and "tiny"
memory model. Not every release is tested with IAR CC and the driver may
therefore fail to compile with IAR. Please note that gcc is more efficient for
usbdrv.c because this module has been deliberately optimized for gcc.
USING AVR-USB FOR FREE
======================
The AVR firmware driver is published under the GNU General Public License
Version 2 (GPL2). See the file "License.txt" for details.
If you decide for the free GPL2, we STRONGLY ENCOURAGE you to do the following
things IN ADDITION to the obligations from the GPL2:
(1) Publish your entire project on a web site and drop us a note with the URL.
Use the form at http://www.obdev.at/avrusb/feedback.html for your submission.
If you don't have a web site, you can publish the project in obdev's
documentation wiki at
http://www.obdev.at/goto.php?t=avrusb-wiki&p=hosted-projects.
(2) Adhere to minimum publication standards. Please include AT LEAST:
- a circuit diagram in PDF, PNG or GIF format
- full source code for the host software
- a Readme.txt file in ASCII format which describes the purpose of the
project and what can be found in which directories and which files
- a reference to http://www.obdev.at/avrusb/
(3) If you improve the driver firmware itself, please give us a free license
to your modifications for our commercial license offerings.
COMMERCIAL LICENSES FOR AVR-USB
===============================
If you don't want to publish your source code under the terms of the GPL2,
you can simply pay money for AVR-USB. As an additional benefit you get
USB PIDs for free, licensed exclusively to you. See the file
"CommercialLicense.txt" for details.

View File

@ -0,0 +1,146 @@
Royalty-Free Non-Exclusive License USB Product-ID
=================================================
Version 2008-04-07
OBJECTIVE DEVELOPMENT Software GmbH hereby grants you the non-exclusive
right to use three USB.org vendor-ID (VID) / product-ID (PID) pairs with
products based on Objective Development's firmware-only USB driver for
Atmel AVR microcontrollers:
* VID = 5824 (=0x16c0) / PID = 1500 (=0x5dc) for devices implementing no
USB device class (vendor-class devices with USB class = 0xff). Devices
using this pair will be referred to as "VENDOR CLASS" devices.
* VID = 5824 (=0x16c0) / PID = 1503 (=0x5df) for HID class devices
(excluding mice and keyboards). Devices using this pair will be referred
to as "HID CLASS" devices.
* VID = 5824 (=0x16c0) / PID = 1505 (=0x5e1) for CDC class modem devices
Devices using this pair will be referred to as "CDC-ACM CLASS" devices.
* VID = 5824 (=0x16c0) / PID = 1508 (=0x5e4) for MIDI class devices
Devices using this pair will be referred to as "MIDI CLASS" devices.
Since the granted right is non-exclusive, the same VID/PID pairs may be
used by many companies and individuals for different products. To avoid
conflicts, your device and host driver software MUST adhere to the rules
outlined below.
OBJECTIVE DEVELOPMENT Software GmbH has licensed these VID/PID pairs from
Wouter van Ooijen (see www.voti.nl), who has licensed the VID from the USB
Implementers Forum, Inc. (see www.usb.org). The VID is registered for the
company name "Van Ooijen Technische Informatica".
RULES AND RESTRICTIONS
======================
(1) The USB device MUST provide a textual representation of the
manufacturer and product identification. The manufacturer identification
MUST be available at least in USB language 0x0409 (English/US).
(2) The textual manufacturer identification MUST contain either an Internet
domain name (e.g. "mycompany.com") registered and owned by you, or an
e-mail address under your control (e.g. "myname@gmx.net"). You can embed
the domain name or e-mail address in any string you like, e.g. "Objective
Development http://www.obdev.at/avrusb/".
(3) You are responsible for retaining ownership of the domain or e-mail
address for as long as any of your products are in use.
(4) You may choose any string for the textual product identification, as
long as this string is unique within the scope of your textual manufacturer
identification.
(5) Matching of device-specific drivers MUST be based on the textual
manufacturer and product identification in addition to the usual VID/PID
matching. This means that operating system features which are based on
VID/PID matching only (e.g. Windows kernel level drivers, automatic actions
when the device is plugged in etc) MUST NOT be used. The driver matching
MUST be a comparison of the entire strings, NOT a sub-string match. For
CDC-ACM CLASS and MIDI CLASS devices, a generic class driver should be used
and the matching is based on the USB device class.
(6) The extent to which VID/PID matching is allowed for non device-specific
drivers or features depends on the operating system and particular VID/PID
pair used:
* Mac OS X, Linux, FreeBSD and other Unixes: No VID/PID matching is
required and hence no VID/PID-only matching is allowed at all.
* Windows: The operating system performs VID/PID matching for the kernel
level driver. You are REQUIRED to use libusb-win32 (see
http://libusb-win32.sourceforge.net/) as the kernel level driver for
VENDOR CLASS devices. HID CLASS devices all use the generic HID class
driver shipped with Windows, except mice and keyboards. You therefore
MUST NOT use any of the shared VID/PID pairs for mice or keyboards.
CDC-ACM CLASS devices require a ".inf" file which matches on the VID/PID
pair. This ".inf" file MUST load the "usbser" driver to configure the
device as modem (COM-port).
(7) OBJECTIVE DEVELOPMENT Software GmbH disclaims all liability for any
problems which are caused by the shared use of these VID/PID pairs. You
have been warned that the sharing of VID/PID pairs may cause problems. If
you want to avoid them, get your own VID/PID pair for exclusive use.
HOW TO IMPLEMENT THESE RULES
============================
The following rules are for VENDOR CLASS and HID CLASS devices. CDC-ACM
CLASS and MIDI CLASS devices use the operating system's class driver and
don't need a custom driver.
The host driver MUST iterate over all devices with the given VID/PID
numbers in their device descriptors and query the string representation for
the manufacturer name in USB language 0x0409 (English/US). It MUST compare
the ENTIRE string with your textual manufacturer identification chosen in
(2) above. A substring search for your domain or e-mail address is NOT
acceptable. The driver MUST NOT touch the device (other than querying the
descriptors) unless the strings match.
For all USB devices with matching VID/PID and textual manufacturer
identification, the host driver must query the textual product
identification and string-compare it with the name of the product it can
control. It may only initialize the device if the product matches exactly.
Objective Development provides examples for these matching rules with the
"PowerSwitch" project (using libusb) and with the "Automator" project
(using Windows calls on Windows and libusb on Unix).
Technical Notes:
================
Sharing the same VID/PID pair among devices is possible as long as ALL
drivers which match the VID/PID also perform matching on the textual
identification strings. This is easy on all operating systems except
Windows, since Windows establishes a static connection between the VID/PID
pair and a kernel level driver. All devices with the same VID/PID pair must
therefore use THE SAME kernel level driver.
We therefore demand that you use libusb-win32 for VENDOR CLASS devices.
This is a generic kernel level driver which allows all types of USB access
for user space applications. This is only a partial solution of the
problem, though, because different device drivers may come with different
versions of libusb-win32 and they may not work with the libusb version of
the respective other driver. You are therefore encouraged to test your
driver against a broad range of libusb-win32 versions. Do not use new
features in new versions, or check for their existence before you use them.
When a new libusb-win32 becomes available, make sure that your driver is
compatible with it.
For HID CLASS devices it is necessary that all those devices bind to the
same kernel driver: Microsoft's generic USB HID driver. This is true for
all HID devices except those with a specialized driver. Currently, the only
HIDs with specialized drivers are mice and keyboards. You therefore MUST
NOT use a shared VID/PID with mouse and keyboard devices.
Sharing the same VID/PID among different products is unusual and probably
violates the USB specification. If you do it, you do it at your own risk.
To avoid possible incompatibilities, we highly recommend that you get your
own VID/PID pair if you intend to sell your product. Objective
Development's commercial licenses for AVR-USB include a PID for
unrestricted exclusive use.

View File

@ -0,0 +1,178 @@
/* Name: asmcommon.inc
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2007-11-05
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id$
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file contains assembler code which is shared among the USB driver
implementations for different CPU cocks. Since the code must be inserted
in the middle of the module, it's split out into this file and #included.
Jump destinations called from outside:
sofError: Called when no start sequence was found.
se0: Called when a package has been successfully received.
overflow: Called when receive buffer overflows.
doReturn: Called after sending data.
Outside jump destinations used by this module:
waitForJ: Called to receive an already arriving packet.
sendAckAndReti:
sendNakAndReti:
sendCntAndReti:
usbSendAndReti:
The following macros must be defined before this file is included:
.macro POP_STANDARD
.endm
.macro POP_RETI
.endm
*/
#define token x1
overflow:
ldi x2, 1<<USB_INTR_PENDING_BIT
USB_STORE_PENDING(x2) ; clear any pending interrupts
ignorePacket:
clr token
rjmp storeTokenAndReturn
;----------------------------------------------------------------------------
; Processing of received packet (numbers in brackets are cycles after center of SE0)
;----------------------------------------------------------------------------
;This is the only non-error exit point for the software receiver loop
;we don't check any CRCs here because there is no time left.
se0:
subi cnt, USB_BUFSIZE ;[5]
neg cnt ;[6]
sub YL, cnt ;[7]
sbci YH, 0 ;[8]
ldi x2, 1<<USB_INTR_PENDING_BIT ;[9]
USB_STORE_PENDING(x2) ;[10] clear pending intr and check flag later. SE0 should be over.
ld token, y ;[11]
cpi token, USBPID_DATA0 ;[13]
breq handleData ;[14]
cpi token, USBPID_DATA1 ;[15]
breq handleData ;[16]
lds shift, usbDeviceAddr;[17]
ldd x2, y+1 ;[19] ADDR and 1 bit endpoint number
lsl x2 ;[21] shift out 1 bit endpoint number
cpse x2, shift ;[22]
rjmp ignorePacket ;[23]
/* only compute endpoint number in x3 if required later */
#if USB_CFG_HAVE_INTRIN_ENDPOINT || USB_CFG_IMPLEMENT_FN_WRITEOUT
ldd x3, y+2 ;[24] endpoint number + crc
rol x3 ;[26] shift in LSB of endpoint
#endif
cpi token, USBPID_IN ;[27]
breq handleIn ;[28]
cpi token, USBPID_SETUP ;[29]
breq handleSetupOrOut ;[30]
cpi token, USBPID_OUT ;[31]
brne ignorePacket ;[32] must be ack, nak or whatever
; rjmp handleSetupOrOut ; fallthrough
;Setup and Out are followed by a data packet two bit times (16 cycles) after
;the end of SE0. The sync code allows up to 40 cycles delay from the start of
;the sync pattern until the first bit is sampled. That's a total of 56 cycles.
handleSetupOrOut: ;[32]
#if USB_CFG_IMPLEMENT_FN_WRITEOUT /* if we have data for endpoint != 0, set usbCurrentTok to address */
andi x3, 0xf ;[32]
breq storeTokenAndReturn ;[33]
mov token, x3 ;[34] indicate that this is endpoint x OUT
#endif
storeTokenAndReturn:
sts usbCurrentTok, token;[35]
doReturn:
POP_STANDARD ;[37] 12...16 cycles
USB_LOAD_PENDING(YL) ;[49]
sbrc YL, USB_INTR_PENDING_BIT;[50] check whether data is already arriving
rjmp waitForJ ;[51] save the pops and pushes -- a new interrupt is already pending
sofError:
POP_RETI ;macro call
reti
handleData:
lds token, usbCurrentTok;[18]
tst token ;[20]
breq doReturn ;[21]
lds x2, usbRxLen ;[22]
tst x2 ;[24]
brne sendNakAndReti ;[25]
; 2006-03-11: The following two lines fix a problem where the device was not
; recognized if usbPoll() was called less frequently than once every 4 ms.
cpi cnt, 4 ;[26] zero sized data packets are status phase only -- ignore and ack
brmi sendAckAndReti ;[27] keep rx buffer clean -- we must not NAK next SETUP
sts usbRxLen, cnt ;[28] store received data, swap buffers
sts usbRxToken, token ;[30]
lds x2, usbInputBufOffset;[32] swap buffers
ldi cnt, USB_BUFSIZE ;[34]
sub cnt, x2 ;[35]
sts usbInputBufOffset, cnt;[36] buffers now swapped
rjmp sendAckAndReti ;[38] 40 + 17 = 57 until SOP
handleIn:
;We don't send any data as long as the C code has not processed the current
;input data and potentially updated the output data. That's more efficient
;in terms of code size than clearing the tx buffers when a packet is received.
lds x1, usbRxLen ;[30]
cpi x1, 1 ;[32] negative values are flow control, 0 means "buffer free"
brge sendNakAndReti ;[33] unprocessed input packet?
ldi x1, USBPID_NAK ;[34] prepare value for usbTxLen
#if USB_CFG_HAVE_INTRIN_ENDPOINT
andi x3, 0xf ;[35] x3 contains endpoint
brne handleIn1 ;[36]
#endif
lds cnt, usbTxLen ;[37]
sbrc cnt, 4 ;[39] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[40] 42 + 16 = 58 until SOP
sts usbTxLen, x1 ;[41] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf) ;[43]
ldi YH, hi8(usbTxBuf) ;[44]
rjmp usbSendAndReti ;[45] 57 + 12 = 59 until SOP
; Comment about when to set usbTxLen to USBPID_NAK:
; We should set it back when we receive the ACK from the host. This would
; be simple to implement: One static variable which stores whether the last
; tx was for endpoint 0 or 1 and a compare in the receiver to distinguish the
; ACK. However, we set it back immediately when we send the package,
; assuming that no error occurs and the host sends an ACK. We save one byte
; RAM this way and avoid potential problems with endless retries. The rest of
; the driver assumes error-free transfers anyway.
#if USB_CFG_HAVE_INTRIN_ENDPOINT /* placed here due to relative jump range */
handleIn1: ;[38]
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
; 2006-06-10 as suggested by O.Tamura: support second INTR IN / BULK IN endpoint
cpi x3, USB_CFG_EP3_NUMBER;[38]
breq handleIn3 ;[39]
#endif
lds cnt, usbTxLen1 ;[40]
sbrc cnt, 4 ;[42] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[43] 47 + 16 = 63 until SOP
sts usbTxLen1, x1 ;[44] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf1) ;[46]
ldi YH, hi8(usbTxBuf1) ;[47]
rjmp usbSendAndReti ;[48] 50 + 12 = 62 until SOP
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT && USB_CFG_HAVE_INTRIN_ENDPOINT3
handleIn3:
lds cnt, usbTxLen3 ;[41]
sbrc cnt, 4 ;[43]
rjmp sendCntAndReti ;[44] 49 + 16 = 65 until SOP
sts usbTxLen3, x1 ;[45] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf3) ;[47]
ldi YH, hi8(usbTxBuf3) ;[48]
rjmp usbSendAndReti ;[49] 51 + 12 = 63 until SOP
#endif

View File

@ -0,0 +1,65 @@
/* Name: iarcompat.h
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2006-03-01
* Tabsize: 4
* Copyright: (c) 2006 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: iarcompat.h 533 2008-02-28 15:35:25Z cs $
*/
/*
General Description:
This header is included when we compile with the IAR C-compiler and assembler.
It defines macros for cross compatibility between gcc and IAR-cc.
Thanks to Oleg Semyonov for his help with the IAR tools port!
*/
#ifndef __iarcompat_h_INCLUDED__
#define __iarcompat_h_INCLUDED__
#if defined __IAR_SYSTEMS_ICC__ || defined __IAR_SYSTEMS_ASM__
/* Enable bit definitions */
#ifndef ENABLE_BIT_DEFINITIONS
# define ENABLE_BIT_DEFINITIONS 1
#endif
/* Include IAR headers */
#include <ioavr.h>
#ifndef __IAR_SYSTEMS_ASM__
# include <inavr.h>
#endif
#define __attribute__(arg)
#ifdef __IAR_SYSTEMS_ASM__
# define __ASSEMBLER__
#endif
#ifdef __HAS_ELPM__
# define PROGMEM __farflash
#else
# define PROGMEM __flash
#endif
#define PRG_RDB(addr) (*(PROGMEM char *)(addr))
/* The following definitions are not needed by the driver, but may be of some
* help if you port a gcc based project to IAR.
*/
#define cli() __disable_interrupt()
#define sei() __enable_interrupt()
#define wdt_reset() __watchdog_reset()
/* Depending on the device you use, you may get problems with the way usbdrv.h
* handles the differences between devices. Since IAR does not use #defines
* for MCU registers, we can't check for the existence of a particular
* register with an #ifdef. If the autodetection mechanism fails, include
* definitions for the required USB_INTR_* macros in your usbconfig.h. See
* usbconfig-prototype.h and usbdrv.h for details.
*/
#endif /* defined __IAR_SYSTEMS_ICC__ || defined __IAR_SYSTEMS_ASM__ */
#endif /* __iarcompat_h_INCLUDED__ */

View File

@ -0,0 +1,50 @@
/* Name: oddebug.c
* Project: AVR library
* Author: Christian Starkjohann
* Creation Date: 2005-01-16
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: oddebug.c 275 2007-03-20 09:58:28Z cs $
*/
#include "oddebug.h"
#if DEBUG_LEVEL > 0
#warning "Never compile production devices with debugging enabled"
static void uartPutc(char c)
{
while(!(ODDBG_USR & (1 << ODDBG_UDRE))); /* wait for data register empty */
ODDBG_UDR = c;
}
static uchar hexAscii(uchar h)
{
h &= 0xf;
if(h >= 10)
h += 'a' - (uchar)10 - '0';
h += '0';
return h;
}
static void printHex(uchar c)
{
uartPutc(hexAscii(c >> 4));
uartPutc(hexAscii(c));
}
void odDebug(uchar prefix, uchar *data, uchar len)
{
printHex(prefix);
uartPutc(':');
while(len--){
uartPutc(' ');
printHex(*data++);
}
uartPutc('\r');
uartPutc('\n');
}
#endif

View File

@ -0,0 +1,126 @@
/* Name: oddebug.h
* Project: AVR library
* Author: Christian Starkjohann
* Creation Date: 2005-01-16
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: oddebug.h 275 2007-03-20 09:58:28Z cs $
*/
#ifndef __oddebug_h_included__
#define __oddebug_h_included__
/*
General Description:
This module implements a function for debug logs on the serial line of the
AVR microcontroller. Debugging can be configured with the define
'DEBUG_LEVEL'. If this macro is not defined or defined to 0, all debugging
calls are no-ops. If it is 1, DBG1 logs will appear, but not DBG2. If it is
2, DBG1 and DBG2 logs will be printed.
A debug log consists of a label ('prefix') to indicate which debug log created
the output and a memory block to dump in hex ('data' and 'len').
*/
#ifndef F_CPU
# define F_CPU 12000000 /* 12 MHz */
#endif
/* make sure we have the UART defines: */
#include "iarcompat.h"
#ifndef __IAR_SYSTEMS_ICC__
# include <avr/io.h>
#endif
#ifndef uchar
# define uchar unsigned char
#endif
#if DEBUG_LEVEL > 0 && !(defined TXEN || defined TXEN0) /* no UART in device */
# warning "Debugging disabled because device has no UART"
# undef DEBUG_LEVEL
#endif
#ifndef DEBUG_LEVEL
# define DEBUG_LEVEL 0
#endif
/* ------------------------------------------------------------------------- */
#if DEBUG_LEVEL > 0
# define DBG1(prefix, data, len) odDebug(prefix, data, len)
#else
# define DBG1(prefix, data, len)
#endif
#if DEBUG_LEVEL > 1
# define DBG2(prefix, data, len) odDebug(prefix, data, len)
#else
# define DBG2(prefix, data, len)
#endif
/* ------------------------------------------------------------------------- */
#if DEBUG_LEVEL > 0
extern void odDebug(uchar prefix, uchar *data, uchar len);
/* Try to find our control registers; ATMEL likes to rename these */
#if defined UBRR
# define ODDBG_UBRR UBRR
#elif defined UBRRL
# define ODDBG_UBRR UBRRL
#elif defined UBRR0
# define ODDBG_UBRR UBRR0
#elif defined UBRR0L
# define ODDBG_UBRR UBRR0L
#endif
#if defined UCR
# define ODDBG_UCR UCR
#elif defined UCSRB
# define ODDBG_UCR UCSRB
#elif defined UCSR0B
# define ODDBG_UCR UCSR0B
#endif
#if defined TXEN
# define ODDBG_TXEN TXEN
#else
# define ODDBG_TXEN TXEN0
#endif
#if defined USR
# define ODDBG_USR USR
#elif defined UCSRA
# define ODDBG_USR UCSRA
#elif defined UCSR0A
# define ODDBG_USR UCSR0A
#endif
#if defined UDRE
# define ODDBG_UDRE UDRE
#else
# define ODDBG_UDRE UDRE0
#endif
#if defined UDR
# define ODDBG_UDR UDR
#elif defined UDR0
# define ODDBG_UDR UDR0
#endif
static inline void odDebugInit(void)
{
ODDBG_UCR |= (1<<ODDBG_TXEN);
ODDBG_UBRR = F_CPU / (19200 * 16L) - 1;
}
#else
# define odDebugInit()
#endif
/* ------------------------------------------------------------------------- */
#endif /* __oddebug_h_included__ */

View File

@ -0,0 +1,308 @@
/* Name: usbconfig.h
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbconfig-prototype.h 600 2008-05-13 10:34:56Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures AVR-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
+ To create your own usbconfig.h file, copy this file to your project's
+ firmware source directory) and rename it to "usbconfig.h".
+ Then edit it accordingly.
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in MHz. Legal values are 12000, 15000, 16000, 16500
* and 20000. The 16.5 MHz version of the code requires no crystal, it
* tolerates +/- 1% deviation from the nominal frequency. All other rates
* require a precision of 2000 ppm and thus a crystal!
* Default if not specified: 12 MHz
*/
/* ----------------------- Optional Hardware Config ------------------------ */
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_INTR_POLL_INTERVAL 10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 100
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 0
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you use one of obdev's free shared
* VID/PID pairs. Be sure to read USBID-License.txt for rules!
* + This template uses obdev's shared VID/PID pair: 0x16c0/0x5dc.
* + Use this VID/PID pair ONLY if you understand the implications!
*/
#define USB_CFG_DEVICE_ID 0xdc, 0x05
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you use obdev's free shared VID/PID pair. Be sure to read the rules in
* USBID-License.txt!
* + This template uses obdev's shared VID/PID pair: 0x16c0/0x5dc.
* + Use this VID/PID pair ONLY if you understand the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'o', 'b', 'd', 'e', 'v', '.', 'a', 't'
#define USB_CFG_VENDOR_NAME_LEN 8
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USBID-License.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'T', 'e', 'm', 'p', 'l', 'a', 't', 'e'
#define USB_CFG_DEVICE_NAME_LEN 8
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USBID-License.txt before you assign a name if you
* use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 42 */
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor().
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR SIG_INTERRUPT0 */
#endif /* __usbconfig_h_included__ */

View File

@ -0,0 +1,629 @@
/* Name: usbdrv.c
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbdrv.c 591 2008-05-03 20:21:19Z cs $
*/
#include "iarcompat.h"
#ifndef __IAR_SYSTEMS_ICC__
# include <avr/io.h>
# include <avr/pgmspace.h>
#endif
#include "usbdrv.h"
#include "oddebug.h"
/*
General Description:
This module implements the C-part of the USB driver. See usbdrv.h for a
documentation of the entire driver.
*/
/* ------------------------------------------------------------------------- */
/* raw USB registers / interface to assembler code: */
uchar usbRxBuf[2*USB_BUFSIZE]; /* raw RX buffer: PID, 8 bytes data, 2 bytes CRC */
uchar usbInputBufOffset; /* offset in usbRxBuf used for low level receiving */
uchar usbDeviceAddr; /* assigned during enumeration, defaults to 0 */
uchar usbNewDeviceAddr; /* device ID which should be set after status phase */
uchar usbConfiguration; /* currently selected configuration. Administered by driver, but not used */
volatile schar usbRxLen; /* = 0; number of bytes in usbRxBuf; 0 means free, -1 for flow control */
uchar usbCurrentTok; /* last token received or endpoint number for last OUT token if != 0 */
uchar usbRxToken; /* token for data we received; or endpont number for last OUT */
volatile uchar usbTxLen = USBPID_NAK; /* number of bytes to transmit with next IN token or handshake token */
uchar usbTxBuf[USB_BUFSIZE];/* data to transmit with next IN, free if usbTxLen contains handshake token */
#if USB_COUNT_SOF
volatile uchar usbSofCount; /* incremented by assembler module every SOF */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT
usbTxStatus_t usbTxStatus1;
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxStatus_t usbTxStatus3;
# endif
#endif
/* USB status registers / not shared with asm code */
uchar *usbMsgPtr; /* data to transmit next -- ROM or RAM address */
static usbMsgLen_t usbMsgLen = USB_NO_MSG; /* remaining number of bytes */
static uchar usbMsgFlags; /* flag values see below */
#define USB_FLG_MSGPTR_IS_ROM (1<<6)
#define USB_FLG_USE_USER_RW (1<<7)
/*
optimizing hints:
- do not post/pre inc/dec integer values in operations
- assign value of PRG_RDB() to register variables and don't use side effects in arg
- use narrow scope for variables which should be in X/Y/Z register
- assign char sized expressions to variables to force 8 bit arithmetics
*/
/* -------------------------- String Descriptors --------------------------- */
#if USB_CFG_DESCR_PROPS_STRINGS == 0
#if USB_CFG_DESCR_PROPS_STRING_0 == 0
#undef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 sizeof(usbDescriptorString0)
PROGMEM char usbDescriptorString0[] = { /* language descriptor */
4, /* sizeof(usbDescriptorString0): length of descriptor in bytes */
3, /* descriptor type */
0x09, 0x04, /* language index (0x0409 = US-English) */
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_VENDOR == 0 && USB_CFG_VENDOR_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR sizeof(usbDescriptorStringVendor)
PROGMEM int usbDescriptorStringVendor[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_VENDOR_NAME_LEN),
USB_CFG_VENDOR_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_PRODUCT == 0 && USB_CFG_DEVICE_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT sizeof(usbDescriptorStringDevice)
PROGMEM int usbDescriptorStringDevice[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_DEVICE_NAME_LEN),
USB_CFG_DEVICE_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER == 0 && USB_CFG_SERIAL_NUMBER_LEN
#undef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER sizeof(usbDescriptorStringSerialNumber)
PROGMEM int usbDescriptorStringSerialNumber[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_SERIAL_NUMBER_LEN),
USB_CFG_SERIAL_NUMBER
};
#endif
#endif /* USB_CFG_DESCR_PROPS_STRINGS == 0 */
/* --------------------------- Device Descriptor --------------------------- */
#if USB_CFG_DESCR_PROPS_DEVICE == 0
#undef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE sizeof(usbDescriptorDevice)
PROGMEM char usbDescriptorDevice[] = { /* USB device descriptor */
18, /* sizeof(usbDescriptorDevice): length of descriptor in bytes */
USBDESCR_DEVICE, /* descriptor type */
0x10, 0x01, /* USB version supported */
USB_CFG_DEVICE_CLASS,
USB_CFG_DEVICE_SUBCLASS,
0, /* protocol */
8, /* max packet size */
/* the following two casts affect the first byte of the constant only, but
* that's sufficient to avoid a warning with the default values.
*/
(char)USB_CFG_VENDOR_ID,/* 2 bytes */
(char)USB_CFG_DEVICE_ID,/* 2 bytes */
USB_CFG_DEVICE_VERSION, /* 2 bytes */
USB_CFG_DESCR_PROPS_STRING_VENDOR != 0 ? 1 : 0, /* manufacturer string index */
USB_CFG_DESCR_PROPS_STRING_PRODUCT != 0 ? 2 : 0, /* product string index */
USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER != 0 ? 3 : 0, /* serial number string index */
1, /* number of configurations */
};
#endif
/* ----------------------- Configuration Descriptor ------------------------ */
#if USB_CFG_DESCR_PROPS_HID_REPORT != 0 && USB_CFG_DESCR_PROPS_HID == 0
#undef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 9 /* length of HID descriptor in config descriptor below */
#endif
#if USB_CFG_DESCR_PROPS_CONFIGURATION == 0
#undef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION sizeof(usbDescriptorConfiguration)
PROGMEM char usbDescriptorConfiguration[] = { /* USB configuration descriptor */
9, /* sizeof(usbDescriptorConfiguration): length of descriptor in bytes */
USBDESCR_CONFIG, /* descriptor type */
18 + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT3 +
(USB_CFG_DESCR_PROPS_HID & 0xff), 0,
/* total length of data returned (including inlined descriptors) */
1, /* number of interfaces in this configuration */
1, /* index of this configuration */
0, /* configuration name string index */
#if USB_CFG_IS_SELF_POWERED
USBATTR_SELFPOWER, /* attributes */
#else
(char)USBATTR_BUSPOWER, /* attributes */
#endif
USB_CFG_MAX_BUS_POWER/2, /* max USB current in 2mA units */
/* interface descriptor follows inline: */
9, /* sizeof(usbDescrInterface): length of descriptor in bytes */
USBDESCR_INTERFACE, /* descriptor type */
0, /* index of this interface */
0, /* alternate setting for this interface */
USB_CFG_HAVE_INTRIN_ENDPOINT + USB_CFG_HAVE_INTRIN_ENDPOINT3, /* endpoints excl 0: number of endpoint descriptors to follow */
USB_CFG_INTERFACE_CLASS,
USB_CFG_INTERFACE_SUBCLASS,
USB_CFG_INTERFACE_PROTOCOL,
0, /* string index for interface */
#if (USB_CFG_DESCR_PROPS_HID & 0xff) /* HID descriptor */
9, /* sizeof(usbDescrHID): length of descriptor in bytes */
USBDESCR_HID, /* descriptor type: HID */
0x01, 0x01, /* BCD representation of HID version */
0x00, /* target country code */
0x01, /* number of HID Report (or other HID class) Descriptor infos to follow */
0x22, /* descriptor type: report */
USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH, 0, /* total length of report descriptor */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT /* endpoint descriptor for endpoint 1 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)0x81, /* IN endpoint number 1 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3 /* endpoint descriptor for endpoint 3 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)0x83, /* IN endpoint number 1 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
};
#endif
/* ------------------------------------------------------------------------- */
/* We don't use prog_int or prog_int16_t for compatibility with various libc
* versions. Here's an other compatibility hack:
*/
#ifndef PRG_RDB
#define PRG_RDB(addr) pgm_read_byte(addr)
#endif
/* ------------------------------------------------------------------------- */
static inline void usbResetDataToggling(void)
{
#if USB_CFG_HAVE_INTRIN_ENDPOINT
USB_SET_DATATOKEN1(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_SET_DATATOKEN3(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# endif
#endif
}
static inline void usbResetStall(void)
{
#if USB_CFG_IMPLEMENT_HALT && USB_CFG_HAVE_INTRIN_ENDPOINT
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */
#if USB_CFG_HAVE_INTRIN_ENDPOINT
static void usbGenericSetInterrupt(uchar *data, uchar len, usbTxStatus_t *txStatus)
{
uchar *p;
char i;
#if USB_CFG_IMPLEMENT_HALT
if(usbTxLen1 == USBPID_STALL)
return;
#endif
if(txStatus->len & 0x10){ /* packet buffer was empty */
txStatus->buffer[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* toggle token */
}else{
txStatus->len = USBPID_NAK; /* avoid sending outdated (overwritten) interrupt data */
}
p = txStatus->buffer + 1;
i = len;
do{ /* if len == 0, we still copy 1 byte, but that's no problem */
*p++ = *data++;
}while(--i > 0); /* loop control at the end is 2 bytes shorter than at beginning */
usbCrc16Append(&txStatus->buffer[1], len);
txStatus->len = len + 4; /* len must be given including sync byte */
DBG2(0x21 + (((int)txStatus >> 3) & 3), txStatus->buffer, len + 3);
}
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus1);
}
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus3);
}
#endif
/* ------------------ utilities for code following below ------------------- */
/* Use defines for the switch statement so that we can choose between an
* if()else if() and a switch/case based implementation. switch() is more
* efficient for a LARGE set of sequential choices, if() is better in all other
* cases.
*/
#if USB_CFG_USE_SWITCH_STATEMENT
# define SWITCH_START(cmd) switch(cmd){{
# define SWITCH_CASE(value) }break; case (value):{
# define SWITCH_CASE2(v1,v2) }break; case (v1): case(v2):{
# define SWITCH_CASE3(v1,v2,v3) }break; case (v1): case(v2): case(v3):{
# define SWITCH_DEFAULT }break; default:{
# define SWITCH_END }}
#else
# define SWITCH_START(cmd) {uchar _cmd = cmd; if(0){
# define SWITCH_CASE(value) }else if(_cmd == (value)){
# define SWITCH_CASE2(v1,v2) }else if(_cmd == (v1) || _cmd == (v2)){
# define SWITCH_CASE3(v1,v2,v3) }else if(_cmd == (v1) || _cmd == (v2) || (_cmd == v3)){
# define SWITCH_DEFAULT }else{
# define SWITCH_END }}
#endif
#ifndef USB_RX_USER_HOOK
#define USB_RX_USER_HOOK(data, len)
#endif
#ifndef USB_SET_ADDRESS_HOOK
#define USB_SET_ADDRESS_HOOK()
#endif
/* ------------------------------------------------------------------------- */
/* We use if() instead of #if in the macro below because #if can't be used
* in macros and the compiler optimizes constant conditions anyway.
* This may cause problems with undefined symbols if compiled without
* optimizing!
*/
#define GET_DESCRIPTOR(cfgProp, staticName) \
if(cfgProp){ \
if((cfgProp) & USB_PROP_IS_RAM) \
flags = 0; \
if((cfgProp) & USB_PROP_IS_DYNAMIC){ \
len = usbFunctionDescriptor(rq); \
}else{ \
len = USB_PROP_LENGTH(cfgProp); \
usbMsgPtr = (uchar *)(staticName); \
} \
}
/* usbDriverDescriptor() is similar to usbFunctionDescriptor(), but used
* internally for all types of descriptors.
*/
static inline usbMsgLen_t usbDriverDescriptor(usbRequest_t *rq)
{
usbMsgLen_t len = 0;
uchar flags = USB_FLG_MSGPTR_IS_ROM;
SWITCH_START(rq->wValue.bytes[1])
SWITCH_CASE(USBDESCR_DEVICE) /* 1 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_DEVICE, usbDescriptorDevice)
SWITCH_CASE(USBDESCR_CONFIG) /* 2 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_CONFIGURATION, usbDescriptorConfiguration)
SWITCH_CASE(USBDESCR_STRING) /* 3 */
#if USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC
if(USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_RAM)
flags = 0;
len = usbFunctionDescriptor(rq);
#else /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
SWITCH_START(rq->wValue.bytes[0])
SWITCH_CASE(0)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_0, usbDescriptorString0)
SWITCH_CASE(1)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_VENDOR, usbDescriptorStringVendor)
SWITCH_CASE(2)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_PRODUCT, usbDescriptorStringDevice)
SWITCH_CASE(3)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER, usbDescriptorStringSerialNumber)
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
#endif /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
#if USB_CFG_DESCR_PROPS_HID_REPORT /* only support HID descriptors if enabled */
SWITCH_CASE(USBDESCR_HID) /* 0x21 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID, usbDescriptorConfiguration + 18)
SWITCH_CASE(USBDESCR_HID_REPORT)/* 0x22 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID_REPORT, usbDescriptorHidReport)
#endif
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
usbMsgFlags = flags;
return len;
}
/* ------------------------------------------------------------------------- */
/* usbDriverSetup() is similar to usbFunctionSetup(), but it's used for
* standard requests instead of class and custom requests.
*/
static inline usbMsgLen_t usbDriverSetup(usbRequest_t *rq)
{
uchar len = 0, *dataPtr = usbTxBuf + 9; /* there are 2 bytes free space at the end of the buffer */
uchar value = rq->wValue.bytes[0];
#if USB_CFG_IMPLEMENT_HALT
uchar index = rq->wIndex.bytes[0];
#endif
dataPtr[0] = 0; /* default reply common to USBRQ_GET_STATUS and USBRQ_GET_INTERFACE */
SWITCH_START(rq->bRequest)
SWITCH_CASE(USBRQ_GET_STATUS) /* 0 */
uchar recipient = rq->bmRequestType & USBRQ_RCPT_MASK; /* assign arith ops to variables to enforce byte size */
if(USB_CFG_IS_SELF_POWERED && recipient == USBRQ_RCPT_DEVICE)
dataPtr[0] = USB_CFG_IS_SELF_POWERED;
#if USB_CFG_IMPLEMENT_HALT
if(recipient == USBRQ_RCPT_ENDPOINT && index == 0x81) /* request status for endpoint 1 */
dataPtr[0] = usbTxLen1 == USBPID_STALL;
#endif
dataPtr[1] = 0;
len = 2;
#if USB_CFG_IMPLEMENT_HALT
SWITCH_CASE2(USBRQ_CLEAR_FEATURE, USBRQ_SET_FEATURE) /* 1, 3 */
if(value == 0 && index == 0x81){ /* feature 0 == HALT for endpoint == 1 */
usbTxLen1 = rq->bRequest == USBRQ_CLEAR_FEATURE ? USBPID_NAK : USBPID_STALL;
usbResetDataToggling();
}
#endif
SWITCH_CASE(USBRQ_SET_ADDRESS) /* 5 */
usbNewDeviceAddr = value;
USB_SET_ADDRESS_HOOK();
SWITCH_CASE(USBRQ_GET_DESCRIPTOR) /* 6 */
len = usbDriverDescriptor(rq);
goto skipMsgPtrAssignment;
SWITCH_CASE(USBRQ_GET_CONFIGURATION) /* 8 */
dataPtr = &usbConfiguration; /* send current configuration value */
len = 1;
SWITCH_CASE(USBRQ_SET_CONFIGURATION) /* 9 */
usbConfiguration = value;
usbResetStall();
SWITCH_CASE(USBRQ_GET_INTERFACE) /* 10 */
len = 1;
#if USB_CFG_HAVE_INTRIN_ENDPOINT
SWITCH_CASE(USBRQ_SET_INTERFACE) /* 11 */
usbResetDataToggling();
usbResetStall();
#endif
SWITCH_DEFAULT /* 7=SET_DESCRIPTOR, 12=SYNC_FRAME */
/* Should we add an optional hook here? */
SWITCH_END
usbMsgPtr = dataPtr;
skipMsgPtrAssignment:
return len;
}
/* ------------------------------------------------------------------------- */
/* usbProcessRx() is called for every message received by the interrupt
* routine. It distinguishes between SETUP and DATA packets and processes
* them accordingly.
*/
static inline void usbProcessRx(uchar *data, uchar len)
{
usbRequest_t *rq = (void *)data;
/* usbRxToken can be:
* 0x2d 00101101 (USBPID_SETUP for setup data)
* 0xe1 11100001 (USBPID_OUT: data phase of setup transfer)
* 0...0x0f for OUT on endpoint X
*/
DBG2(0x10 + (usbRxToken & 0xf), data, len); /* SETUP=1d, SETUP-DATA=11, OUTx=1x */
USB_RX_USER_HOOK(data, len)
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
if(usbRxToken < 0x10){ /* OUT to endpoint != 0: endpoint number in usbRxToken */
usbFunctionWriteOut(data, len);
return;
}
#endif
if(usbRxToken == (uchar)USBPID_SETUP){
if(len != 8) /* Setup size must be always 8 bytes. Ignore otherwise. */
return;
usbMsgLen_t replyLen;
usbTxBuf[0] = USBPID_DATA0; /* initialize data toggling */
usbTxLen = USBPID_NAK; /* abort pending transmit */
usbMsgFlags = 0;
uchar type = rq->bmRequestType & USBRQ_TYPE_MASK;
if(type != USBRQ_TYPE_STANDARD){ /* standard requests are handled by driver */
replyLen = usbFunctionSetup(data);
}else{
replyLen = usbDriverSetup(rq);
}
#if USB_CFG_IMPLEMENT_FN_READ || USB_CFG_IMPLEMENT_FN_WRITE
if(replyLen == USB_NO_MSG){ /* use user-supplied read/write function */
/* do some conditioning on replyLen */
if((rq->bmRequestType & USBRQ_DIR_MASK) != USBRQ_DIR_HOST_TO_DEVICE){
replyLen = rq->wLength.bytes[0]; /* IN transfers only */
}
usbMsgFlags = USB_FLG_USE_USER_RW;
}else /* The 'else' prevents that we limit a replyLen of USB_NO_MSG to the maximum transfer len. */
#endif
if(sizeof(replyLen) < sizeof(rq->wLength.word)){ /* help compiler with optimizing */
if(!rq->wLength.bytes[1] && replyLen > rq->wLength.bytes[0]) /* limit length to max */
replyLen = rq->wLength.bytes[0];
}else{
if(replyLen > rq->wLength.word) /* limit length to max */
replyLen = rq->wLength.word;
}
usbMsgLen = replyLen;
}else{ /* usbRxToken must be USBPID_OUT, which means data phase of setup (control-out) */
#if USB_CFG_IMPLEMENT_FN_WRITE
if(usbMsgFlags & USB_FLG_USE_USER_RW){
uchar rval = usbFunctionWrite(data, len);
if(rval == 0xff){ /* an error occurred */
usbTxLen = USBPID_STALL;
}else if(rval != 0){ /* This was the final package */
usbMsgLen = 0; /* answer with a zero-sized data packet */
}
}
#endif
}
}
/* ------------------------------------------------------------------------- */
/* This function is similar to usbFunctionRead(), but it's also called for
* data handled automatically by the driver (e.g. descriptor reads).
*/
static uchar usbDeviceRead(uchar *data, uchar len)
{
if(len > 0){ /* don't bother app with 0 sized reads */
#if USB_CFG_IMPLEMENT_FN_READ
if(usbMsgFlags & USB_FLG_USE_USER_RW){
len = usbFunctionRead(data, len);
}else
#endif
{
uchar i = len, *r = usbMsgPtr;
if(usbMsgFlags & USB_FLG_MSGPTR_IS_ROM){ /* ROM data */
do{
uchar c = PRG_RDB(r); /* assign to char size variable to enforce byte ops */
*data++ = c;
r++;
}while(--i);
}else{ /* RAM data */
do{
*data++ = *r++;
}while(--i);
}
usbMsgPtr = r;
}
}
return len;
}
/* ------------------------------------------------------------------------- */
/* usbBuildTxBlock() is called when we have data to transmit and the
* interrupt routine's transmit buffer is empty.
*/
static inline void usbBuildTxBlock(void)
{
usbMsgLen_t wantLen;
uchar len;
wantLen = usbMsgLen;
if(wantLen > 8)
wantLen = 8;
usbMsgLen -= wantLen;
usbTxBuf[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* DATA toggling */
len = usbDeviceRead(usbTxBuf + 1, wantLen);
if(len <= 8){ /* valid data packet */
usbCrc16Append(&usbTxBuf[1], len);
len += 4; /* length including sync byte */
if(len < 12) /* a partial package identifies end of message */
usbMsgLen = USB_NO_MSG;
}else{
len = USBPID_STALL; /* stall the endpoint */
usbMsgLen = USB_NO_MSG;
}
usbTxLen = len;
DBG2(0x20, usbTxBuf, len-1);
}
/* ------------------------------------------------------------------------- */
static inline void usbHandleResetHook(uchar notResetState)
{
#ifdef USB_RESET_HOOK
static uchar wasReset;
uchar isReset = !notResetState;
if(wasReset != isReset){
USB_RESET_HOOK(isReset);
wasReset = isReset;
}
#endif
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbPoll(void)
{
schar len;
uchar i;
len = usbRxLen - 3;
if(len >= 0){
/* We could check CRC16 here -- but ACK has already been sent anyway. If you
* need data integrity checks with this driver, check the CRC in your app
* code and report errors back to the host. Since the ACK was already sent,
* retries must be handled on application level.
* unsigned crc = usbCrc16(buffer + 1, usbRxLen - 3);
*/
usbProcessRx(usbRxBuf + USB_BUFSIZE + 1 - usbInputBufOffset, len);
#if USB_CFG_HAVE_FLOWCONTROL
if(usbRxLen > 0) /* only mark as available if not inactivated */
usbRxLen = 0;
#else
usbRxLen = 0; /* mark rx buffer as available */
#endif
}
if(usbTxLen & 0x10){ /* transmit system idle */
if(usbMsgLen != USB_NO_MSG){ /* transmit data pending? */
usbBuildTxBlock();
}
}
for(i = 10; i > 0; i--){
uchar usbLineStatus = USBIN & USBMASK;
if(usbLineStatus != 0) /* SE0 has ended */
break;
}
if(i == 0){ /* RESET condition, called multiple times during reset */
usbNewDeviceAddr = 0;
usbDeviceAddr = 0;
usbResetStall();
DBG1(0xff, 0, 0);
}
usbHandleResetHook(i);
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbInit(void)
{
#if USB_INTR_CFG_SET != 0
USB_INTR_CFG |= USB_INTR_CFG_SET;
#endif
#if USB_INTR_CFG_CLR != 0
USB_INTR_CFG &= ~(USB_INTR_CFG_CLR);
#endif
USB_INTR_ENABLE |= (1 << USB_INTR_ENABLE_BIT);
usbResetDataToggling();
#if USB_CFG_HAVE_INTRIN_ENDPOINT
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */

View File

@ -0,0 +1,712 @@
/* Name: usbdrv.h
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbdrv.h 607 2008-05-13 15:57:28Z cs $
*/
#ifndef __usbdrv_h_included__
#define __usbdrv_h_included__
#include "usbconfig.h"
#include "iarcompat.h"
/*
Hardware Prerequisites:
=======================
USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+
triggers the interrupt (best achieved by using INT0 for D+), but it is also
possible to trigger the interrupt from D-. If D- is used, interrupts are also
triggered by SOF packets. D- requires a pull-up of 1.5k to +3.5V (and the
device must be powered at 3.5V) to identify as low-speed USB device. A
pull-down or pull-up of 1M SHOULD be connected from D+ to +3.5V to prevent
interference when no USB master is connected. If you use Zener diodes to limit
the voltage on D+ and D-, you MUST use a pull-down resistor, not a pull-up.
We use D+ as interrupt source and not D- because it does not trigger on
keep-alive and RESET states. If you want to count keep-alive events with
USB_COUNT_SOF, you MUST use D- as an interrupt source.
As a compile time option, the 1.5k pull-up resistor on D- can be made
switchable to allow the device to disconnect at will. See the definition of
usbDeviceConnect() and usbDeviceDisconnect() further down in this file.
Please adapt the values in usbconfig.h according to your hardware!
The device MUST be clocked at exactly 12 MHz, 15 MHz or 16 MHz
or at 16.5 MHz +/- 1%. See usbconfig-prototype.h for details.
Limitations:
============
Robustness with respect to communication errors:
The driver assumes error-free communication. It DOES check for errors in
the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte,
token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due
to timing constraints: We must start sending a reply within 7 bit times.
Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU
performance does not permit that. The driver does not check Data0/Data1
toggling, but application software can implement the check.
Input characteristics:
Since no differential receiver circuit is used, electrical interference
robustness may suffer. The driver samples only one of the data lines with
an ordinary I/O pin's input characteristics. However, since this is only a
low speed USB implementation and the specification allows for 8 times the
bit rate over the same hardware, we should be on the safe side. Even the spec
requires detection of asymmetric states at high bit rate for SE0 detection.
Number of endpoints:
The driver supports the following endpoints:
- Endpoint 0, the default control endpoint.
- Any number of interrupt- or bulk-out endpoints. The data is sent to
usbFunctionWriteOut() and USB_CFG_IMPLEMENT_FN_WRITEOUT must be defined
to 1 to activate this feature. The endpoint number can be found in the
global variable 'usbRxToken'.
- One default interrupt- or bulk-in endpoint. This endpoint is used for
interrupt- or bulk-in transfers which are not handled by any other endpoint.
You must define USB_CFG_HAVE_INTRIN_ENDPOINT in order to activate this
feature and call usbSetInterrupt() to send interrupt/bulk data.
- One additional interrupt- or bulk-in endpoint. This was endpoint 3 in
previous versions of this driver but can now be configured to any endpoint
number. You must define USB_CFG_HAVE_INTRIN_ENDPOINT3 in order to activate
this feature and call usbSetInterrupt3() to send interrupt/bulk data. The
endpoint number can be set with USB_CFG_EP3_NUMBER.
Please note that the USB standard forbids bulk endpoints for low speed devices!
Most operating systems allow them anyway, but the AVR will spend 90% of the CPU
time in the USB interrupt polling for bulk data.
Maximum data payload:
Data payload of control in and out transfers may be up to 254 bytes. In order
to accept payload data of out transfers, you need to implement
'usbFunctionWrite()'.
USB Suspend Mode supply current:
The USB standard limits power consumption to 500uA when the bus is in suspend
mode. This is not a problem for self-powered devices since they don't need
bus power anyway. Bus-powered devices can achieve this only by putting the
CPU in sleep mode. The driver does not implement suspend handling by itself.
However, the application may implement activity monitoring and wakeup from
sleep. The host sends regular SE0 states on the bus to keep it active. These
SE0 states can be detected by using D- as the interrupt source. Define
USB_COUNT_SOF to 1 and use the global variable usbSofCount to check for bus
activity.
Operation without an USB master:
The driver behaves neutral without connection to an USB master if D- reads
as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M)
pull-down or pull-up resistor on D+ (interrupt). If Zener diodes are used,
use a pull-down. If D- becomes statically 0, the driver may block in the
interrupt routine.
Interrupt latency:
The application must ensure that the USB interrupt is not disabled for more
than 25 cycles (this is for 12 MHz, faster clocks allow longer latency).
This implies that all interrupt routines must either be declared as "INTERRUPT"
instead of "SIGNAL" (see "avr/signal.h") or that they are written in assembler
with "sei" as the first instruction.
Maximum interrupt duration / CPU cycle consumption:
The driver handles all USB communication during the interrupt service
routine. The routine will not return before an entire USB message is received
and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if
the host conforms to the standard. The driver will consume CPU cycles for all
USB messages, even if they address another (low-speed) device on the same bus.
*/
/* ------------------------------------------------------------------------- */
/* --------------------------- Module Interface ---------------------------- */
/* ------------------------------------------------------------------------- */
#define USBDRV_VERSION 20080513
/* This define uniquely identifies a driver version. It is a decimal number
* constructed from the driver's release date in the form YYYYMMDD. If the
* driver's behavior or interface changes, you can use this constant to
* distinguish versions. If it is not defined, the driver's release date is
* older than 2006-01-25.
*/
#ifndef USB_PUBLIC
#define USB_PUBLIC
#endif
/* USB_PUBLIC is used as declaration attribute for all functions exported by
* the USB driver. The default is no attribute (see above). You may define it
* to static either in usbconfig.h or from the command line if you include
* usbdrv.c instead of linking against it. Including the C module of the driver
* directly in your code saves a couple of bytes in flash memory.
*/
#ifndef __ASSEMBLER__
#ifndef uchar
#define uchar unsigned char
#endif
#ifndef schar
#define schar signed char
#endif
/* shortcuts for well defined 8 bit integer types */
#if USB_CFG_LONG_TRANSFERS /* if more than 254 bytes transfer size required */
# define usbMsgLen_t unsigned
#else
# define usbMsgLen_t uchar
#endif
/* usbMsgLen_t is the data type used for transfer lengths. By default, it is
* defined to uchar, allowing a maximum of 254 bytes (255 is reserved for
* USB_NO_MSG below). If the usbconfig.h defines USB_CFG_LONG_TRANSFERS to 1,
* a 16 bit data type is used, allowing up to 16384 bytes (the rest is used
* for flags in the descriptor configuration).
*/
#define USB_NO_MSG ((usbMsgLen_t)-1) /* constant meaning "no message" */
struct usbRequest; /* forward declaration */
USB_PUBLIC void usbInit(void);
/* This function must be called before interrupts are enabled and the main
* loop is entered.
*/
USB_PUBLIC void usbPoll(void);
/* This function must be called at regular intervals from the main loop.
* Maximum delay between calls is somewhat less than 50ms (USB timeout for
* accepting a Setup message). Otherwise the device will not be recognized.
* Please note that debug outputs through the UART take ~ 0.5ms per byte
* at 19200 bps.
*/
extern uchar *usbMsgPtr;
/* This variable may be used to pass transmit data to the driver from the
* implementation of usbFunctionWrite(). It is also used internally by the
* driver for standard control requests.
*/
USB_PUBLIC usbMsgLen_t usbFunctionSetup(uchar data[8]);
/* This function is called when the driver receives a SETUP transaction from
* the host which is not answered by the driver itself (in practice: class and
* vendor requests). All control transfers start with a SETUP transaction where
* the host communicates the parameters of the following (optional) data
* transfer. The SETUP data is available in the 'data' parameter which can
* (and should) be casted to 'usbRequest_t *' for a more user-friendly access
* to parameters.
*
* If the SETUP indicates a control-in transfer, you should provide the
* requested data to the driver. There are two ways to transfer this data:
* (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data
* block and return the length of the data in 'usbFunctionSetup()'. The driver
* will handle the rest. Or (2) return USB_NO_MSG in 'usbFunctionSetup()'. The
* driver will then call 'usbFunctionRead()' when data is needed. See the
* documentation for usbFunctionRead() for details.
*
* If the SETUP indicates a control-out transfer, the only way to receive the
* data from the host is through the 'usbFunctionWrite()' call. If you
* implement this function, you must return USB_NO_MSG in 'usbFunctionSetup()'
* to indicate that 'usbFunctionWrite()' should be used. See the documentation
* of this function for more information. If you just want to ignore the data
* sent by the host, return 0 in 'usbFunctionSetup()'.
*
* Note that calls to the functions usbFunctionRead() and usbFunctionWrite()
* are only done if enabled by the configuration in usbconfig.h.
*/
USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq);
/* You need to implement this function ONLY if you provide USB descriptors at
* runtime (which is an expert feature). It is very similar to
* usbFunctionSetup() above, but it is called only to request USB descriptor
* data. See the documentation of usbFunctionSetup() above for more info.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len);
/* This function sets the message which will be sent during the next interrupt
* IN transfer. The message is copied to an internal buffer and must not exceed
* a length of 8 bytes. The message may be 0 bytes long just to indicate the
* interrupt status to the host.
* If you need to transfer more bytes, use a control read after the interrupt.
*/
#define usbInterruptIsReady() (usbTxLen1 & 0x10)
/* This macro indicates whether the last interrupt message has already been
* sent. If you set a new interrupt message before the old was sent, the
* message already buffered will be lost.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len);
#define usbInterruptIsReady3() (usbTxLen3 & 0x10)
/* Same as above for endpoint 3 */
#endif
#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */
#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */
#define usbHidReportDescriptor usbDescriptorHidReport
/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */
/* If you implement an HID device, you need to provide a report descriptor.
* The HID report descriptor syntax is a bit complex. If you understand how
* report descriptors are constructed, we recommend that you use the HID
* Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/.
* Otherwise you should probably start with a working example.
*/
#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */
#if USB_CFG_IMPLEMENT_FN_WRITE
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len);
/* This function is called by the driver to provide a control transfer's
* payload data (control-out). It is called in chunks of up to 8 bytes. The
* total count provided in the current control transfer can be obtained from
* the 'length' property in the setup data. If an error occurred during
* processing, return 0xff (== -1). The driver will answer the entire transfer
* with a STALL token in this case. If you have received the entire payload
* successfully, return 1. If you expect more data, return 0. If you don't
* know whether the host will send more data (you should know, the total is
* provided in the usbFunctionSetup() call!), return 1.
* NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called
* for the remaining data. You must continue to return 0xff for STALL in these
* calls.
* In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITE */
#if USB_CFG_IMPLEMENT_FN_READ
USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len);
/* This function is called by the driver to ask the application for a control
* transfer's payload data (control-in). It is called in chunks of up to 8
* bytes each. You should copy the data to the location given by 'data' and
* return the actual number of bytes copied. If you return less than requested,
* the control-in transfer is terminated. If you return 0xff, the driver aborts
* the transfer with a STALL token.
* In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_READ */
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len);
/* This function is called by the driver when data is received on an interrupt-
* or bulk-out endpoint. The endpoint number can be found in the global
* variable usbRxToken. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT to 1 in
* usbconfig.h to get this function called.
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT)))
#define usbDeviceDisconnect() ((USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT)))
#else /* USB_CFG_PULLUP_IOPORTNAME */
#define usbDeviceConnect() (USBDDR &= ~(1<<USBMINUS))
#define usbDeviceDisconnect() (USBDDR |= (1<<USBMINUS))
#endif /* USB_CFG_PULLUP_IOPORTNAME */
/* The macros usbDeviceConnect() and usbDeviceDisconnect() (intended to look
* like a function) connect resp. disconnect the device from the host's USB.
* If the constants USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT are defined
* in usbconfig.h, a disconnect consists of removing the pull-up resisitor
* from D-, otherwise the disconnect is done by brute-force pulling D- to GND.
* This does not conform to the spec, but it works.
* Please note that the USB interrupt must be disabled while the device is
* in disconnected state, or the interrupt handler will hang! You can either
* turn off the USB interrupt selectively with
* USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT)
* or use cli() to disable interrupts globally.
*/
extern unsigned usbCrc16(unsigned data, uchar len);
#define usbCrc16(data, len) usbCrc16((unsigned)(data), len)
/* This function calculates the binary complement of the data CRC used in
* USB data packets. The value is used to build raw transmit packets.
* You may want to use this function for data checksums or to verify received
* data. We enforce 16 bit calling conventions for compatibility with IAR's
* tiny memory model.
*/
extern unsigned usbCrc16Append(unsigned data, uchar len);
#define usbCrc16Append(data, len) usbCrc16Append((unsigned)(data), len)
/* This function is equivalent to usbCrc16() above, except that it appends
* the 2 bytes CRC (lowbyte first) in the 'data' buffer after reading 'len'
* bytes.
*/
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
extern unsigned usbMeasureFrameLength(void);
/* This function MUST be called IMMEDIATELY AFTER USB reset and measures 1/7 of
* the number of CPU cycles during one USB frame minus one low speed bit
* length. In other words: return value = 1499 * (F_CPU / 10.5 MHz)
* Since this is a busy wait, you MUST disable all interrupts with cli() before
* calling this function.
* This can be used to calibrate the AVR's RC oscillator.
*/
#endif
extern uchar usbConfiguration;
/* This value contains the current configuration set by the host. The driver
* allows setting and querying of this variable with the USB SET_CONFIGURATION
* and GET_CONFIGURATION requests, but does not use it otherwise.
* You may want to reflect the "configured" status with a LED on the device or
* switch on high power parts of the circuit only if the device is configured.
*/
#if USB_COUNT_SOF
extern volatile uchar usbSofCount;
/* This variable is incremented on every SOF packet. It is only available if
* the macro USB_COUNT_SOF is defined to a value != 0.
*/
#endif
#define USB_STRING_DESCRIPTOR_HEADER(stringLength) ((2*(stringLength)+2) | (3<<8))
/* This macro builds a descriptor header for a string descriptor given the
* string's length. See usbdrv.c for an example how to use it.
*/
#if USB_CFG_HAVE_FLOWCONTROL
extern volatile schar usbRxLen;
#define usbDisableAllRequests() usbRxLen = -1
/* Must be called from usbFunctionWrite(). This macro disables all data input
* from the USB interface. Requests from the host are answered with a NAK
* while they are disabled.
*/
#define usbEnableAllRequests() usbRxLen = 0
/* May only be called if requests are disabled. This macro enables input from
* the USB interface after it has been disabled with usbDisableAllRequests().
*/
#define usbAllRequestsAreDisabled() (usbRxLen < 0)
/* Use this macro to find out whether requests are disabled. It may be needed
* to ensure that usbEnableAllRequests() is never called when requests are
* enabled.
*/
#endif
#define USB_SET_DATATOKEN1(token) usbTxBuf1[0] = token
#define USB_SET_DATATOKEN3(token) usbTxBuf3[0] = token
/* These two macros can be used by application software to reset data toggling
* for interrupt-in endpoints 1 and 3. Since the token is toggled BEFORE
* sending data, you must set the opposite value of the token which should come
* first.
*/
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ----------------- Definitions for Descriptor Properties ----------------- */
/* ------------------------------------------------------------------------- */
/* This is advanced stuff. See usbconfig-prototype.h for more information
* about the various methods to define USB descriptors. If you do nothing,
* the default descriptors will be used.
*/
#define USB_PROP_IS_DYNAMIC (1 << 14)
/* If this property is set for a descriptor, usbFunctionDescriptor() will be
* used to obtain the particular descriptor.
*/
#define USB_PROP_IS_RAM (1 << 15)
/* If this property is set for a descriptor, the data is read from RAM
* memory instead of Flash. The property is used for all methods to provide
* external descriptors.
*/
#define USB_PROP_LENGTH(len) ((len) & 0x3fff)
/* If a static external descriptor is used, this is the total length of the
* descriptor in bytes.
*/
/* all descriptors which may have properties: */
#ifndef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE 0
#endif
#ifndef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRINGS
#define USB_CFG_DESCR_PROPS_STRINGS 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#endif
#ifndef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 0
#endif
#if !(USB_CFG_DESCR_PROPS_HID_REPORT)
# undef USB_CFG_DESCR_PROPS_HID_REPORT
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* do some backward compatibility tricks */
# define USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# else
# define USB_CFG_DESCR_PROPS_HID_REPORT 0
# endif
#endif
#ifndef USB_CFG_DESCR_PROPS_UNKNOWN
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#endif
/* ------------------ forward declaration of descriptors ------------------- */
/* If you use external static descriptors, they must be stored in global
* arrays as declared below:
*/
#ifndef __ASSEMBLER__
extern
#if !(USB_CFG_DESCR_PROPS_DEVICE & USB_PROP_IS_RAM)
PROGMEM
#endif
char usbDescriptorDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_CONFIGURATION & USB_PROP_IS_RAM)
PROGMEM
#endif
char usbDescriptorConfiguration[];
extern
#if !(USB_CFG_DESCR_PROPS_HID_REPORT & USB_PROP_IS_RAM)
PROGMEM
#endif
char usbDescriptorHidReport[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_0 & USB_PROP_IS_RAM)
PROGMEM
#endif
char usbDescriptorString0[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_VENDOR & USB_PROP_IS_RAM)
PROGMEM
#endif
int usbDescriptorStringVendor[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_PRODUCT & USB_PROP_IS_RAM)
PROGMEM
#endif
int usbDescriptorStringDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER & USB_PROP_IS_RAM)
PROGMEM
#endif
int usbDescriptorStringSerialNumber[];
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ------------------------ General Purpose Macros ------------------------- */
/* ------------------------------------------------------------------------- */
#define USB_CONCAT(a, b) a ## b
#define USB_CONCAT_EXPANDED(a, b) USB_CONCAT(a, b)
#define USB_OUTPORT(name) USB_CONCAT(PORT, name)
#define USB_INPORT(name) USB_CONCAT(PIN, name)
#define USB_DDRPORT(name) USB_CONCAT(DDR, name)
/* The double-define trick above lets us concatenate strings which are
* defined by macros.
*/
/* ------------------------------------------------------------------------- */
/* ------------------------- Constant definitions -------------------------- */
/* ------------------------------------------------------------------------- */
#if !defined __ASSEMBLER__ && (!defined USB_CFG_VENDOR_ID || !defined USB_CFG_DEVICE_ID)
#warning "You should define USB_CFG_VENDOR_ID and USB_CFG_DEVICE_ID in usbconfig.h"
/* If the user has not defined IDs, we default to obdev's free IDs.
* See USBID-License.txt for details.
*/
#endif
/* make sure we have a VID and PID defined, byte order is lowbyte, highbyte */
#ifndef USB_CFG_VENDOR_ID
# define USB_CFG_VENDOR_ID 0xc0, 0x16 /* 5824 in dec, stands for VOTI */
#endif
#ifndef USB_CFG_DEVICE_ID
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# define USB_CFG_DEVICE_ID 0xdf, 0x05 /* 1503 in dec, shared PID for HIDs */
# elif USB_CFG_INTERFACE_CLASS == 2
# define USB_CFG_DEVICE_ID 0xe1, 0x05 /* 1505 in dec, shared PID for CDC Modems */
# else
# define USB_CFG_DEVICE_ID 0xdc, 0x05 /* 1500 in dec, obdev's free PID */
# endif
#endif
/* Derive Output, Input and DataDirection ports from port names */
#ifndef USB_CFG_IOPORTNAME
#error "You must define USB_CFG_IOPORTNAME in usbconfig.h, see usbconfig-prototype.h"
#endif
#define USBOUT USB_OUTPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_OUT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBIN USB_INPORT(USB_CFG_IOPORTNAME)
#define USBDDR USB_DDRPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_DDR USB_DDRPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBMINUS USB_CFG_DMINUS_BIT
#define USBPLUS USB_CFG_DPLUS_BIT
#define USBIDLE (1<<USB_CFG_DMINUS_BIT) /* value representing J state */
#define USBMASK ((1<<USB_CFG_DPLUS_BIT) | (1<<USB_CFG_DMINUS_BIT)) /* mask for USB I/O bits */
/* defines for backward compatibility with older driver versions: */
#define USB_CFG_IOPORT USB_OUTPORT(USB_CFG_IOPORTNAME)
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define USB_CFG_PULLUP_IOPORT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#endif
#ifndef USB_CFG_EP3_NUMBER /* if not defined in usbconfig.h */
#define USB_CFG_EP3_NUMBER 3
#endif
#define USB_BUFSIZE 11 /* PID, 8 bytes data, 2 bytes CRC */
/* ----- Try to find registers and bits responsible for ext interrupt 0 ----- */
#ifndef USB_INTR_CFG /* allow user to override our default */
# if defined EICRA
# define USB_INTR_CFG EICRA
# else
# define USB_INTR_CFG MCUCR
# endif
#endif
#ifndef USB_INTR_CFG_SET /* allow user to override our default */
# define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) /* cfg for rising edge */
#endif
#ifndef USB_INTR_CFG_CLR /* allow user to override our default */
# define USB_INTR_CFG_CLR 0 /* no bits to clear */
#endif
#ifndef USB_INTR_ENABLE /* allow user to override our default */
# if defined GIMSK
# define USB_INTR_ENABLE GIMSK
# elif defined EIMSK
# define USB_INTR_ENABLE EIMSK
# else
# define USB_INTR_ENABLE GICR
# endif
#endif
#ifndef USB_INTR_ENABLE_BIT /* allow user to override our default */
# define USB_INTR_ENABLE_BIT INT0
#endif
#ifndef USB_INTR_PENDING /* allow user to override our default */
# if defined EIFR
# define USB_INTR_PENDING EIFR
# else
# define USB_INTR_PENDING GIFR
# endif
#endif
#ifndef USB_INTR_PENDING_BIT /* allow user to override our default */
# define USB_INTR_PENDING_BIT INTF0
#endif
/*
The defines above don't work for the following chips
at90c8534: no ISC0?, no PORTB, can't find a data sheet
at86rf401: no PORTB, no MCUCR etc, low clock rate
atmega103: no ISC0? (maybe omission in header, can't find data sheet)
atmega603: not defined in avr-libc
at43usb320, at43usb355, at76c711: have USB anyway
at94k: is different...
at90s1200, attiny11, attiny12, attiny15, attiny28: these have no RAM
*/
/* ------------------------------------------------------------------------- */
/* ----------------- USB Specification Constants and Types ----------------- */
/* ------------------------------------------------------------------------- */
/* USB Token values */
#define USBPID_SETUP 0x2d
#define USBPID_OUT 0xe1
#define USBPID_IN 0x69
#define USBPID_DATA0 0xc3
#define USBPID_DATA1 0x4b
#define USBPID_ACK 0xd2
#define USBPID_NAK 0x5a
#define USBPID_STALL 0x1e
#ifndef USB_INITIAL_DATATOKEN
#define USB_INITIAL_DATATOKEN USBPID_DATA1
#endif
#ifndef __ASSEMBLER__
typedef struct usbTxStatus{
volatile uchar len;
uchar buffer[USB_BUFSIZE];
}usbTxStatus_t;
extern usbTxStatus_t usbTxStatus1, usbTxStatus3;
#define usbTxLen1 usbTxStatus1.len
#define usbTxBuf1 usbTxStatus1.buffer
#define usbTxLen3 usbTxStatus3.len
#define usbTxBuf3 usbTxStatus3.buffer
typedef union usbWord{
unsigned word;
uchar bytes[2];
}usbWord_t;
typedef struct usbRequest{
uchar bmRequestType;
uchar bRequest;
usbWord_t wValue;
usbWord_t wIndex;
usbWord_t wLength;
}usbRequest_t;
/* This structure matches the 8 byte setup request */
#endif
/* bmRequestType field in USB setup:
* d t t r r r r r, where
* d ..... direction: 0=host->device, 1=device->host
* t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved
* r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other
*/
/* USB setup recipient values */
#define USBRQ_RCPT_MASK 0x1f
#define USBRQ_RCPT_DEVICE 0
#define USBRQ_RCPT_INTERFACE 1
#define USBRQ_RCPT_ENDPOINT 2
/* USB request type values */
#define USBRQ_TYPE_MASK 0x60
#define USBRQ_TYPE_STANDARD (0<<5)
#define USBRQ_TYPE_CLASS (1<<5)
#define USBRQ_TYPE_VENDOR (2<<5)
/* USB direction values: */
#define USBRQ_DIR_MASK 0x80
#define USBRQ_DIR_HOST_TO_DEVICE (0<<7)
#define USBRQ_DIR_DEVICE_TO_HOST (1<<7)
/* USB Standard Requests */
#define USBRQ_GET_STATUS 0
#define USBRQ_CLEAR_FEATURE 1
#define USBRQ_SET_FEATURE 3
#define USBRQ_SET_ADDRESS 5
#define USBRQ_GET_DESCRIPTOR 6
#define USBRQ_SET_DESCRIPTOR 7
#define USBRQ_GET_CONFIGURATION 8
#define USBRQ_SET_CONFIGURATION 9
#define USBRQ_GET_INTERFACE 10
#define USBRQ_SET_INTERFACE 11
#define USBRQ_SYNCH_FRAME 12
/* USB descriptor constants */
#define USBDESCR_DEVICE 1
#define USBDESCR_CONFIG 2
#define USBDESCR_STRING 3
#define USBDESCR_INTERFACE 4
#define USBDESCR_ENDPOINT 5
#define USBDESCR_HID 0x21
#define USBDESCR_HID_REPORT 0x22
#define USBDESCR_HID_PHYS 0x23
#define USBATTR_BUSPOWER 0x80
#define USBATTR_SELFPOWER 0x40
#define USBATTR_REMOTEWAKE 0x20
/* USB HID Requests */
#define USBRQ_HID_GET_REPORT 0x01
#define USBRQ_HID_GET_IDLE 0x02
#define USBRQ_HID_GET_PROTOCOL 0x03
#define USBRQ_HID_SET_REPORT 0x09
#define USBRQ_HID_SET_IDLE 0x0a
#define USBRQ_HID_SET_PROTOCOL 0x0b
/* ------------------------------------------------------------------------- */
#endif /* __usbdrv_h_included__ */

View File

@ -0,0 +1,314 @@
/* Name: usbdrvasm.S
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2007-06-13
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id$
*/
/*
General Description:
This module is the assembler part of the USB driver. This file contains
general code (preprocessor acrobatics and CRC computation) and then includes
the file appropriate for the given clock rate.
*/
#include "iarcompat.h"
#ifndef __IAR_SYSTEMS_ASM__
/* configs for io.h */
# define __SFR_OFFSET 0
# define _VECTOR(N) __vector_ ## N /* io.h does not define this for asm */
# include <avr/io.h> /* for CPU I/O register definitions and vectors */
# define macro .macro /* GNU Assembler macro definition */
# define endm .endm /* End of GNU Assembler macro definition */
#endif /* __IAR_SYSTEMS_ASM__ */
#include "usbdrv.h" /* for common defs */
/* register names */
#define x1 r16
#define x2 r17
#define shift r18
#define cnt r19
#define x3 r20
#define x4 r21
#define bitcnt r22
#define phase x4
#define leap x4
/* Some assembler dependent definitions and declarations: */
#ifdef __IAR_SYSTEMS_ASM__
# define nop2 rjmp $+2 /* jump to next instruction */
# define XL r26
# define XH r27
# define YL r28
# define YH r29
# define ZL r30
# define ZH r31
# define lo8(x) LOW(x)
# define hi8(x) (((x)>>8) & 0xff) /* not HIGH to allow XLINK to make a proper range check */
extern usbRxBuf, usbDeviceAddr, usbNewDeviceAddr, usbInputBufOffset
extern usbCurrentTok, usbRxLen, usbRxToken, usbTxLen
extern usbTxBuf, usbTxStatus1, usbTxStatus3
# if USB_COUNT_SOF
extern usbSofCount
# endif
public usbCrc16
public usbCrc16Append
COMMON INTVEC
# ifndef USB_INTR_VECTOR
ORG INT0_vect
# else /* USB_INTR_VECTOR */
ORG USB_INTR_VECTOR
# undef USB_INTR_VECTOR
# endif /* USB_INTR_VECTOR */
# define USB_INTR_VECTOR usbInterruptHandler
rjmp USB_INTR_VECTOR
RSEG CODE
#else /* __IAR_SYSTEMS_ASM__ */
# define nop2 rjmp .+0 /* jump to next instruction */
# ifndef USB_INTR_VECTOR /* default to hardware interrupt INT0 */
# define USB_INTR_VECTOR SIG_INTERRUPT0
# endif
.text
.global USB_INTR_VECTOR
.type USB_INTR_VECTOR, @function
.global usbCrc16
.global usbCrc16Append
#endif /* __IAR_SYSTEMS_ASM__ */
#if USB_INTR_PENDING < 0x40 /* This is an I/O address, use in and out */
# define USB_LOAD_PENDING(reg) in reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) out USB_INTR_PENDING, reg
#else /* It's a memory address, use lds and sts */
# define USB_LOAD_PENDING(reg) lds reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) sts USB_INTR_PENDING, reg
#endif
#define usbTxLen1 usbTxStatus1
#define usbTxBuf1 (usbTxStatus1 + 1)
#define usbTxLen3 usbTxStatus3
#define usbTxBuf3 (usbTxStatus3 + 1)
;----------------------------------------------------------------------------
; Utility functions
;----------------------------------------------------------------------------
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbCrc16 on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
RTMODEL "__rt_version", "3"
/* The line above will generate an error if cc calling conventions change.
* The value "3" above is valid for IAR 4.10B/W32
*/
# define argLen r18 /* argument 2 */
# define argPtrL r16 /* argument 1 */
# define argPtrH r17 /* argument 1 */
# define resCrcL r16 /* result */
# define resCrcH r17 /* result */
# define ptrL ZL
# define ptrH ZH
# define ptr Z
# define byte r22
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbCrc16 on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define argLen r22 /* argument 2 */
# define argPtrL r24 /* argument 1 */
# define argPtrH r25 /* argument 1 */
# define resCrcL r24 /* result */
# define resCrcH r25 /* result */
# define ptrL XL
# define ptrH XH
# define ptr x
# define byte r18
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#endif
; extern unsigned usbCrc16(unsigned char *data, unsigned char len);
; data: r24/25
; len: r22
; temp variables:
; r18: data byte
; r19: bit counter
; r20/21: polynomial
; r23: scratch
; r24/25: crc-sum
; r26/27=X: ptr
usbCrc16:
mov ptrL, argPtrL
mov ptrH, argPtrH
ldi resCrcL, 0
ldi resCrcH, 0
ldi polyL, lo8(0xa001)
ldi polyH, hi8(0xa001)
com argLen ; argLen = -argLen - 1
crcByteLoop:
subi argLen, -1
brcc crcReady ; modified loop to ensure that carry is set below
ld byte, ptr+
ldi bitCnt, -8 ; strange loop counter to ensure that carry is set where we need it
eor resCrcL, byte
crcBitLoop:
ror resCrcH ; carry is always set here
ror resCrcL
brcs crcNoXor
eor resCrcL, polyL
eor resCrcH, polyH
crcNoXor:
subi bitCnt, -1
brcs crcBitLoop
rjmp crcByteLoop
crcReady:
ret
; Thanks to Reimar Doeffinger for optimizing this CRC routine!
; extern unsigned usbCrc16Append(unsigned char *data, unsigned char len);
usbCrc16Append:
rcall usbCrc16
st ptr+, resCrcL
st ptr+, resCrcH
ret
#undef argLen
#undef argPtrL
#undef argPtrH
#undef resCrcL
#undef resCrcH
#undef ptrL
#undef ptrH
#undef ptr
#undef byte
#undef bitCnt
#undef polyL
#undef polyH
#undef scratch
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbMeasureFrameLength on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
# define resL r16
# define resH r17
# define cnt16L r30
# define cnt16H r31
# define cntH r18
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbMeasureFrameLength on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define resL r24
# define resH r25
# define cnt16L r24
# define cnt16H r25
# define cntH r26
#endif
# define cnt16 cnt16L
; extern unsigned usbMeasurePacketLength(void);
; returns time between two idle strobes in multiples of 7 CPU clocks
.global usbMeasureFrameLength
usbMeasureFrameLength:
ldi cntH, 6 ; wait ~ 10 ms for D- == 0
clr cnt16L
clr cnt16H
usbMFTime16:
dec cntH
breq usbMFTimeout
usbMFWaitStrobe: ; first wait for D- == 0 (idle strobe)
sbiw cnt16, 1 ;[0] [6]
breq usbMFTime16 ;[2]
sbic USBIN, USBMINUS ;[3]
rjmp usbMFWaitStrobe ;[4]
usbMFWaitIdle: ; then wait until idle again
sbis USBIN, USBMINUS ;1 wait for D- == 1
rjmp usbMFWaitIdle ;2
ldi cnt16L, 1 ;1 represents cycles so far
clr cnt16H ;1
usbMFWaitLoop:
in cntH, USBIN ;[0] [7]
adiw cnt16, 1 ;[1]
breq usbMFTimeout ;[3]
andi cntH, USBMASK ;[4]
brne usbMFWaitLoop ;[5]
usbMFTimeout:
#if resL != cnt16L
mov resL, cnt16L
mov resH, cnt16H
#endif
ret
#undef resL
#undef resH
#undef cnt16
#undef cnt16L
#undef cnt16H
#undef cntH
#endif /* USB_CFG_HAVE_MEASURE_FRAME_LENGTH */
;----------------------------------------------------------------------------
; Now include the clock rate specific code
;----------------------------------------------------------------------------
#ifndef USB_CFG_CLOCK_KHZ
# define USB_CFG_CLOCK_KHZ 12000
#endif
#if USB_CFG_CLOCK_KHZ == 12000
# include "usbdrvasm12.inc"
#elif USB_CFG_CLOCK_KHZ == 15000
# include "usbdrvasm15.inc"
#elif USB_CFG_CLOCK_KHZ == 16000
# include "usbdrvasm16.inc"
#elif USB_CFG_CLOCK_KHZ == 16500
# include "usbdrvasm165.inc"
#elif USB_CFG_CLOCK_KHZ == 20000
# include "usbdrvasm20.inc"
#else
# error "USB_CFG_CLOCK_KHZ is not one of the supported rates!"
#endif

View File

@ -0,0 +1,21 @@
/* Name: usbdrvasm.asm
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2006-03-01
* Tabsize: 4
* Copyright: (c) 2006 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id$
*/
/*
General Description:
The IAR compiler/assembler system prefers assembler files with file extension
".asm". We simply provide this file as an alias for usbdrvasm.S.
Thanks to Oleg Semyonov for his help with the IAR tools port!
*/
#include "usbdrvasm.S"
end

View File

@ -0,0 +1,427 @@
/* Name: usbdrvasm12.inc
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbdrvasm12.inc 483 2008-02-05 15:05:32Z cs $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 12 MHz version of the asssembler part of the USB driver. It
requires a 12 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
Timing constraints according to spec (in bit times):
timing subject min max CPUcycles
---------------------------------------------------------------------------
EOP of OUT/SETUP to sync pattern of DATA0 (both rx) 2 16 16-128
EOP of IN to sync pattern of DATA0 (rx, then tx) 2 7.5 16-60
DATAx (rx) to ACK/NAK/STALL (tx) 2 7.5 16-60
*/
;Software-receiver engine. Strict timing! Don't change unless you can preserve timing!
;interrupt response time: 4 cycles + insn running = 7 max if interrupts always enabled
;max allowable interrupt latency: 34 cycles -> max 25 cycles interrupt disable
;max stack usage: [ret(2), YL, SREG, YH, shift, x1, x2, x3, cnt, x4] = 11 bytes
;Numbers in brackets are maximum cycles since SOF.
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG [sofError], YH, shift, x1, x2, x3, cnt
push YL ;2 [35] push only what is necessary to sync with edge ASAP
in YL, SREG ;1 [37]
push YL ;2 [39]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;first part has no timeout because it waits for IDLE or SE1 (== disconnected)
waitForJ:
sbis USBIN, USBMINUS ;1 [40] wait for D- == 1
rjmp waitForJ ;2
waitForK:
;The following code results in a sampling window of 1/4 bit which meets the spec.
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
foundK:
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 4 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push YH ;2 [2]
lds YL, usbInputBufOffset;2 [4]
clr YH ;1 [5]
subi YL, lo8(-(usbRxBuf));1 [6]
sbci YH, hi8(-(usbRxBuf));1 [7]
sbis USBIN, USBMINUS ;1 [8] we want two bits K [sample 1 cycle too early]
rjmp haveTwoBitsK ;2 [10]
pop YH ;2 [11] undo the push from before
rjmp waitForK ;2 [13] this was not the end of sync, retry
haveTwoBitsK:
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
push shift ;2 [16]
push x1 ;2 [12]
push x2 ;2 [14]
in x1, USBIN ;1 [17] <-- sample bit 0
ldi shift, 0xff ;1 [18]
bst x1, USBMINUS ;1 [19]
bld shift, 0 ;1 [20]
push x3 ;2 [22]
push cnt ;2 [24]
in x2, USBIN ;1 [25] <-- sample bit 1
ser x3 ;1 [26] [inserted init instruction]
eor x1, x2 ;1 [27]
bst x1, USBMINUS ;1 [28]
bld shift, 1 ;1 [29]
ldi cnt, USB_BUFSIZE;1 [30] [inserted init instruction]
rjmp rxbit2 ;2 [32]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
unstuff0: ;1 (branch taken)
andi x3, ~0x01 ;1 [15]
mov x1, x2 ;1 [16] x2 contains last sampled (stuffed) bit
in x2, USBIN ;1 [17] <-- sample bit 1 again
ori shift, 0x01 ;1 [18]
rjmp didUnstuff0 ;2 [20]
unstuff1: ;1 (branch taken)
mov x2, x1 ;1 [21] x1 contains last sampled (stuffed) bit
andi x3, ~0x02 ;1 [22]
ori shift, 0x02 ;1 [23]
nop ;1 [24]
in x1, USBIN ;1 [25] <-- sample bit 2 again
rjmp didUnstuff1 ;2 [27]
unstuff2: ;1 (branch taken)
andi x3, ~0x04 ;1 [29]
ori shift, 0x04 ;1 [30]
mov x1, x2 ;1 [31] x2 contains last sampled (stuffed) bit
nop ;1 [32]
in x2, USBIN ;1 [33] <-- sample bit 3
rjmp didUnstuff2 ;2 [35]
unstuff3: ;1 (branch taken)
in x2, USBIN ;1 [34] <-- sample stuffed bit 3 [one cycle too late]
andi x3, ~0x08 ;1 [35]
ori shift, 0x08 ;1 [36]
rjmp didUnstuff3 ;2 [38]
unstuff4: ;1 (branch taken)
andi x3, ~0x10 ;1 [40]
in x1, USBIN ;1 [41] <-- sample stuffed bit 4
ori shift, 0x10 ;1 [42]
rjmp didUnstuff4 ;2 [44]
unstuff5: ;1 (branch taken)
andi x3, ~0x20 ;1 [48]
in x2, USBIN ;1 [49] <-- sample stuffed bit 5
ori shift, 0x20 ;1 [50]
rjmp didUnstuff5 ;2 [52]
unstuff6: ;1 (branch taken)
andi x3, ~0x40 ;1 [56]
in x1, USBIN ;1 [57] <-- sample stuffed bit 6
ori shift, 0x40 ;1 [58]
rjmp didUnstuff6 ;2 [60]
; extra jobs done during bit interval:
; bit 0: store, clear [SE0 is unreliable here due to bit dribbling in hubs]
; bit 1: se0 check
; bit 2: overflow check
; bit 3: recovery from delay [bit 0 tasks took too long]
; bit 4: none
; bit 5: none
; bit 6: none
; bit 7: jump, eor
rxLoop:
eor x3, shift ;1 [0] reconstruct: x3 is 0 at bit locations we changed, 1 at others
in x1, USBIN ;1 [1] <-- sample bit 0
st y+, x3 ;2 [3] store data
ser x3 ;1 [4]
nop ;1 [5]
eor x2, x1 ;1 [6]
bst x2, USBMINUS;1 [7]
bld shift, 0 ;1 [8]
in x2, USBIN ;1 [9] <-- sample bit 1 (or possibly bit 0 stuffed)
andi x2, USBMASK ;1 [10]
breq se0 ;1 [11] SE0 check for bit 1
andi shift, 0xf9 ;1 [12]
didUnstuff0:
breq unstuff0 ;1 [13]
eor x1, x2 ;1 [14]
bst x1, USBMINUS;1 [15]
bld shift, 1 ;1 [16]
rxbit2:
in x1, USBIN ;1 [17] <-- sample bit 2 (or possibly bit 1 stuffed)
andi shift, 0xf3 ;1 [18]
breq unstuff1 ;1 [19] do remaining work for bit 1
didUnstuff1:
subi cnt, 1 ;1 [20]
brcs overflow ;1 [21] loop control
eor x2, x1 ;1 [22]
bst x2, USBMINUS;1 [23]
bld shift, 2 ;1 [24]
in x2, USBIN ;1 [25] <-- sample bit 3 (or possibly bit 2 stuffed)
andi shift, 0xe7 ;1 [26]
breq unstuff2 ;1 [27]
didUnstuff2:
eor x1, x2 ;1 [28]
bst x1, USBMINUS;1 [29]
bld shift, 3 ;1 [30]
didUnstuff3:
andi shift, 0xcf ;1 [31]
breq unstuff3 ;1 [32]
in x1, USBIN ;1 [33] <-- sample bit 4
eor x2, x1 ;1 [34]
bst x2, USBMINUS;1 [35]
bld shift, 4 ;1 [36]
didUnstuff4:
andi shift, 0x9f ;1 [37]
breq unstuff4 ;1 [38]
nop2 ;2 [40]
in x2, USBIN ;1 [41] <-- sample bit 5
eor x1, x2 ;1 [42]
bst x1, USBMINUS;1 [43]
bld shift, 5 ;1 [44]
didUnstuff5:
andi shift, 0x3f ;1 [45]
breq unstuff5 ;1 [46]
nop2 ;2 [48]
in x1, USBIN ;1 [49] <-- sample bit 6
eor x2, x1 ;1 [50]
bst x2, USBMINUS;1 [51]
bld shift, 6 ;1 [52]
didUnstuff6:
cpi shift, 0x02 ;1 [53]
brlo unstuff6 ;1 [54]
nop2 ;2 [56]
in x2, USBIN ;1 [57] <-- sample bit 7
eor x1, x2 ;1 [58]
bst x1, USBMINUS;1 [59]
bld shift, 7 ;1 [60]
didUnstuff7:
cpi shift, 0x04 ;1 [61]
brsh rxLoop ;2 [63] loop control
unstuff7:
andi x3, ~0x80 ;1 [63]
ori shift, 0x80 ;1 [64]
in x2, USBIN ;1 [65] <-- sample stuffed bit 7
nop ;1 [66]
rjmp didUnstuff7 ;2 [68]
macro POP_STANDARD ; 12 cycles
pop cnt
pop x3
pop x2
pop x1
pop shift
pop YH
endm
macro POP_RETI ; 5 cycles
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
;----------------------------------------------------------------------------
; Transmitting data
;----------------------------------------------------------------------------
bitstuff0: ;1 (for branch taken)
eor x1, x4 ;1
ldi x2, 0 ;1
out USBOUT, x1 ;1 <-- out
rjmp didStuff0 ;2 branch back 2 cycles earlier
bitstuff1: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff1 ;2 we know that C is clear, jump back to do OUT and ror 0 into x2
bitstuff2: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff2 ;2 jump back 4 cycles earlier and do out and ror 0 into x2
bitstuff3: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff3 ;2 jump back earlier and ror 0 into x2
bitstuff4: ;1 (for branch taken)
eor x1, x4 ;1
ldi x2, 0 ;1
out USBOUT, x1 ;1 <-- out
rjmp didStuff4 ;2 jump back 2 cycles earlier
sendNakAndReti: ;0 [-19] 19 cycles until SOP
ldi x3, USBPID_NAK ;1 [-18]
rjmp usbSendX3 ;2 [-16]
sendAckAndReti: ;0 [-19] 19 cycles until SOP
ldi x3, USBPID_ACK ;1 [-18]
rjmp usbSendX3 ;2 [-16]
sendCntAndReti: ;0 [-17] 17 cycles until SOP
mov x3, cnt ;1 [-16]
usbSendX3: ;0 [-16]
ldi YL, 20 ;1 [-15] 'x3' is R20
ldi YH, 0 ;1 [-14]
ldi cnt, 2 ;1 [-13]
; rjmp usbSendAndReti fallthrough
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1) or USBOUT = 0x01
; K = (D+ = 1), (D- = 0) or USBOUT = 0x02
; Spec allows 7.5 bit times from EOP to SOP for replies (= 60 cycles)
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte
;uses: x1...x4, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
usbSendAndReti: ;0 [-13] timing: 13 cycles until SOP
in x2, USBDDR ;1 [-12]
ori x2, USBMASK ;1 [-11]
sbi USBOUT, USBMINUS;2 [-9] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;1 [-8] port mirror for tx loop
out USBDDR, x2 ;1 [-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
push x4 ;2 [-5]
ldi x4, USBMASK ;1 [-4] exor mask
ldi shift, 0x80 ;1 [-3] sync byte is first byte sent
txLoop: ; [62]
sbrs shift, 0 ;1 [-2] [62]
eor x1, x4 ;1 [-1] [63]
out USBOUT, x1 ;1 [0] <-- out bit 0
ror shift ;1 [1]
ror x2 ;1 [2]
didStuff0:
cpi x2, 0xfc ;1 [3]
brsh bitstuff0 ;1 [4]
sbrs shift, 0 ;1 [5]
eor x1, x4 ;1 [6]
ror shift ;1 [7]
didStuff1:
out USBOUT, x1 ;1 [8] <-- out bit 1
ror x2 ;1 [9]
cpi x2, 0xfc ;1 [10]
brsh bitstuff1 ;1 [11]
sbrs shift, 0 ;1 [12]
eor x1, x4 ;1 [13]
ror shift ;1 [14]
didStuff2:
ror x2 ;1 [15]
out USBOUT, x1 ;1 [16] <-- out bit 2
cpi x2, 0xfc ;1 [17]
brsh bitstuff2 ;1 [18]
sbrs shift, 0 ;1 [19]
eor x1, x4 ;1 [20]
ror shift ;1 [21]
didStuff3:
ror x2 ;1 [22]
cpi x2, 0xfc ;1 [23]
out USBOUT, x1 ;1 [24] <-- out bit 3
brsh bitstuff3 ;1 [25]
nop2 ;2 [27]
ld x3, y+ ;2 [29]
sbrs shift, 0 ;1 [30]
eor x1, x4 ;1 [31]
out USBOUT, x1 ;1 [32] <-- out bit 4
ror shift ;1 [33]
ror x2 ;1 [34]
didStuff4:
cpi x2, 0xfc ;1 [35]
brsh bitstuff4 ;1 [36]
sbrs shift, 0 ;1 [37]
eor x1, x4 ;1 [38]
ror shift ;1 [39]
didStuff5:
out USBOUT, x1 ;1 [40] <-- out bit 5
ror x2 ;1 [41]
cpi x2, 0xfc ;1 [42]
brsh bitstuff5 ;1 [43]
sbrs shift, 0 ;1 [44]
eor x1, x4 ;1 [45]
ror shift ;1 [46]
didStuff6:
ror x2 ;1 [47]
out USBOUT, x1 ;1 [48] <-- out bit 6
cpi x2, 0xfc ;1 [49]
brsh bitstuff6 ;1 [50]
sbrs shift, 0 ;1 [51]
eor x1, x4 ;1 [52]
ror shift ;1 [53]
didStuff7:
ror x2 ;1 [54]
cpi x2, 0xfc ;1 [55]
out USBOUT, x1 ;1 [56] <-- out bit 7
brsh bitstuff7 ;1 [57]
mov shift, x3 ;1 [58]
dec cnt ;1 [59]
brne txLoop ;1/2 [60/61]
;make SE0:
cbr x1, USBMASK ;1 [61] prepare SE0 [spec says EOP may be 15 to 18 cycles]
pop x4 ;2 [63]
;brackets are cycles from start of SE0 now
out USBOUT, x1 ;1 [0] <-- out SE0 -- from now 2 bits = 16 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
lds x2, usbNewDeviceAddr;2 [2]
lsl x2; ;1 [3] we compare with left shifted address
subi YL, 20 + 2 ;1 [4] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;1 [5]
breq skipAddrAssign ;2 [7]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;1 [8] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;1 [9]
ori x1, USBIDLE ;1 [10]
in x2, USBDDR ;1 [11]
cbr x2, USBMASK ;1 [12] set both pins to input
mov x3, x1 ;1 [13]
cbr x3, USBMASK ;1 [14] configure no pullup on both pins
out USBOUT, x1 ;1 [15] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;1 [16] <-- release bus now
out USBOUT, x3 ;1 [17] <-- ensure no pull-up resistors are active
rjmp doReturn
bitstuff5: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff5 ;2 same trick as in bitstuff1...
bitstuff6: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff6 ;2 same trick as above...
bitstuff7: ;1 (for branch taken)
eor x1, x4 ;1
rjmp didStuff7 ;2 same trick as above...

View File

@ -0,0 +1,418 @@
/* Name: usbdrvasm15.inc
* Project: AVR USB driver
* Author: contributed by V. Bosch
* Creation Date: 2007-08-06
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id: usbdrvasm15.inc 607 2008-05-13 15:57:28Z cs $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 15 MHz version of the asssembler part of the USB driver. It
requires a 15 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 15 MHz -> 10.0 cycles per bit, 80.0 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
;----------------------------------------------------------------------------
; order of registers pushed:
; YL, SREG [sofError] YH, shift, x1, x2, x3, bitcnt, cnt, x4
;----------------------------------------------------------------------------
USB_INTR_VECTOR:
push YL ;2 push only what is necessary to sync with edge ASAP
in YL, SREG ;1
push YL ;2
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;
; sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
; sync up with J to K edge during sync pattern -- use fastest possible loops
; first part has no timeout because it waits for IDLE or SE1 (== disconnected)
;-------------------------------------------------------------------------------
waitForJ: ;-
sbis USBIN, USBMINUS ;1 <-- sample: wait for D- == 1
rjmp waitForJ ;2
;-------------------------------------------------------------------------------
; The following code results in a sampling window of < 1/4 bit
; which meets the spec.
;-------------------------------------------------------------------------------
waitForK: ;-
sbis USBIN, USBMINUS ;1 [00] <-- sample
rjmp foundK ;2 [01]
sbis USBIN, USBMINUS ; <-- sample
rjmp foundK
sbis USBIN, USBMINUS ; <-- sample
rjmp foundK
sbis USBIN, USBMINUS ; <-- sample
rjmp foundK
sbis USBIN, USBMINUS ; <-- sample
rjmp foundK
sbis USBIN, USBMINUS ; <-- sample
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
;------------------------------------------------------------------------------
; {3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for
; center sampling]
; we have 1 bit time for setup purposes, then sample again.
; Numbers in brackets are cycles from center of first sync (double K)
; bit after the instruction
;------------------------------------------------------------------------------
foundK: ;- [02]
lds YL, usbInputBufOffset;2 [03+04] tx loop
push YH ;2 [05+06]
clr YH ;1 [07]
subi YL, lo8(-(usbRxBuf)) ;1 [08] [rx loop init]
sbci YH, hi8(-(usbRxBuf)) ;1 [09] [rx loop init]
push shift ;2 [10+11]
ser shift ;1 [12]
sbis USBIN, USBMINUS ;1 [-1] [13] <--sample:we want two bits K (sample 1 cycle too early)
rjmp haveTwoBitsK ;2 [00] [14]
pop shift ;2 [15+16] undo the push from before
pop YH ;2 [17+18] undo the push from before
rjmp waitForK ;2 [19+20] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 20 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK: ;- [01]
push x1 ;2 [02+03]
push x2 ;2 [04+05]
push x3 ;2 [06+07]
push bitcnt ;2 [08+09]
in x1, USBIN ;1 [00] [10] <-- sample bit 0
bst x1, USBMINUS ;1 [01]
bld shift, 0 ;1 [02]
push cnt ;2 [03+04]
ldi cnt, USB_BUFSIZE ;1 [05]
push x4 ;2 [06+07] tx loop
rjmp rxLoop ;2 [08]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
unstuff0: ;- [07] (branch taken)
andi x3, ~0x01 ;1 [08]
mov x1, x2 ;1 [09] x2 contains last sampled (stuffed) bit
in x2, USBIN ;1 [00] [10] <-- sample bit 1 again
andi x2, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 1
ori shift, 0x01 ;1 [03] 0b00000001
nop ;1 [04]
rjmp didUnstuff0 ;2 [05]
;-----------------------------------------------------
unstuff1: ;- [05] (branch taken)
mov x2, x1 ;1 [06] x1 contains last sampled (stuffed) bit
andi x3, ~0x02 ;1 [07]
ori shift, 0x02 ;1 [08] 0b00000010
nop ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample bit 2 again
andi x1, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 2
rjmp didUnstuff1 ;2 [03]
;-----------------------------------------------------
unstuff2: ;- [05] (branch taken)
andi x3, ~0x04 ;1 [06]
ori shift, 0x04 ;1 [07] 0b00000100
mov x1, x2 ;1 [08] x2 contains last sampled (stuffed) bit
nop ;1 [09]
in x2, USBIN ;1 [00] [10] <-- sample bit 3
andi x2, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 3
rjmp didUnstuff2 ;2 [03]
;-----------------------------------------------------
unstuff3: ;- [00] [10] (branch taken)
in x2, USBIN ;1 [01] [11] <-- sample stuffed bit 3 one cycle too late
andi x2, USBMASK ;1 [02]
breq se0Hop ;1 [03] SE0 check for stuffed bit 3
andi x3, ~0x08 ;1 [04]
ori shift, 0x08 ;1 [05] 0b00001000
rjmp didUnstuff3 ;2 [06]
;----------------------------------------------------------------------------
; extra jobs done during bit interval:
;
; bit 0: store, clear [SE0 is unreliable here due to bit dribbling in hubs],
; overflow check, jump to the head of rxLoop
; bit 1: SE0 check
; bit 2: SE0 check, recovery from delay [bit 0 tasks took too long]
; bit 3: SE0 check, recovery from delay [bit 0 tasks took too long]
; bit 4: SE0 check, none
; bit 5: SE0 check, none
; bit 6: SE0 check, none
; bit 7: SE0 check, reconstruct: x3 is 0 at bit locations we changed, 1 at others
;----------------------------------------------------------------------------
rxLoop: ;- [09]
in x2, USBIN ;1 [00] [10] <-- sample bit 1 (or possibly bit 0 stuffed)
andi x2, USBMASK ;1 [01]
brne SkipSe0Hop ;1 [02]
se0Hop: ;- [02]
rjmp se0 ;2 [03] SE0 check for bit 1
SkipSe0Hop: ;- [03]
ser x3 ;1 [04]
andi shift, 0xf9 ;1 [05] 0b11111001
breq unstuff0 ;1 [06]
didUnstuff0: ;- [06]
eor x1, x2 ;1 [07]
bst x1, USBMINUS ;1 [08]
bld shift, 1 ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample bit 2 (or possibly bit 1 stuffed)
andi x1, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 2
andi shift, 0xf3 ;1 [03] 0b11110011
breq unstuff1 ;1 [04] do remaining work for bit 1
didUnstuff1: ;- [04]
eor x2, x1 ;1 [05]
bst x2, USBMINUS ;1 [06]
bld shift, 2 ;1 [07]
nop2 ;2 [08+09]
in x2, USBIN ;1 [00] [10] <-- sample bit 3 (or possibly bit 2 stuffed)
andi x2, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 3
andi shift, 0xe7 ;1 [03] 0b11100111
breq unstuff2 ;1 [04]
didUnstuff2: ;- [04]
eor x1, x2 ;1 [05]
bst x1, USBMINUS ;1 [06]
bld shift, 3 ;1 [07]
didUnstuff3: ;- [07]
andi shift, 0xcf ;1 [08] 0b11001111
breq unstuff3 ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample bit 4
andi x1, USBMASK ;1 [01]
breq se0Hop ;1 [02] SE0 check for bit 4
eor x2, x1 ;1 [03]
bst x2, USBMINUS ;1 [04]
bld shift, 4 ;1 [05]
didUnstuff4: ;- [05]
andi shift, 0x9f ;1 [06] 0b10011111
breq unstuff4 ;1 [07]
nop2 ;2 [08+09]
in x2, USBIN ;1 [00] [10] <-- sample bit 5
andi x2, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for bit 5
eor x1, x2 ;1 [03]
bst x1, USBMINUS ;1 [04]
bld shift, 5 ;1 [05]
didUnstuff5: ;- [05]
andi shift, 0x3f ;1 [06] 0b00111111
breq unstuff5 ;1 [07]
nop2 ;2 [08+09]
in x1, USBIN ;1 [00] [10] <-- sample bit 6
andi x1, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for bit 6
eor x2, x1 ;1 [03]
bst x2, USBMINUS ;1 [04]
bld shift, 6 ;1 [05]
didUnstuff6: ;- [05]
cpi shift, 0x02 ;1 [06] 0b00000010
brlo unstuff6 ;1 [07]
nop2 ;2 [08+09]
in x2, USBIN ;1 [00] [10] <-- sample bit 7
andi x2, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for bit 7
eor x1, x2 ;1 [03]
bst x1, USBMINUS ;1 [04]
bld shift, 7 ;1 [05]
didUnstuff7: ;- [05]
cpi shift, 0x04 ;1 [06] 0b00000100
brlo unstuff7 ;1 [07]
eor x3, shift ;1 [08] reconstruct: x3 is 0 at bit locations we changed, 1 at others
nop ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample bit 0
st y+, x3 ;2 [01+02] store data
eor x2, x1 ;1 [03]
bst x2, USBMINUS ;1 [04]
bld shift, 0 ;1 [05]
subi cnt, 1 ;1 [06]
brcs overflow ;1 [07]
rjmp rxLoop ;2 [08]
;-----------------------------------------------------
unstuff4: ;- [08]
andi x3, ~0x10 ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample stuffed bit 4
andi x1, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for stuffed bit 4
ori shift, 0x10 ;1 [03]
rjmp didUnstuff4 ;2 [04]
;-----------------------------------------------------
unstuff5: ;- [08]
ori shift, 0x20 ;1 [09]
in x2, USBIN ;1 [00] [10] <-- sample stuffed bit 5
andi x2, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for stuffed bit 5
andi x3, ~0x20 ;1 [03]
rjmp didUnstuff5 ;2 [04]
;-----------------------------------------------------
unstuff6: ;- [08]
andi x3, ~0x40 ;1 [09]
in x1, USBIN ;1 [00] [10] <-- sample stuffed bit 6
andi x1, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for stuffed bit 6
ori shift, 0x40 ;1 [03]
rjmp didUnstuff6 ;2 [04]
;-----------------------------------------------------
unstuff7: ;- [08]
andi x3, ~0x80 ;1 [09]
in x2, USBIN ;1 [00] [10] <-- sample stuffed bit 7
andi x2, USBMASK ;1 [01]
breq se0 ;1 [02] SE0 check for stuffed bit 7
ori shift, 0x80 ;1 [03]
rjmp didUnstuff7 ;2 [04]
macro POP_STANDARD ; 16 cycles
pop x4
pop cnt
pop bitcnt
pop x3
pop x2
pop x1
pop shift
pop YH
endm
macro POP_RETI ; 5 cycles
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
;---------------------------------------------------------------------------
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
;---------------------------------------------------------------------------
bitstuffN: ;- [04]
eor x1, x4 ;1 [05]
clr x2 ;1 [06]
nop ;1 [07]
rjmp didStuffN ;1 [08]
;---------------------------------------------------------------------------
bitstuff6: ;- [04]
eor x1, x4 ;1 [05]
clr x2 ;1 [06]
rjmp didStuff6 ;1 [07]
;---------------------------------------------------------------------------
bitstuff7: ;- [02]
eor x1, x4 ;1 [03]
clr x2 ;1 [06]
nop ;1 [05]
rjmp didStuff7 ;1 [06]
;---------------------------------------------------------------------------
sendNakAndReti: ;- [-19]
ldi x3, USBPID_NAK ;1 [-18]
rjmp sendX3AndReti ;1 [-17]
;---------------------------------------------------------------------------
sendAckAndReti: ;- [-17]
ldi cnt, USBPID_ACK ;1 [-16]
sendCntAndReti: ;- [-16]
mov x3, cnt ;1 [-15]
sendX3AndReti: ;- [-15]
ldi YL, 20 ;1 [-14] x3==r20 address is 20
ldi YH, 0 ;1 [-13]
ldi cnt, 2 ;1 [-12]
; rjmp usbSendAndReti fallthrough
;---------------------------------------------------------------------------
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We need not to match the transfer rate exactly because the spec demands
;only 1.5% precision anyway.
usbSendAndReti: ;- [-13] 13 cycles until SOP
in x2, USBDDR ;1 [-12]
ori x2, USBMASK ;1 [-11]
sbi USBOUT, USBMINUS ;2 [-09-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;1 [-08] port mirror for tx loop
out USBDDR, x2 ;1 [-07] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;1 [-06] exor mask
ldi shift, 0x80 ;1 [-05] sync byte is first byte sent
ldi bitcnt, 6 ;1 [-04]
txBitLoop: ;- [-04] [06]
sbrs shift, 0 ;1 [-03] [07]
eor x1, x4 ;1 [-02] [08]
ror shift ;1 [-01] [09]
didStuffN: ;- [09]
out USBOUT, x1 ;1 [00] [10] <-- out N
ror x2 ;1 [01]
cpi x2, 0xfc ;1 [02]
brcc bitstuffN ;1 [03]
dec bitcnt ;1 [04]
brne txBitLoop ;1 [05]
sbrs shift, 0 ;1 [06]
eor x1, x4 ;1 [07]
ror shift ;1 [08]
didStuff6: ;- [08]
nop ;1 [09]
out USBOUT, x1 ;1 [00] [10] <-- out 6
ror x2 ;1 [01]
cpi x2, 0xfc ;1 [02]
brcc bitstuff6 ;1 [03]
sbrs shift, 0 ;1 [04]
eor x1, x4 ;1 [05]
ror shift ;1 [06]
ror x2 ;1 [07]
didStuff7: ;- [07]
ldi bitcnt, 6 ;1 [08]
cpi x2, 0xfc ;1 [09]
out USBOUT, x1 ;1 [00] [10] <-- out 7
brcc bitstuff7 ;1 [01]
ld shift, y+ ;2 [02+03]
dec cnt ;1 [04]
brne txBitLoop ;1 [05]
makeSE0:
cbr x1, USBMASK ;1 [06] prepare SE0 [spec says EOP may be 19 to 23 cycles]
lds x2, usbNewDeviceAddr;2 [07+08]
lsl x2 ;1 [09] we compare with left shifted address
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
out USBOUT, x1 ;1 [00] [10] <-- out SE0-- from now 2 bits==20 cycl. until bus idle
subi YL, 20 + 2 ;1 [01] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;1 [02]
breq skipAddrAssign ;1 [03]
sts usbDeviceAddr, x2 ;2 [04+05] if not skipped: SE0 is one cycle longer
;----------------------------------------------------------------------------
;end of usbDeviceAddress transfer
skipAddrAssign: ;- [03/04]
ldi x2, 1<<USB_INTR_PENDING_BIT ;1 [05] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;1 [06]
ori x1, USBIDLE ;1 [07]
in x2, USBDDR ;1 [08]
cbr x2, USBMASK ;1 [09] set both pins to input
mov x3, x1 ;1 [10]
cbr x3, USBMASK ;1 [11] configure no pullup on both pins
ldi x4, 3 ;1 [12]
se0Delay: ;- [12] [15]
dec x4 ;1 [13] [16]
brne se0Delay ;1 [14] [17]
nop2 ;2 [18+19]
out USBOUT, x1 ;1 [20] <--out J (idle) -- end of SE0 (EOP sig.)
out USBDDR, x2 ;1 [21] <--release bus now
out USBOUT, x3 ;1 [22] <--ensure no pull-up resistors are active
rjmp doReturn ;1 [23]
;---------------------------------------------------------------------------

View File

@ -0,0 +1,337 @@
/* Name: usbdrvasm16.inc
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2007-06-15
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id: usbdrvasm16.inc 607 2008-05-13 15:57:28Z cs $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 16 MHz version of the asssembler part of the USB driver. It
requires a 16 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 16 MHz -> 10.6666666 cycles per bit, 85.333333333 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt
push YL ;[-25] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-23]
push YL ;[-22]
push YH ;[-20]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;first part has no timeout because it waits for IDLE or SE1 (== disconnected)
waitForJ:
sbis USBIN, USBMINUS ;[-18] wait for D- == 1
rjmp waitForJ
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-15]
rjmp foundK ;[-14]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
foundK: ;[-12]
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push bitcnt ;[-12]
; [---] ;[-11]
lds YL, usbInputBufOffset;[-10]
; [---] ;[-9]
clr YH ;[-8]
subi YL, lo8(-(usbRxBuf));[-7] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-6] [rx loop init]
push shift ;[-5]
; [---] ;[-4]
ldi bitcnt, 0x55 ;[-3] [rx loop init]
sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early)
rjmp haveTwoBitsK ;[-1]
pop shift ;[0] undo the push from before
pop bitcnt ;[2] undo the push from before
rjmp waitForK ;[4] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 21 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK:
push x1 ;[1]
push x2 ;[3]
push x3 ;[5]
ldi shift, 0 ;[7]
ldi x3, 1<<4 ;[8] [rx loop init] first sample is inverse bit, compensate that
push x4 ;[9] == leap
in x1, USBIN ;[11] <-- sample bit 0
andi x1, USBMASK ;[12]
bst x1, USBMINUS ;[13]
bld shift, 7 ;[14]
push cnt ;[15]
ldi leap, 0 ;[17] [rx loop init]
ldi cnt, USB_BUFSIZE;[18] [rx loop init]
rjmp rxbit1 ;[19] arrives at [21]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
unstuff6:
andi x2, USBMASK ;[03]
ori x3, 1<<6 ;[04] will not be shifted any more
andi shift, ~0x80;[05]
mov x1, x2 ;[06] sampled bit 7 is actually re-sampled bit 6
subi leap, 3 ;[07] since this is a short (10 cycle) bit, enforce leap bit
rjmp didUnstuff6 ;[08]
unstuff7:
ori x3, 1<<7 ;[09] will not be shifted any more
in x2, USBIN ;[00] [10] re-sample bit 7
andi x2, USBMASK ;[01]
andi shift, ~0x80;[02]
subi leap, 3 ;[03] since this is a short (10 cycle) bit, enforce leap bit
rjmp didUnstuff7 ;[04]
unstuffEven:
ori x3, 1<<6 ;[09] will be shifted right 6 times for bit 0
in x1, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x1, USBMASK ;[02]
breq se0 ;[03]
subi leap, 3 ;[04] since this is a short (10 cycle) bit, enforce leap bit
nop ;[05]
rjmp didUnstuffE ;[06]
unstuffOdd:
ori x3, 1<<5 ;[09] will be shifted right 4 times for bit 1
in x2, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x2, USBMASK ;[02]
breq se0 ;[03]
subi leap, 3 ;[04] since this is a short (10 cycle) bit, enforce leap bit
nop ;[05]
rjmp didUnstuffO ;[06]
rxByteLoop:
andi x1, USBMASK ;[03]
eor x2, x1 ;[04]
subi leap, 1 ;[05]
brpl skipLeap ;[06]
subi leap, -3 ;1 one leap cycle every 3rd byte -> 85 + 1/3 cycles per byte
nop ;1
skipLeap:
subi x2, 1 ;[08]
ror shift ;[09]
didUnstuff6:
cpi shift, 0xfc ;[10]
in x2, USBIN ;[00] [11] <-- sample bit 7
brcc unstuff6 ;[01]
andi x2, USBMASK ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
didUnstuff7:
cpi shift, 0xfc ;[06]
brcc unstuff7 ;[07]
eor x3, shift ;[08] reconstruct: x3 is 1 at bit locations we changed, 0 at others
st y+, x3 ;[09] store data
rxBitLoop:
in x1, USBIN ;[00] [11] <-- sample bit 0/2/4
andi x1, USBMASK ;[01]
eor x2, x1 ;[02]
andi x3, 0x3f ;[03] topmost two bits reserved for 6 and 7
subi x2, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffEven ;[07]
didUnstuffE:
lsr x3 ;[08]
lsr x3 ;[09]
rxbit1:
in x2, USBIN ;[00] [10] <-- sample bit 1/3/5
andi x2, USBMASK ;[01]
breq se0 ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffOdd ;[07]
didUnstuffO:
subi bitcnt, 0xab;[08] == addi 0x55, 0x55 = 0x100/3
brcs rxBitLoop ;[09]
subi cnt, 1 ;[10]
in x1, USBIN ;[00] [11] <-- sample bit 6
brcc rxByteLoop ;[01]
rjmp overflow
macro POP_STANDARD ; 14 cycles
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop bitcnt
endm
macro POP_RETI ; 7 cycles
pop YH
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
bitstuffN:
eor x1, x4 ;[5]
ldi x2, 0 ;[6]
nop2 ;[7]
nop ;[9]
out USBOUT, x1 ;[10] <-- out
rjmp didStuffN ;[0]
bitstuff6:
eor x1, x4 ;[5]
ldi x2, 0 ;[6] Carry is zero due to brcc
rol shift ;[7] compensate for ror shift at branch destination
rjmp didStuff6 ;[8]
bitstuff7:
ldi x2, 0 ;[2] Carry is zero due to brcc
rjmp didStuff7 ;[3]
sendNakAndReti:
ldi x3, USBPID_NAK ;[-18]
rjmp sendX3AndReti ;[-17]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov x3, cnt ;[-16]
sendX3AndReti:
ldi YL, 20 ;[-15] x3==r20 address is 20
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We don't match the transfer rate exactly (don't insert leap cycles every third
;byte) because the spec demands only 1.5% precision anyway.
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
txByteLoop:
ldi bitcnt, 0x35 ;[-4] [6] binary 0011 0101
txBitLoop:
sbrs shift, 0 ;[-3] [7]
eor x1, x4 ;[-2] [8]
out USBOUT, x1 ;[-1] [9] <-- out N
ror shift ;[0] [10]
ror x2 ;[1]
didStuffN:
cpi x2, 0xfc ;[2]
brcc bitstuffN ;[3]
lsr bitcnt ;[4]
brcc txBitLoop ;[5]
brne txBitLoop ;[6]
sbrs shift, 0 ;[7]
eor x1, x4 ;[8]
didStuff6:
out USBOUT, x1 ;[-1] [9] <-- out 6
ror shift ;[0] [10]
ror x2 ;[1]
cpi x2, 0xfc ;[2]
brcc bitstuff6 ;[3]
ror shift ;[4]
didStuff7:
ror x2 ;[5]
sbrs x2, 7 ;[6]
eor x1, x4 ;[7]
nop ;[8]
cpi x2, 0xfc ;[9]
out USBOUT, x1 ;[-1][10] <-- out 7
brcc bitstuff7 ;[0] [11]
ld shift, y+ ;[1]
dec cnt ;[3]
brne txByteLoop ;[4]
;make SE0:
cbr x1, USBMASK ;[5] prepare SE0 [spec says EOP may be 21 to 25 cycles]
lds x2, usbNewDeviceAddr;[6]
lsl x2 ;[8] we compare with left shifted address
subi YL, 20 + 2 ;[9] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;[10]
out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[0]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[2] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[3]
ori x1, USBIDLE ;[4]
in x2, USBDDR ;[5]
cbr x2, USBMASK ;[6] set both pins to input
mov x3, x1 ;[7]
cbr x3, USBMASK ;[8] configure no pullup on both pins
ldi x4, 4 ;[9]
se0Delay:
dec x4 ;[10] [13] [16] [19]
brne se0Delay ;[11] [14] [17] [20]
out USBOUT, x1 ;[21] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[22] <-- release bus now
out USBOUT, x3 ;[23] <-- ensure no pull-up resistors are active
rjmp doReturn

View File

@ -0,0 +1,447 @@
/* Name: usbdrvasm165.inc
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2007-04-22
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id: usbdrvasm165.inc 607 2008-05-13 15:57:28Z cs $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 16.5 MHz version of the USB driver. It is intended for the
ATTiny45 and similar controllers running on 16.5 MHz internal RC oscillator.
This version contains a phase locked loop in the receiver routine to cope with
slight clock rate deviations of up to +/- 1%.
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;Software-receiver engine. Strict timing! Don't change unless you can preserve timing!
;interrupt response time: 4 cycles + insn running = 7 max if interrupts always enabled
;max allowable interrupt latency: 59 cycles -> max 52 cycles interrupt disable
;max stack usage: [ret(2), r0, SREG, YL, YH, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 16.5 MHz -> 11 cycles per bit
; 16.3125 MHz < F_CPU < 16.6875 MHz (+/- 1.1%)
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG [sofError], r0, YH, shift, x1, x2, x3, x4, cnt
push YL ;[-23] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-21]
push YL ;[-20]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;first part has no timeout because it waits for IDLE or SE1 (== disconnected)
waitForJ:
sbis USBIN, USBMINUS ;[-18] wait for D- == 1
rjmp waitForJ
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-15]
rjmp foundK ;[-14]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
foundK: ;[-12]
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push r0 ;[-12]
; [---] ;[-11]
push YH ;[-10]
; [---] ;[-9]
lds YL, usbInputBufOffset;[-8]
; [---] ;[-7]
clr YH ;[-6]
subi YL, lo8(-(usbRxBuf));[-5] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-4] [rx loop init]
mov r0, x2 ;[-3] [rx loop init]
sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early)
rjmp haveTwoBitsK ;[-1]
pop YH ;[0] undo the pushes from before
pop r0 ;[2]
rjmp waitForK ;[4] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 22 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK: ;[1]
push shift ;[1]
push x1 ;[3]
push x2 ;[5]
push x3 ;[7]
ldi shift, 0xff ;[9] [rx loop init]
ori x3, 0xff ;[10] [rx loop init] == ser x3, clear zero flag
in x1, USBIN ;[11] <-- sample bit 0
bst x1, USBMINUS ;[12]
bld shift, 0 ;[13]
push x4 ;[14] == phase
; [---] ;[15]
push cnt ;[16]
; [---] ;[17]
ldi phase, 0 ;[18] [rx loop init]
ldi cnt, USB_BUFSIZE;[19] [rx loop init]
rjmp rxbit1 ;[20]
; [---] ;[21]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
/*
byte oriented operations done during loop:
bit 0: store data
bit 1: SE0 check
bit 2: overflow check
bit 3: catch up
bit 4: rjmp to achieve conditional jump range
bit 5: PLL
bit 6: catch up
bit 7: jump, fixup bitstuff
; 87 [+ 2] cycles
------------------------------------------------------------------
*/
continueWithBit5:
in x2, USBIN ;[055] <-- bit 5
eor r0, x2 ;[056]
or phase, r0 ;[057]
sbrc phase, USBMINUS ;[058]
lpm ;[059] optional nop3; modifies r0
in phase, USBIN ;[060] <-- phase
eor x1, x2 ;[061]
bst x1, USBMINUS ;[062]
bld shift, 5 ;[063]
andi shift, 0x3f ;[064]
in x1, USBIN ;[065] <-- bit 6
breq unstuff5 ;[066] *** unstuff escape
eor phase, x1 ;[067]
eor x2, x1 ;[068]
bst x2, USBMINUS ;[069]
bld shift, 6 ;[070]
didUnstuff6: ;[ ]
in r0, USBIN ;[071] <-- phase
cpi shift, 0x02 ;[072]
brlo unstuff6 ;[073] *** unstuff escape
didUnstuff5: ;[ ]
nop2 ;[074]
; [---] ;[075]
in x2, USBIN ;[076] <-- bit 7
eor x1, x2 ;[077]
bst x1, USBMINUS ;[078]
bld shift, 7 ;[079]
didUnstuff7: ;[ ]
eor r0, x2 ;[080]
or phase, r0 ;[081]
in r0, USBIN ;[082] <-- phase
cpi shift, 0x04 ;[083]
brsh rxLoop ;[084]
; [---] ;[085]
unstuff7: ;[ ]
andi x3, ~0x80 ;[085]
ori shift, 0x80 ;[086]
in x2, USBIN ;[087] <-- sample stuffed bit 7
nop ;[088]
rjmp didUnstuff7 ;[089]
; [---] ;[090]
;[080]
unstuff5: ;[067]
eor phase, x1 ;[068]
andi x3, ~0x20 ;[069]
ori shift, 0x20 ;[070]
in r0, USBIN ;[071] <-- phase
mov x2, x1 ;[072]
nop ;[073]
nop2 ;[074]
; [---] ;[075]
in x1, USBIN ;[076] <-- bit 6
eor r0, x1 ;[077]
or phase, r0 ;[078]
eor x2, x1 ;[079]
bst x2, USBMINUS ;[080]
bld shift, 6 ;[081] no need to check bitstuffing, we just had one
in r0, USBIN ;[082] <-- phase
rjmp didUnstuff5 ;[083]
; [---] ;[084]
;[074]
unstuff6: ;[074]
andi x3, ~0x40 ;[075]
in x1, USBIN ;[076] <-- bit 6 again
ori shift, 0x40 ;[077]
nop2 ;[078]
; [---] ;[079]
rjmp didUnstuff6 ;[080]
; [---] ;[081]
;[071]
unstuff0: ;[013]
eor r0, x2 ;[014]
or phase, r0 ;[015]
andi x2, USBMASK ;[016] check for SE0
in r0, USBIN ;[017] <-- phase
breq didUnstuff0 ;[018] direct jump to se0 would be too long
andi x3, ~0x01 ;[019]
ori shift, 0x01 ;[020]
mov x1, x2 ;[021] mov existing sample
in x2, USBIN ;[022] <-- bit 1 again
rjmp didUnstuff0 ;[023]
; [---] ;[024]
;[014]
unstuff1: ;[024]
eor r0, x1 ;[025]
or phase, r0 ;[026]
andi x3, ~0x02 ;[027]
in r0, USBIN ;[028] <-- phase
ori shift, 0x02 ;[029]
mov x2, x1 ;[030]
rjmp didUnstuff1 ;[031]
; [---] ;[032]
;[022]
unstuff2: ;[035]
eor r0, x2 ;[036]
or phase, r0 ;[037]
andi x3, ~0x04 ;[038]
in r0, USBIN ;[039] <-- phase
ori shift, 0x04 ;[040]
mov x1, x2 ;[041]
rjmp didUnstuff2 ;[042]
; [---] ;[043]
;[033]
unstuff3: ;[043]
in x2, USBIN ;[044] <-- bit 3 again
eor r0, x2 ;[045]
or phase, r0 ;[046]
andi x3, ~0x08 ;[047]
ori shift, 0x08 ;[048]
nop ;[049]
in r0, USBIN ;[050] <-- phase
rjmp didUnstuff3 ;[051]
; [---] ;[052]
;[042]
unstuff4: ;[053]
andi x3, ~0x10 ;[054]
in x1, USBIN ;[055] <-- bit 4 again
ori shift, 0x10 ;[056]
rjmp didUnstuff4 ;[057]
; [---] ;[058]
;[048]
rxLoop: ;[085]
eor x3, shift ;[086] reconstruct: x3 is 0 at bit locations we changed, 1 at others
in x1, USBIN ;[000] <-- bit 0
st y+, x3 ;[001]
; [---] ;[002]
eor r0, x1 ;[003]
or phase, r0 ;[004]
eor x2, x1 ;[005]
in r0, USBIN ;[006] <-- phase
ser x3 ;[007]
bst x2, USBMINUS ;[008]
bld shift, 0 ;[009]
andi shift, 0xf9 ;[010]
rxbit1: ;[ ]
in x2, USBIN ;[011] <-- bit 1
breq unstuff0 ;[012] *** unstuff escape
andi x2, USBMASK ;[013] SE0 check for bit 1
didUnstuff0: ;[ ] Z only set if we detected SE0 in bitstuff
breq se0 ;[014]
eor r0, x2 ;[015]
or phase, r0 ;[016]
in r0, USBIN ;[017] <-- phase
eor x1, x2 ;[018]
bst x1, USBMINUS ;[019]
bld shift, 1 ;[020]
andi shift, 0xf3 ;[021]
didUnstuff1: ;[ ]
in x1, USBIN ;[022] <-- bit 2
breq unstuff1 ;[023] *** unstuff escape
eor r0, x1 ;[024]
or phase, r0 ;[025]
subi cnt, 1 ;[026] overflow check
brcs overflow ;[027]
in r0, USBIN ;[028] <-- phase
eor x2, x1 ;[029]
bst x2, USBMINUS ;[030]
bld shift, 2 ;[031]
andi shift, 0xe7 ;[032]
didUnstuff2: ;[ ]
in x2, USBIN ;[033] <-- bit 3
breq unstuff2 ;[034] *** unstuff escape
eor r0, x2 ;[035]
or phase, r0 ;[036]
eor x1, x2 ;[037]
bst x1, USBMINUS ;[038]
in r0, USBIN ;[039] <-- phase
bld shift, 3 ;[040]
andi shift, 0xcf ;[041]
didUnstuff3: ;[ ]
breq unstuff3 ;[042] *** unstuff escape
nop ;[043]
in x1, USBIN ;[044] <-- bit 4
eor x2, x1 ;[045]
bst x2, USBMINUS ;[046]
bld shift, 4 ;[047]
didUnstuff4: ;[ ]
eor r0, x1 ;[048]
or phase, r0 ;[049]
in r0, USBIN ;[050] <-- phase
andi shift, 0x9f ;[051]
breq unstuff4 ;[052] *** unstuff escape
rjmp continueWithBit5;[053]
; [---] ;[054]
macro POP_STANDARD ; 16 cycles
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop YH
pop r0
endm
macro POP_RETI ; 5 cycles
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
bitstuff7:
eor x1, x4 ;[4]
ldi x2, 0 ;[5]
nop2 ;[6] C is zero (brcc)
rjmp didStuff7 ;[8]
bitstuffN:
eor x1, x4 ;[5]
ldi x2, 0 ;[6]
lpm ;[7] 3 cycle NOP, modifies r0
out USBOUT, x1 ;[10] <-- out
rjmp didStuffN ;[0]
#define bitStatus x3
sendNakAndReti:
ldi cnt, USBPID_NAK ;[-19]
rjmp sendCntAndReti ;[-18]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov r0, cnt ;[-16]
ldi YL, 0 ;[-15] R0 address is 0
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
ldi bitStatus, 0xff ;[-4] init bit loop counter, works for up to 12 bytes
byteloop:
bitloop:
sbrs shift, 0 ;[8] [-3]
eor x1, x4 ;[9] [-2]
out USBOUT, x1 ;[10] [-1] <-- out
ror shift ;[0]
ror x2 ;[1]
didStuffN:
cpi x2, 0xfc ;[2]
brcc bitstuffN ;[3]
nop ;[4]
subi bitStatus, 37 ;[5] 256 / 7 ~=~ 37
brcc bitloop ;[6] when we leave the loop, bitStatus has almost the initial value
sbrs shift, 0 ;[7]
eor x1, x4 ;[8]
ror shift ;[9]
didStuff7:
out USBOUT, x1 ;[10] <-- out
ror x2 ;[0]
cpi x2, 0xfc ;[1]
brcc bitstuff7 ;[2]
ld shift, y+ ;[3]
dec cnt ;[5]
brne byteloop ;[6]
;make SE0:
cbr x1, USBMASK ;[7] prepare SE0 [spec says EOP may be 21 to 25 cycles]
lds x2, usbNewDeviceAddr;[8]
lsl x2 ;[10] we compare with left shifted address
out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
subi YL, 2 ;[0] Only assign address on data packets, not ACK/NAK in r0
sbci YH, 0 ;[1]
breq skipAddrAssign ;[2]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[4] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[5]
ori x1, USBIDLE ;[6]
in x2, USBDDR ;[7]
cbr x2, USBMASK ;[8] set both pins to input
mov x3, x1 ;[9]
cbr x3, USBMASK ;[10] configure no pullup on both pins
ldi x4, 4 ;[11]
se0Delay:
dec x4 ;[12] [15] [18] [21]
brne se0Delay ;[13] [16] [19] [22]
out USBOUT, x1 ;[23] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[24] <-- release bus now
out USBOUT, x3 ;[25] <-- ensure no pull-up resistors are active
rjmp doReturn

View File

@ -0,0 +1,354 @@
/* Name: usbdrvasm20.inc
* Project: AVR USB driver
* Author: Jeroen Benschop
* Based on usbdrvasm16.inc from Christian Starkjohann
* Creation Date: 2008-03-05
* Tabsize: 4
* Copyright: (c) 2008 by Jeroen Benschop and OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id: usbdrvasm20.inc 607 2008-05-13 15:57:28Z cs $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 20 MHz version of the asssembler part of the USB driver. It
requires a 20 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
#define leap2 x3
#ifdef __IAR_SYSTEMS_ASM__
#define nextInst $+2
#else
#define nextInst .+0
#endif
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 20 MHz -> 13.333333 cycles per bit, 106.666667 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
;register use in receive loop:
; shift assembles the byte currently being received
; x1 holds the D+ and D- line state
; x2 holds the previous line state
; x4 (leap) is used to add a leap cycle once every three bytes received
; X3 (leap2) is used to add a leap cycle once every three stuff bits received
; bitcnt is used to determine when a stuff bit is due
; cnt holds the number of bytes left in the receive buffer
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt
push YL ;[-28] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-26]
push YL ;[-25]
push YH ;[-23]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;first part has no timeout because it waits for IDLE or SE1 (== disconnected)
waitForJ:
sbis USBIN, USBMINUS ;[-21] wait for D- == 1
rjmp waitForJ
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-19]
rjmp foundK ;[-18]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
foundK: ;[-16]
;{3, 5} after falling D- edge, average delay: 4 cycles
;bit0 should be at 34 for center sampling. Currently at 4 so 30 cylces till bit 0 sample
;use 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push bitcnt ;[-16]
; [---] ;[-15]
lds YL, usbInputBufOffset;[-14]
; [---] ;[-13]
clr YH ;[-12]
subi YL, lo8(-(usbRxBuf));[-11] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-10] [rx loop init]
push shift ;[-9]
; [---] ;[-8]
ldi shift,0x40 ;[-7] set msb to "1" so processing bit7 can be detected
nop2 ;[-6]
; [---] ;[-5]
ldi bitcnt, 5 ;[-4] [rx loop init]
sbis USBIN, USBMINUS ;[-3] we want two bits K (sample 3 cycles too early)
rjmp haveTwoBitsK ;[-2]
pop shift ;[-1] undo the push from before
pop bitcnt ;[1]
rjmp waitForK ;[3] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 27 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK:
push x1 ;[0]
push x2 ;[2]
push x3 ;[4] (leap2)
ldi leap2, 0x55 ;[6] add leap cycle on 2nd,5th,8th,... stuff bit
push x4 ;[7] == leap
ldi leap, 0x55 ;[9] skip leap cycle on 2nd,5th,8th,... byte received
push cnt ;[10]
ldi cnt, USB_BUFSIZE ;[12] [rx loop init]
ldi x2, 1<<USBPLUS ;[13] current line state is K state. D+=="1", D-=="0"
bit0:
in x1, USBIN ;[0] sample line state
andi x1, USBMASK ;[1] filter only D+ and D- bits
rjmp handleBit ;[2] make bit0 14 cycles long
;----------------------------------------------------------------------------
; Process bit7. However, bit 6 still may need unstuffing.
;----------------------------------------------------------------------------
b6checkUnstuff:
dec bitcnt ;[9]
breq unstuff6 ;[10]
bit7:
subi cnt, 1 ;[11] cannot use dec becaus it does not affect the carry flag
brcs overflow ;[12] Too many bytes received. Ignore packet
in x1, USBIN ;[0] sample line state
andi x1, USBMASK ;[1] filter only D+ and D- bits
cpse x1, x2 ;[2] when previous line state equals current line state, handle "1"
rjmp b7handle0 ;[3] when line state differs, handle "0"
sec ;[4]
ror shift ;[5] shift "1" into the data
st y+, shift ;[6] store the data into the buffer
ldi shift, 0x40 ;[7] reset data for receiving the next byte
subi leap, 0x55 ;[9] trick to introduce a leap cycle every 3 bytes
brcc nextInst ;[10 or 11] it will fail after 85 bytes. However low speed can only receive 11
dec bitcnt ;[11 or 12]
brne bit0 ;[12 or 13]
ldi x1, 1 ;[13 or 14] unstuffing bit 7
in bitcnt, USBIN ;[0] sample stuff bit
rjmp unstuff ;[1]
b7handle0:
mov x2,x1 ;[5] Set x2 to current line state
ldi bitcnt, 6 ;[6]
lsr shift ;[7] shift "0" into the data
st y+, shift ;[8] store data into the buffer
ldi shift, 0x40 ;[10] reset data for receiving the next byte
subi leap, 0x55 ;[11] trick to introduce a leap cycle every 3 bytes
brcs bit0 ;[12] it will fail after 85 bytes. However low speed can only receive 11
rjmp bit0 ;[13]
;----------------------------------------------------------------------------
; Handle unstuff
; x1==0xFF indicate unstuffing bit6
;----------------------------------------------------------------------------
unstuff6:
ldi x1,0xFF ;[12] indicate unstuffing bit 6
in bitcnt, USBIN ;[0] sample stuff bit
nop ;[1] fix timing
unstuff: ;b0-5 b6 b7
mov x2,bitcnt ;[3] [2] [3] Set x2 to match line state
subi leap2, 0x55 ;[4] [3] [4] delay loop
brcs nextInst ;[5] [4] [5] add one cycle every three stuff bits
sbci leap2,0 ;[6] [5] [6]
ldi bitcnt,6 ;[7] [6] [7] reset bit stuff counter
andi x2, USBMASK ;[8] [7] [8] only keep D+ and D-
cpi x1,0 ;[9] [8] [9]
brmi bit7 ;[10] [9] [10] finished unstuffing bit6 When x1<0
breq bitloop ;[11] --- [11] finished unstuffing bit0-5 when x1=0
nop ;--- --- [12]
in x1, USBIN ;--- --- [0] sample line state for bit0
andi x1, USBMASK ;--- --- [1] filter only D+ and D- bits
rjmp handleBit ;--- --- [2] make bit0 14 cycles long
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
bitloop:
in x1, USBIN ;[0] sample line state
andi x1, USBMASK ;[1] filter only D+ and D- bits
breq se0 ;[2] both lines are low so handle se0
handleBit:
cpse x1, x2 ;[3] when previous line state equals current line state, handle "1"
rjmp handle0 ;[4] when line state differs, handle "0"
sec ;[5]
ror shift ;[6] shift "1" into the data
brcs b6checkUnstuff ;[7] When after shift C is set, next bit is bit7
nop2 ;[8]
dec bitcnt ;[10]
brne bitloop ;[11]
ldi x1,0 ;[12] indicate unstuff for bit other than bit6 or bit7
in bitcnt, USBIN ;[0] sample stuff bit
rjmp unstuff ;[1]
handle0:
mov x2, x1 ;[6] Set x2 to current line state
ldi bitcnt, 6 ;[7] reset unstuff counter.
lsr shift ;[8] shift "0" into the data
brcs bit7 ;[9] When after shift C is set, next bit is bit7
nop ;[10]
rjmp bitloop ;[11]
;----------------------------------------------------------------------------
; End of receive loop. Now start handling EOP
;----------------------------------------------------------------------------
macro POP_STANDARD ; 14 cycles
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop bitcnt
endm
macro POP_RETI ; 7 cycles
pop YH
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
; 7.5 bit times is 100 cycles. This implementation arrives a bit later at se0
; then specified in the include file but there is plenty of time
bitstuffN:
eor x1, x4 ;[8]
ldi x2, 0 ;[9]
nop2 ;[10]
out USBOUT, x1 ;[12] <-- out
rjmp didStuffN ;[0]
bitstuff7:
eor x1, x4 ;[6]
ldi x2, 0 ;[7] Carry is zero due to brcc
rol shift ;[8] compensate for ror shift at branch destination
nop2 ;[9]
rjmp didStuff7 ;[11]
sendNakAndReti:
ldi x3, USBPID_NAK ;[-18]
rjmp sendX3AndReti ;[-17]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov x3, cnt ;[-16]
sendX3AndReti:
ldi YL, 20 ;[-15] x3==r20 address is 20
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We don't match the transfer rate exactly (don't insert leap cycles every third
;byte) because the spec demands only 1.5% precision anyway.
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
txByteLoop:
ldi bitcnt, 0x49 ;[-4] [10] binary 01001001
txBitLoop:
sbrs shift, 0 ;[-3] [10] [11]
eor x1, x4 ;[-2] [11] [12]
out USBOUT, x1 ;[-1] [12] [13] <-- out N
ror shift ;[0] [13] [14]
ror x2 ;[1]
didStuffN:
nop2 ;[2]
nop ;[4]
cpi x2, 0xfc ;[5]
brcc bitstuffN ;[6]
lsr bitcnt ;[7]
brcc txBitLoop ;[8]
brne txBitLoop ;[9]
sbrs shift, 0 ;[10]
eor x1, x4 ;[11]
didStuff7:
out USBOUT, x1 ;[-1] [13] <-- out 7
ror shift ;[0] [14]
ror x2 ;[1]
nop ;[2]
cpi x2, 0xfc ;[3]
brcc bitstuff7 ;[4]
ld shift, y+ ;[5]
dec cnt ;[7]
brne txByteLoop ;[8]
;make SE0:
cbr x1, USBMASK ;[9] prepare SE0 [spec says EOP may be 25 to 30 cycles]
lds x2, usbNewDeviceAddr;[10]
lsl x2 ;[12] we compare with left shifted address
out USBOUT, x1 ;[13] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
subi YL, 20 + 2 ;[0] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;[1]
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[2]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[4] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[5]
ori x1, USBIDLE ;[6]
in x2, USBDDR ;[7]
cbr x2, USBMASK ;[8] set both pins to input
mov x3, x1 ;[9]
cbr x3, USBMASK ;[10] configure no pullup on both pins
ldi x4, 5 ;[11]
se0Delay:
dec x4 ;[12] [15] [18] [21] [24]
brne se0Delay ;[13] [16] [19] [22] [25]
out USBOUT, x1 ;[26] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[27] <-- release bus now
out USBOUT, x3 ;[28] <-- ensure no pull-up resistors are active
rjmp doReturn

382
tools/usbload/usbload.c Normal file
View File

@ -0,0 +1,382 @@
/* simple USBasp compatible bootloader
* by Alexander Neumann <alexander@lochraster.org>
*
* inspired by USBasploader by Christian Starkjohann,
* see http://www.obdev.at/products/avrusb/usbasploader.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* For more information on the GPL, please go to:
* http://www.gnu.org/copyleft/gpl.html
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/boot.h>
#include <avr/eeprom.h>
#include <util/delay.h>
#include <string.h>
#include "config.h"
#include "usbdrv/usbdrv.c"
/* USBasp requests, taken from the original USBasp sourcecode */
#define USBASP_FUNC_CONNECT 1
#define USBASP_FUNC_DISCONNECT 2
#define USBASP_FUNC_TRANSMIT 3
#define USBASP_FUNC_READFLASH 4
#define USBASP_FUNC_ENABLEPROG 5
#define USBASP_FUNC_WRITEFLASH 6
#define USBASP_FUNC_READEEPROM 7
#define USBASP_FUNC_WRITEEEPROM 8
#define USBASP_FUNC_SETLONGADDRESS 9
/* additional functions */
#define FUNC_ECHO 0x17
/* atmel isp commands */
#define ISP_CHIP_ERASE1 0xAC
#define ISP_CHIP_ERASE2 0x80
#define ISP_READ_SIGNATURE 0x30
#define ISP_READ_EEPROM 0xa0
#define ISP_WRITE_EEPROM 0xc0
/* some predefined signatures, taken from the original USBasp sourcecode */
static const uint8_t signature[4] = {
#ifdef SIGNATURE_BYTES
SIGNATURE_BYTES
#elif defined (__AVR_ATmega8__) || defined (__AVR_ATmega8HVA__)
0x1e, 0x93, 0x07, 0
#elif defined (__AVR_ATmega48__) || defined (__AVR_ATmega48P__)
0x1e, 0x92, 0x05, 0
#elif defined (__AVR_ATmega88__) || defined (__AVR_ATmega88P__)
0x1e, 0x93, 0x0a, 0
#elif defined (__AVR_ATmega168__) || defined (__AVR_ATmega168P__)
0x1e, 0x94, 0x06, 0
#elif defined (__AVR_ATmega328P__)
0x1e, 0x95, 0x0f, 0
#else
# error "Device signature is not known, please edit config.h!"
#endif
};
#ifndef BOOT_SECTION_START
# error "BOOT_SECTION_START undefined!"
#endif
#ifdef DEBUG_UART
static __attribute__ (( __noinline__ )) void putc(uint8_t data) {
while(!(UCSR0A & _BV(UDRE0)));
UDR0 = data;
}
#else
#define putc(x)
#endif
/* supply custom usbDeviceConnect() and usbDeviceDisconnect() macros
* which turn the interrupt on and off at the right times,
* and prevent the execution of an interrupt while the pullup resistor
* is switched off */
#ifdef USB_CFG_PULLUP_IOPORTNAME
#undef usbDeviceConnect
#define usbDeviceConnect() do { \
USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT); \
USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT); \
USB_INTR_ENABLE |= (1 << USB_INTR_ENABLE_BIT); \
} while(0);
#undef usbDeviceDisconnect
#define usbDeviceDisconnect() do { \
USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT); \
USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT); \
USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT); \
} while(0);
#endif
/* prototypes */
void __attribute__ (( __noreturn__, __noinline__, __naked__ )) leave_bootloader(void);
/* we just support flash sizes <= 64kb, for code size reasons
* if you need to program bigger devices, have a look at USBasploader:
* http://www.obdev.at/products/avrusb/usbasploader.html */
#if FLASHEND > 0xffff
# error "usbload only supports up to 64kb of flash!"
#endif
/* we are just checking the lower byte of flash_address,
* so make sure SPM_PAGESIZE is <= 256
*/
#if SPM_PAGESIZE > 256
# error "SPM_PAGESIZE is too big (just checking lower byte)"
#endif
/* start flash (byte address) read/write at this address */
usbWord_t flash_address;
uint8_t bytes_remaining;
uint8_t request;
uint8_t request_exit;
uint8_t timeout;
usbMsgLen_t usbFunctionSetup(uchar data[8])
{
usbRequest_t *req = (void *)data;
uint8_t len = 0;
static uint8_t buf[4];
/* set global data pointer to local buffer */
usbMsgPtr = buf;
/* on enableprog just return one zero, which means success */
if (req->bRequest == USBASP_FUNC_ENABLEPROG) {
buf[0] = 0;
len = 1;
timeout = 255;
} else if (req->bRequest == USBASP_FUNC_CONNECT) {
/* turn on led */
PORTD |= _BV(PD3);
} else if (req->bRequest == USBASP_FUNC_DISCONNECT) {
/* turn off led */
PORTD &= ~_BV(PD3);
request_exit = 1;
/* catch query for the devicecode, chip erase and eeprom byte requests */
} else if (req->bRequest == USBASP_FUNC_TRANSMIT) {
/* reset buffer with zeroes */
memset(buf, '\0', sizeof(buf));
/* read the address for eeprom operations */
usbWord_t address;
address.bytes[0] = data[4]; /* low byte is data[4] */
address.bytes[1] = data[3]; /* high byte is data[3] */
/* if this is a request to read the device signature, answer with the
* appropiate signature byte */
if (data[2] == ISP_READ_SIGNATURE) {
/* the complete isp data is reported back to avrdude, but we just need byte 4
* bits 0 and 1 of byte 3 determine the signature byte address */
buf[3] = signature[data[4] & 0x03];
#ifdef ENABLE_CATCH_EEPROM_ISP
/* catch eeprom read */
} else if (data[2] == ISP_READ_EEPROM) {
buf[3] = eeprom_read_byte((uint8_t *)address.word);
/* catch eeprom write */
} else if (data[2] == ISP_WRITE_EEPROM) {
/* address is in data[4], data[3], and databyte is in data[5] */
eeprom_write_byte((uint8_t *)address.word, data[5]);
#endif
/* catch a chip erase */
} else if (data[2] == ISP_CHIP_ERASE1 && data[3] == ISP_CHIP_ERASE2) {
for (flash_address.word = 0;
flash_address.word < BOOT_SECTION_START;
flash_address.word += SPM_PAGESIZE) {
/* wait and erase page */
boot_spm_busy_wait();
cli();
boot_page_erase(flash_address.word);
sei();
}
}
/* in case no data has been filled in by the if's above, just return zeroes */
len = 4;
#ifdef ENABLE_ECHO_FUNC
/* implement a simple echo function, for testing the usb connectivity */
} else if (req->bRequest == FUNC_ECHO) {
buf[0] = req->wValue.bytes[0];
buf[1] = req->wValue.bytes[1];
len = 2;
#endif
} else if (req->bRequest >= USBASP_FUNC_READFLASH) {
/* && req->bRequest <= USBASP_FUNC_SETLONGADDRESS */
putc('R');
putc(req->bRequest);
/* extract address and length */
flash_address.word = req->wValue.word;
bytes_remaining = req->wLength.bytes[0];
request = req->bRequest;
/* hand control over to usbFunctionRead()/usbFunctionWrite() */
len = 0xff;
}
return len;
}
uchar usbFunctionWrite(uchar *data, uchar len)
{
if (len > bytes_remaining)
len = bytes_remaining;
bytes_remaining -= len;
if (request == USBASP_FUNC_WRITEEEPROM) {
for (uint8_t i = 0; i < len; i++)
eeprom_write_byte((uint8_t *)flash_address.word++, *data++);
} else {
/* data is handled wordwise, adjust len */
len /= 2;
len -= 1;
for (uint8_t i = 0; i <= len; i++) {
uint16_t *w = (uint16_t *)data;
cli();
boot_page_fill(flash_address.word, *w);
sei();
usbWord_t next_address;
next_address.word = flash_address.word;
next_address.word += 2;
data += 2;
/* write page if page boundary is crossed or this is the last page */
if ( next_address.bytes[0] % SPM_PAGESIZE == 0 ||
(bytes_remaining == 0 && i == len) ) {
cli();
boot_page_write(flash_address.word);
sei();
boot_spm_busy_wait();
cli();
boot_rww_enable();
sei();
}
flash_address.word = next_address.word;
}
}
/* flash led on activity */
PORTC ^= _BV(PC4);
return (bytes_remaining == 0);
}
uchar usbFunctionRead(uchar *data, uchar len)
{
if(len > bytes_remaining)
len = bytes_remaining;
bytes_remaining -= len;
for (uint8_t i = 0; i < len; i++) {
if(request == USBASP_FUNC_READEEPROM)
*data = eeprom_read_byte((void *)flash_address.word);
else
*data = pgm_read_byte_near((void *)flash_address.word);
data++;
flash_address.word++;
}
/* flash led on activity */
PORTC ^= _BV(PC4);
return len;
}
void leave_bootloader(void)
{
/* move interrupts to application section */
cli();
MCUCR = (1 << IVCE);
MCUCR = 0;
/* disconnect usb */
usbDeviceDisconnect();
/* reset usb interrupt configuration */
USB_INTR_CFG = 0;
/* reconfigure pins */
DDRC = 0;
DDRD = 0;
PORTC = 0;
PORTD = 0;
/* start main program at address 0 */
asm volatile ("jmp 0");
}
int __attribute__ ((noreturn,OS_main)) main(void)
{
/* start bootloader */
#ifdef DEBUG_UART
/* init uart (115200 baud, at 20mhz) */
UBRR0L = 10;
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UCSR0B = _BV(TXEN0);
putc('b');
#endif
uint8_t reset = MCUSR & ~_BV(PORF);
/* if we have not been reset externally, start application */
if (!(reset == _BV(EXTRF)) && pgm_read_byte_near((void *)0) != 0xff)
leave_bootloader();
/* clear external reset flags */
MCUSR = 0;
/* init exit request state */
request_exit = 0;
/* init led pins (led1 and led2) */
DDRC = _BV(PC4);
PORTC = _BV(PC4);
DDRD = _BV(PD3);
/* move interrupts to boot section */
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
/* enable interrupts */
sei();
/* initialize usb pins */
usbInit();
/* disconnect for ~500ms, so that the host re-enumerates this device */
usbDeviceDisconnect();
for (uint8_t i = 0; i < 38; i++)
_delay_loop_2(0); /* 0 means 0x10000, 38*1/f*0x10000 =~ 498ms */
usbDeviceConnect();
uint16_t delay;
timeout = TIMEOUT;
while(1) {
usbPoll();
delay++;
/* do some led blinking, so that it is visible that the bootloader is still running */
if (delay == 0) {
PORTC ^= _BV(PC4);
if (timeout < 255)
timeout--;
}
if (request_exit || timeout == 0) {
_delay_loop_2(0);
leave_bootloader();
}
}
leave_bootloader();
}