Compare commits

..

No commits in common. "master" and "mem_compact" have entirely different histories.

2101 changed files with 275718 additions and 606405 deletions

4
.ditz-config Normal file
View File

@ -0,0 +1,4 @@
--- !ditz.rubyforge.org,2008-03-06/config
name: David
email: david@optixx.org
issue_dir: bugs

20
.gitignore vendored
View File

@ -21,23 +21,3 @@
*.swc
*.rom
*.usage
*.moc
*.obj
*.TMP
*.vfat
*.wla*
*.rcc
*.log
bootloader
snesuploader
tmtags
bsnes
web
ucon64.exe
project
huffman-decode
huffman-encode
unpack
pack

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "scripts/webpy"]
path = scripts/webpy
url = git://github.com/webpy/webpy.git

1
README Normal file
View File

@ -0,0 +1 @@
o Test

View File

@ -1,11 +0,0 @@
```
________ .__ __ ________ ____ ________
\_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
/ / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
/ \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
\_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
\__> \/ \/ \/ \/ \/
```
[Go to the Documentation](../../wiki)

View File

@ -1,78 +0,0 @@
# microcontroller and project specific settings
TARGET = bootloader
F_CPU = 20000000UL
MCU = atmega644
SRC = bootloader.c
ASRC = usbdrv/usbdrvasm.S interrupts.S
OBJECTS += $(patsubst %.c,%.o,${SRC})
OBJECTS += $(patsubst %.S,%.o,${ASRC})
HEADERS += $(shell echo *.h)
# CFLAGS += -Werror
LDFLAGS += -L/usr/local/avr/avr/lib
CFLAGS += -Iusbdrv -I.
CFLAGS += -DHARDWARE_REV=$(HARDWARE_REV)
CDEFS += -DF_CPU
ASFLAGS += -x assembler-with-cpp
ASFLAGS += -Iusbdrv -I.
# use own linkerscript, for special interrupt table handling
LDFLAGS += -T ./ldscripts/avr5.x
# no safe mode checks
AVRDUDE_FLAGS += -u
# set name for dependency-file
MAKEFILE = Makefile
# bootloader section start
# (see datasheet)
ifeq ($(MCU),atmega168)
# atmega168 with 1024 words bootloader:
# bootloader section starts at 0x1c00 (word-address) == 0x3800 (byte-address)
BOOT_SECTION_START = 0x3800
else ifeq ($(MCU),atmega88)
# atmega88 with 1024 words bootloader:
# bootloader section starts at 0xc00 (word-address) == 0x1800 (byte-address)
BOOT_SECTION_START = 0x1800
else ifeq ($(MCU),atmega644)
# atmega644 with 2048 words bootloader:
# bootloader section starts at 0x7800 (word-address) == 0xF000 (byte-address)
BOOT_SECTION_START = 0xf000
endif
LDFLAGS += -Wl,--section-start=.text=$(BOOT_SECTION_START) -Wl,-u,vfprintf
CFLAGS += -DBOOT_SECTION_START=$(BOOT_SECTION_START)
include avr.mk
.PHONY: all
all: $(TARGET).hex $(TARGET).lss
@echo "==============================="
@echo "$(TARGET) compiled for: $(MCU)"
@echo -n "size is: "
@$(SIZE) -A $(TARGET).hex | grep "\.sec1" | tr -s " " | cut -d" " -f2
@echo "==============================="
$(TARGET): $(OBJECTS) $(TARGET).o
%.o: $(HEADERS)
.PHONY: clean clean-$(TARGET)
clean: clean-$(TARGET)
clean-$(TARGET):
$(RM) $(TARGET) $(OBJECTS)
.PHONY: depend test
depend:
$(CC) $(CFLAGS) -M $(CDEFS) $(CINCS) $(SRC) >> $(MAKEFILE).dep
-include $(MAKEFILE).dep

View File

@ -1,86 +0,0 @@
# Programmer used for In System Programming
ISP_PROG = usbasp
# device the ISP programmer is connected to
ISP_DEV =
# Programmer used for serial programming (using the bootloader)
SERIAL_PROG = avr109
# device the serial programmer is connected to
SERIAL_DEV = /dev/ttyS0
# programs
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AS = avr-as
CP = cp
RM = rm -f
AVRDUDE = avrdude
SIZE = avr-size
-include $(CURDIR)/config.mk
# flags for avrdude
ifeq ($(MCU),atmega8)
AVRDUDE_MCU=m8
endif
ifeq ($(MCU),atmega48)
AVRDUDE_MCU=m48
endif
ifeq ($(MCU),atmega88)
AVRDUDE_MCU=m88
endif
ifeq ($(MCU),atmega168)
AVRDUDE_MCU=m168
endif
ifeq ($(MCU),atmega644)
AVRDUDE_MCU=m644
endif
AVRDUDE_FLAGS += -p $(AVRDUDE_MCU)
# flags for the compiler
CFLAGS += -g -Os -finline-limit=800 -mmcu=$(MCU) -DF_CPU=$(F_CPU) -std=gnu99
ASFLAGS += -g -mmcu=$(MCU) -DF_CPU=$(F_CPU)
# flags for the linker
LDFLAGS += -mmcu=$(MCU)
ifneq ($(DEBUG),)
CFLAGS += -Wall -W -Wchar-subscripts -Wmissing-prototypes
CFLAGS += -Wmissing-declarations -Wredundant-decls
CFLAGS += -Wstrict-prototypes -Wshadow -Wbad-function-cast
CFLAGS += -Winline -Wpointer-arith -Wsign-compare
#CFLAGS += -Wunreachable-code -Wdisabled-optimization -Werror
CFLAGS += -Wunreachable-code -Wdisabled-optimization
CFLAGS += -Wcast-align -Wwrite-strings -Wnested-externs -Wundef
CFLAGS += -Wa,-adhlns=$(basename $@).lst
CFLAGS += -DDEBUG
endif
all:
$(OBJECTS):
clean:
$(RM) *.hex *.eep.hex *.o *.lst *.lss
.PHONY: all clean interactive-isp interactive-serial launch-bootloader
flash: bootloader.hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -U flash:w:$<
flash-eeprom-%: %.eep.hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -c $(ISP_PROG) -P $(ISP_DEV) -U eeprom:w:$<
%.hex: %
$(OBJCOPY) -O ihex -R .eeprom $< $@
%.eep.hex: %
$(OBJCOPY) --set-section-flags=.eeprom="alloc,load" --change-section-lma .eeprom=0 -O ihex -j .eeprom $< $@
%.lss: %
$(OBJDUMP) -h -S $< > $@
%-size: %.hex
$(SIZE) $<

View File

@ -1,557 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* simple USBasp compatible bootloader by
* Alexander Neumann <alexander@lochraster.org>
* inspired by USBasploader by Christian Starkjohann,
* =====================================================================================
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/boot.h>
#include <avr/eeprom.h>
#include <util/delay.h>
#include <string.h>
#include <avr/wdt.h>
#include "config.h"
#include "usbdrv/usbdrv.c"
/*
* USBasp requests, taken from the original USBasp sourcecode
*/
#define USBASP_FUNC_CONNECT 1
#define USBASP_FUNC_DISCONNECT 2
#define USBASP_FUNC_TRANSMIT 3
#define USBASP_FUNC_READFLASH 4
#define USBASP_FUNC_ENABLEPROG 5
#define USBASP_FUNC_WRITEFLASH 6
#define USBASP_FUNC_READEEPROM 7
#define USBASP_FUNC_WRITEEEPROM 8
#define USBASP_FUNC_SETLONGADDRESS 9
/*
* additional functions
*/
#define FUNC_ECHO 0x17
/*
* atmel isp commands
*/
#define ISP_CHIP_ERASE1 0xAC
#define ISP_CHIP_ERASE2 0x80
#define ISP_READ_SIGNATURE 0x30
#define ISP_READ_EEPROM 0xa0
#define ISP_WRITE_EEPROM 0xc0
#define LED_PORT PORTC
#define LED_DIR DDRC
#define LED_PIN PC7
#define DLED_ON {((LED_PORT &=~ (1 << LED_PIN)),\
(LED_DIR &=~ (1 << LED_PIN))); }
#define DLED_OFF {((LED_PORT &=~ (1 << LED_PIN)),\
(LED_DIR |= (1 << LED_PIN))); }
#define DLED_TGL {((LED_PORT &=~ (1 << LED_PIN)),\
(LED_DIR ^= (1 << LED_PIN)));}
#define AVR_BTLDR_EN_PORT PORTC
#define AVR_BTLDR_EN_DIR DDRC
#define AVR_BTLDR_EN_PIN PC1
#define AVR_BTLDR_EN_IN PINC
#undef AVR_BTLDR_SWITCH
/*
* some predefined signatures, taken from the original USBasp sourcecode
*/
static const uint8_t signature[4] = {
#ifdef SIGNATURE_BYTES
SIGNATURE_BYTES
#elif defined (__AVR_ATmega8__) || defined (__AVR_ATmega8HVA__)
0x1e, 0x93, 0x07, 0
#elif defined (__AVR_ATmega48__) || defined (__AVR_ATmega48P__)
0x1e, 0x92, 0x05, 0
#elif defined (__AVR_ATmega88__) || defined (__AVR_ATmega88P__)
0x1e, 0x93, 0x0a, 0
#elif defined (__AVR_ATmega168__) || defined (__AVR_ATmega168P__)
0x1e, 0x94, 0x06, 0
#elif defined (__AVR_ATmega328P__)
0x1e, 0x95, 0x0f, 0
#elif defined (__AVR_ATmega644__)
0x1e, 0x96, 0x09, 0
#else
# error "Device signature is not known, please edit config.h!"
#endif
};
#ifndef BOOT_SECTION_START
# error "BOOT_SECTION_START undefined!"
#endif
#if defined (__AVR_ATmega644__)
/*
* Due arvdude limitations we can't erase the whole progmem without running into an usb timeount on cleint side. So we we limit the
* erase section by 0x1000
*/
#define ERASE_SECTION 0xe000
#else
#define ERASE_SECTION BOOT_SECTION_START
#endif
#ifdef DEBUG_UART
static __attribute__ ((__noinline__))
void uart_putc(uint8_t data)
{
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = data;
}
#else
#define uart_putc(x)
#endif
#ifdef DEBUG_UART
static __attribute__ ((__noinline__))
void uart_puts(uint8_t * data)
{
while (*data) {
uart_putc(*data);
data++;
}
}
#else
#define uart_puts(x)
#endif
/*
* supply custom usbDeviceConnect() and usbDeviceDisconnect() macros which turn the interrupt on and off at the right times, and prevent
* the execution of an interrupt while the pullup resistor is switched off
*/
#ifdef USB_CFG_PULLUP_IOPORTNAME
#undef usbDeviceConnect
#define usbDeviceConnect() do { \
USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT); \
USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT); \
USB_INTR_ENABLE |= (1 << USB_INTR_ENABLE_BIT); \
} while(0);
#undef usbDeviceDisconnect
#define usbDeviceDisconnect() do { \
USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT); \
USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT); \
USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT); \
} while(0);
#endif
/*
* prototypes
*/
void __attribute__ ((__noreturn__, __noinline__,
__naked__)) leave_bootloader(void);
/*
* we just support flash sizes <= 64kb, for code size reasons if you need to program bigger devices, have a look at USBasploader:
* http://www.obdev.at/products/avrusb/usbasploader.html
*/
#if FLASHEND > 0xffff
# error "usbload only supports up to 64kb of flash!"
#endif
/*
* we are just checking the lower byte of flash_address, so make sure SPM_PAGESIZE is <= 256
*/
#if SPM_PAGESIZE > 256
# error "SPM_PAGESIZE is too big (just checking lower byte)"
#endif
/*
* start flash (byte address) read/write at this address
*/
usbWord_t flash_address;
uint8_t bytes_remaining;
uint8_t request;
uint8_t request_exit;
uint8_t timeout;
usbMsgLen_t usbFunctionSetup(uchar data[8])
{
usbRequest_t *req = (void *) data;
uint8_t len = 0;
static uint8_t buf[4];
/*
* set global data pointer to local buffer
*/
usbMsgPtr = buf;
/*
* on enableprog just return one zero, which means success
*/
if (req->bRequest == USBASP_FUNC_ENABLEPROG) {
buf[0] = 0;
len = 1;
timeout = 255;
} else if (req->bRequest == USBASP_FUNC_CONNECT) {
/*
* turn on led
*/
DLED_ON;
} else if (req->bRequest == USBASP_FUNC_DISCONNECT) {
/*
* turn off led
*/
DLED_OFF;
request_exit = 1;
/*
* catch query for the devicecode, chip erase and eeprom byte requests
*/
} else if (req->bRequest == USBASP_FUNC_TRANSMIT) {
/*
* reset buffer with zeroes
*/
memset(buf, '\0', sizeof(buf));
/*
* read the address for eeprom operations
*/
usbWord_t address;
address.bytes[0] = data[4]; /* low byte is data[4] */
address.bytes[1] = data[3]; /* high byte is data[3] */
/*
* if this is a request to read the device signature, answer with the appropiate signature byte
*/
if (data[2] == ISP_READ_SIGNATURE) {
/*
* the complete isp data is reported back to avrdude, but we just need byte 4 bits 0 and 1 of byte 3 determine the signature
* byte address
*/
buf[3] = signature[data[4] & 0x03];
#ifdef ENABLE_CATCH_EEPROM_ISP
/*
* catch eeprom read
*/
} else if (data[2] == ISP_READ_EEPROM) {
buf[3] = eeprom_read_byte((uint8_t *) address.word);
/*
* catch eeprom write
*/
} else if (data[2] == ISP_WRITE_EEPROM) {
/*
* address is in data[4], data[3], and databyte is in data[5]
*/
eeprom_write_byte((uint8_t *) address.word, data[5]);
#endif
/*
* catch a chip erase
*/
} else if (data[2] == ISP_CHIP_ERASE1 && data[3] == ISP_CHIP_ERASE2) {
uart_puts("\n\rErase Flash");
for (flash_address.word = 0;
flash_address.word < ERASE_SECTION;
flash_address.word += SPM_PAGESIZE) {
/*
* wait and erase page
*/
boot_spm_busy_wait();
if (flash_address.word && flash_address.word % 1024 == 0)
uart_putc('.');
cli();
boot_page_erase(flash_address.word);
sei();
}
uart_puts("\n\rWrite Flash");
}
/*
* in case no data has been filled in by the if's above, just return zeroes
*/
len = 4;
#ifdef ENABLE_ECHO_FUNC
/*
* implement a simple echo function, for testing the usb connectivity
*/
} else if (req->bRequest == FUNC_ECHO) {
buf[0] = req->wValue.bytes[0];
buf[1] = req->wValue.bytes[1];
len = 2;
#endif
} else if (req->bRequest >= USBASP_FUNC_READFLASH) {
/*
* && req->bRequest <= USBASP_FUNC_SETLONGADDRESS
*/
/*
* extract address and length
*/
flash_address.word = req->wValue.word;
bytes_remaining = req->wLength.bytes[0];
request = req->bRequest;
/*
* hand control over to usbFunctionRead()/usbFunctionWrite()
*/
len = 0xff;
}
return len;
}
uchar usbFunctionWrite(uchar * data, uchar len)
{
if (len > bytes_remaining)
len = bytes_remaining;
bytes_remaining -= len;
if (request == USBASP_FUNC_WRITEEEPROM) {
for (uint8_t i = 0; i < len; i++)
eeprom_write_byte((uint8_t *) flash_address.word++, *data++);
} else {
/*
* data is handled wordwise, adjust len
*/
len /= 2;
len -= 1;
for (uint8_t i = 0; i <= len; i++) {
uint16_t *w = (uint16_t *) data;
cli();
boot_page_fill(flash_address.word, *w);
sei();
usbWord_t next_address;
next_address.word = flash_address.word;
next_address.word += 2;
data += 2;
/*
* write page if page boundary is crossed or this is the last page
*/
if (next_address.bytes[0] % SPM_PAGESIZE == 0 ||
(bytes_remaining == 0 && i == len)) {
cli();
boot_page_write(flash_address.word);
sei();
boot_spm_busy_wait();
cli();
boot_rww_enable();
sei();
}
flash_address.word = next_address.word;
}
}
/*
* flash led on activity
*/
DLED_TGL;
return (bytes_remaining == 0);
}
uchar usbFunctionRead(uchar * data, uchar len)
{
if (len > bytes_remaining)
len = bytes_remaining;
bytes_remaining -= len;
for (uint8_t i = 0; i < len; i++) {
if (request == USBASP_FUNC_READEEPROM)
*data = eeprom_read_byte((void *) flash_address.word);
else
*data = pgm_read_byte_near((void *) flash_address.word);
data++;
flash_address.word++;
}
/*
* flash led on activity
*/
DLED_TGL;
return len;
}
void (*jump_to_app) (void) = 0x0000;
void leave_bootloader(void)
{
cli();
/*
* disconnect usb
*/
usbDeviceDisconnect();
#if 0
for (uint8_t i = 0; i < 50; i++)
_delay_ms(10); /* 0 means 0x10000, 38*1/f*0x10000 =~ 498ms */
#endif
/*
* enable watchdog to soft-reset the uC for clean startup of new application
*/
wdt_enable(WDTO_15MS);
/*
* let watchdog kick in and reset uC
*/
while (1);
}
void banner(){
uart_puts("\n\r");
uart_puts("\n\r");
uart_puts("\n\r");
uart_puts("Quickdev16 Bootloader v0.2\n\r");
uart_puts("www.optixx.org\n\r");
}
int __attribute__ ((noreturn, OS_main)) main(void)
{
/*
* start bootloader
*/
#ifdef DEBUG_UART
/*
* init uart (115200 baud, at 20mhz)
*/
UBRR0L = 10;
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UCSR0B = _BV(TXEN0);
#endif
uint8_t reset = MCUSR;
uint16_t delay = 0;
timeout = TIMEOUT;
DDRC &= ~(1 << AVR_BTLDR_EN_PIN);
PORTC &= ~(1 << AVR_BTLDR_EN_PIN);
/*
* if watchdog reset, disable watchdog and jump to app
*/
if (reset & _BV(WDRF)) {
uart_puts("Found watchdog reset\n\r");
MCUSR = 0;
wdt_disable();
uart_puts("Jump to 0x0000\n\r");
jump_to_app();
}
#if AVR_BTLDR_SWITCH_ENABLE
if ((AVR_BTLDR_EN_IN & ( 1 << AVR_BTLDR_EN_PIN)) == 0){
banner();
uart_puts("Bootloader flashing is disabled\n\r");
MCUSR = 0;
leave_bootloader();
}
#endif
/*
* if power-on reset, quit bootloader via watchdog reset
*/
if (reset & _BV(PORF)) {
banner();
uart_puts("Found power on reset\n\r");
MCUSR = 0;
leave_bootloader();
}
banner();
uart_puts("Enter programming mode\n\r");
/*
* else: enter programming mode
*/
/*
* clear external reset flags
*/
MCUSR = 0;
/*
* init exit request state
*/
request_exit = 0;
/*
* move interrupts to boot section
*/
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
/*
* enable interrupts
*/
sei();
/*
* initialize usb pins
*/
usbInit();
/*
* disconnect for ~500ms, so that the host re-enumerates this device
*/
usbDeviceDisconnect();
for (uint8_t i = 0; i < 50; i++)
_delay_ms(10); /* 0 means 0x10000, 38*1/f*0x10000 =~ 498ms */
usbDeviceConnect();
uart_puts("Wait for firmware");
while (1) {
usbPoll();
delay++;
/*
* do some led blinking, so that it is visible that the bootloader is still running
*/
if (delay == 0) {
uart_putc('.');
DLED_TGL;
if (timeout < 255)
timeout--;
}
if (request_exit || timeout == 0) {
uart_puts("\n\rExit\n\r");
_delay_ms(10);
leave_bootloader();
}
}
}

View File

@ -1,23 +0,0 @@
/* configuratino file for usbload */
/* after this timeout, the main application ist started, if no usb
* connection is detected */
#define TIMEOUT 50
/* uncomment this if you need to define some other signature bytes */
//#define SIGNATURE_BYTES 0x23, 0x24, 0x25, 0
/* uncomment this if you want to catch the eeprom isp bytewise read/write
* commands. costs ~34 byte */
//#define ENABLE_CATCH_EEPROM_ISP
/* uncomment this if you want a usb echo function (for communication testing) */
//#define ENABLE_ECHO_FUNC
/* uncomment this for debug information via uart */
#define DEBUG_UART
#define DEBUG 1
#define DEBUG_USB 2
#define AVR_BTLDR_SWITCH_ENABLE 1

View File

@ -1,21 +0,0 @@
additional fuse bit settings for using this bootloader:
=======================================================
atmega88/168:
extended fuse byte:
1024 words bootloader size: BOOTSZ0 = 0
BOOTSZ1 = 0
reset vector, jump to bootloader on reset: BOOTRST = 0
-> default: 0b001 = 0x01
new: 0b000 = 0x00
lock byte:
SPM is not allowed to write to the Boot Loader section BLB12 = 1
BLB11 = 0
-> default: 0b111111 = 0x3f
new: 0b101111 = 0x2f

View File

@ -1,9 +0,0 @@
.extern __init, __vector_1
.global __vector_default, exit
.section .vectors.bootloader
/* micro-jumptable, we are using just reset and int0 vectors */
exit:
__vector_default:
jmp __init
jmp __vector_1

View File

@ -1,174 +0,0 @@
/* Default linker script, for normal executables */
OUTPUT_FORMAT("elf32-avr","elf32-avr","elf32-avr")
OUTPUT_ARCH(avr:5)
MEMORY
{
text (rx) : ORIGIN = 0, LENGTH = 128K
data (rw!x) : ORIGIN = 0x800060, LENGTH = 0xffa0
eeprom (rw!x) : ORIGIN = 0x810000, LENGTH = 64K
}
SECTIONS
{
/* Read-only sections, merged into text segment: */
.hash : { *(.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rel.init : { *(.rel.init) }
.rela.init : { *(.rela.init) }
.rel.text :
{
*(.rel.text)
*(.rel.text.*)
*(.rel.gnu.linkonce.t*)
}
.rela.text :
{
*(.rela.text)
*(.rela.text.*)
*(.rela.gnu.linkonce.t*)
}
.rel.fini : { *(.rel.fini) }
.rela.fini : { *(.rela.fini) }
.rel.rodata :
{
*(.rel.rodata)
*(.rel.rodata.*)
*(.rel.gnu.linkonce.r*)
}
.rela.rodata :
{
*(.rela.rodata)
*(.rela.rodata.*)
*(.rela.gnu.linkonce.r*)
}
.rel.data :
{
*(.rel.data)
*(.rel.data.*)
*(.rel.gnu.linkonce.d*)
}
.rela.data :
{
*(.rela.data)
*(.rela.data.*)
*(.rela.gnu.linkonce.d*)
}
.rel.ctors : { *(.rel.ctors) }
.rela.ctors : { *(.rela.ctors) }
.rel.dtors : { *(.rel.dtors) }
.rela.dtors : { *(.rela.dtors) }
.rel.got : { *(.rel.got) }
.rela.got : { *(.rela.got) }
.rel.bss : { *(.rel.bss) }
.rela.bss : { *(.rela.bss) }
.rel.plt : { *(.rel.plt) }
.rela.plt : { *(.rela.plt) }
/DISCARD/ : { *(.vectors) }
/DISCARD/ : { *(.fini9)
*(.fini6)
*(.fini0)
}
/* Internal text space or external memory */
.text :
{
*(.vectors.bootloader)
__ctors_start = . ;
*(.ctors)
__ctors_end = . ;
__dtors_start = . ;
*(.dtors)
__dtors_end = . ;
*(.progmem.gcc*)
*(.progmem*)
. = ALIGN(2);
*(.init0) /* Start here after reset. */
*(.init1)
*(.init2) /* Clear __zero_reg__, set up stack pointer. */
*(.init3)
*(.init4) /* Initialize data and BSS. */
*(.init5)
*(.init6) /* C++ constructors. */
*(.init7)
*(.init8)
*(.init9) /* Call main(). */
*(.text)
. = ALIGN(2);
*(.text.*)
. = ALIGN(2);
*(.fini9) /* _exit() starts here. */
*(.fini8)
*(.fini7)
*(.fini6) /* C++ destructors. */
*(.fini5)
*(.fini4)
*(.fini3)
*(.fini2)
*(.fini1)
*(.fini0) /* Infinite loop after program termination. */
_etext = . ;
} > text
.data : AT (ADDR (.text) + SIZEOF (.text))
{
PROVIDE (__data_start = .) ;
*(.data)
*(.gnu.linkonce.d*)
. = ALIGN(2);
_edata = . ;
PROVIDE (__data_end = .) ;
} > data
.bss SIZEOF(.data) + ADDR(.data) :
{
PROVIDE (__bss_start = .) ;
*(.bss)
*(COMMON)
PROVIDE (__bss_end = .) ;
} > data
__data_load_start = LOADADDR(.data);
__data_load_end = __data_load_start + SIZEOF(.data);
/* Global data not cleared after reset. */
.noinit SIZEOF(.bss) + ADDR(.bss) :
{
PROVIDE (__noinit_start = .) ;
*(.noinit*)
PROVIDE (__noinit_end = .) ;
_end = . ;
PROVIDE (__heap_start = .) ;
} > data
.eeprom :
{
*(.eeprom*)
__eeprom_end = . ;
} > eeprom
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
/* DWARF debug sections.
Symbols in the DWARF debugging sections are relative to the beginning
of the section so we begin them at 0. */
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info) *(.gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
}

View File

@ -1,291 +0,0 @@
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file contains parts of the USB driver which can be configured and can or
must be adapted to your hardware.
Please note that the usbdrv contains a usbconfig-prototype.h file now. We
recommend that you use that file as a template because it will always list
the newest features and options.
*/
#include "config.h"
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in MHz. Legal values are 12000, 15000, 16000, 16500
* and 20000. The 16.5 MHz version of the code requires no crystal, it
* tolerates +/- 1% deviation from the nominal frequency. All other rates
* require a precision of 2000 ppm and thus a crystal!
* Default if not specified: 12 MHz
*/
/* ----------------------- Optional Hardware Config ------------------------ */
//#define USB_CFG_PULLUP_IOPORTNAME B
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
//#define USB_CFG_PULLUP_BIT 0
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_INTR_POLL_INTERVAL 200
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 100
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 1
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* 5824 in dec, stands for VOTI */
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you use obdev's free shared
* VID/PID pair. Be sure to read USBID-License.txt for rules!
*/
#define USB_CFG_DEVICE_ID 0xdc, 0x05 /* 1500 in dec, obdev's free PID */
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you use obdev's free shared VID/PID pair. Be sure to read the rules in
* USBID-License.txt!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'w', 'w', 'w', '.', 'f', 'i', 's', 'c', 'h', 'l', '.', 'd', 'e'
#define USB_CFG_VENDOR_NAME_LEN 13
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USBID-License.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'U', 'S', 'B', 'a', 's', 'p'
#define USB_CFG_DEVICE_NAME_LEN 6
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USBID-License.txt before you assign a name.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 42 */
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
#define USB_PUBLIC static
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor().
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
#endif /* __usbconfig_h_included__ */

View File

@ -1,329 +0,0 @@
This file documents changes in the firmware-only USB driver for atmel's AVR
microcontrollers. New entries are always appended to the end of the file.
Scroll down to the bottom to see the most recent changes.
2005-04-01:
- Implemented endpoint 1 as interrupt-in endpoint.
- Moved all configuration options to usbconfig.h which is not part of the
driver.
- Changed interface for usbVendorSetup().
- Fixed compatibility with ATMega8 device.
- Various minor optimizations.
2005-04-11:
- Changed interface to application: Use usbFunctionSetup(), usbFunctionRead()
and usbFunctionWrite() now. Added configuration options to choose which
of these functions to compile in.
- Assembler module delivers receive data non-inverted now.
- Made register and bit names compatible with more AVR devices.
2005-05-03:
- Allow address of usbRxBuf on any memory page as long as the buffer does
not cross 256 byte page boundaries.
- Better device compatibility: works with Mega88 now.
- Code optimization in debugging module.
- Documentation updates.
2006-01-02:
- Added (free) default Vendor- and Product-IDs bought from voti.nl.
- Added USBID-License.txt file which defines the rules for using the free
shared VID/PID pair.
- Added Readme.txt to the usbdrv directory which clarifies administrative
issues.
2006-01-25:
- Added "configured state" to become more standards compliant.
- Added "HALT" state for interrupt endpoint.
- Driver passes the "USB Command Verifier" test from usb.org now.
- Made "serial number" a configuration option.
- Minor optimizations, we now recommend compiler option "-Os" for best
results.
- Added a version number to usbdrv.h
2006-02-03:
- New configuration variable USB_BUFFER_SECTION for the memory section where
the USB rx buffer will go. This defaults to ".bss" if not defined. Since
this buffer MUST NOT cross 256 byte pages (not even touch a page at the
end), the user may want to pass a linker option similar to
"-Wl,--section-start=.mybuffer=0x800060".
- Provide structure for usbRequest_t.
- New defines for USB constants.
- Prepared for HID implementations.
- Increased data size limit for interrupt transfers to 8 bytes.
- New macro usbInterruptIsReady() to query interrupt buffer state.
2006-02-18:
- Ensure that the data token which is sent as an ack to an OUT transfer is
always zero sized. This fixes a bug where the host reports an error after
sending an out transfer to the device, although all data arrived at the
device.
- Updated docs in usbdrv.h to reflect changed API in usbFunctionWrite().
* Release 2006-02-20
- Give a compiler warning when compiling with debugging turned on.
- Added Oleg Semyonov's changes for IAR-cc compatibility.
- Added new (optional) functions usbDeviceConnect() and usbDeviceDisconnect()
(also thanks to Oleg!).
- Rearranged tests in usbPoll() to save a couple of instructions in the most
likely case that no actions are pending.
- We need a delay between the SET ADDRESS request until the new address
becomes active. This delay was handled in usbPoll() until now. Since the
spec says that the delay must not exceed 2ms, previous versions required
aggressive polling during the enumeration phase. We have now moved the
handling of the delay into the interrupt routine.
- We must not reply with NAK to a SETUP transaction. We can only achieve this
by making sure that the rx buffer is empty when SETUP tokens are expected.
We therefore don't pass zero sized data packets from the status phase of
a transfer to usbPoll(). This change MAY cause troubles if you rely on
receiving a less than 8 bytes long packet in usbFunctionWrite() to
identify the end of a transfer. usbFunctionWrite() will NEVER be called
with a zero length.
* Release 2006-03-14
- Improved IAR C support: tiny memory model, more devices
- Added template usbconfig.h file under the name usbconfig-prototype.h
* Release 2006-03-26
- Added provision for one more interrupt-in endpoint (endpoint 3).
- Added provision for one interrupt-out endpoint (endpoint 1).
- Added flowcontrol macros for USB.
- Added provision for custom configuration descriptor.
- Allow ANY two port bits for D+ and D-.
- Merged (optional) receive endpoint number into global usbRxToken variable.
- Use USB_CFG_IOPORTNAME instead of USB_CFG_IOPORT. We now construct the
variable name from the single port letter instead of computing the address
of related ports from the output-port address.
* Release 2006-06-26
- Updated documentation in usbdrv.h and usbconfig-prototype.h to reflect the
new features.
- Removed "#warning" directives because IAR does not understand them. Use
unused static variables instead to generate a warning.
- Do not include <avr/io.h> when compiling with IAR.
- Introduced USB_CFG_DESCR_PROPS_* in usbconfig.h to configure how each
USB descriptor should be handled. It is now possible to provide descriptor
data in Flash, RAM or dynamically at runtime.
- STALL is now a status in usbTxLen* instead of a message. We can now conform
to the spec and leave the stall status pending until it is cleared.
- Made usbTxPacketCnt1 and usbTxPacketCnt3 public. This allows the
application code to reset data toggling on interrupt pipes.
* Release 2006-07-18
- Added an #if !defined __ASSEMBLER__ to the warning in usbdrv.h. This fixes
an assembler error.
- usbDeviceDisconnect() takes pull-up resistor to high impedance now.
* Release 2007-02-01
- Merged in some code size improvements from usbtiny (thanks to Dick
Streefland for these optimizations!)
- Special alignment requirement for usbRxBuf not required any more. Thanks
again to Dick Streefland for this hint!
- Reverted to "#warning" instead of unused static variables -- new versions
of IAR CC should handle this directive.
- Changed Open Source license to GNU GPL v2 in order to make linking against
other free libraries easier. We no longer require publication of the
circuit diagrams, but we STRONGLY encourage it. If you improve the driver
itself, PLEASE grant us a royalty free license to your changes for our
commercial license.
* Release 2007-03-29
- New configuration option "USB_PUBLIC" in usbconfig.h.
- Set USB version number to 1.10 instead of 1.01.
- Code used USB_CFG_DESCR_PROPS_STRING_DEVICE and
USB_CFG_DESCR_PROPS_STRING_PRODUCT inconsistently. Changed all occurrences
to USB_CFG_DESCR_PROPS_STRING_PRODUCT.
- New assembler module for 16.5 MHz RC oscillator clock with PLL in receiver
code.
- New assembler module for 16 MHz crystal.
- usbdrvasm.S contains common code only, clock-specific parts have been moved
to usbdrvasm12.S, usbdrvasm16.S and usbdrvasm165.S respectively.
* Release 2007-06-25
- 16 MHz module: Do SE0 check in stuffed bits as well.
* Release 2007-07-07
- Define hi8(x) for IAR compiler to limit result to 8 bits. This is necessary
for negative values.
- Added 15 MHz module contributed by V. Bosch.
- Interrupt vector name can now be configured. This is useful if somebody
wants to use a different hardware interrupt than INT0.
* Release 2007-08-07
- Moved handleIn3 routine in usbdrvasm16.S so that relative jump range is
not exceeded.
- More config options: USB_RX_USER_HOOK(), USB_INITIAL_DATATOKEN,
USB_COUNT_SOF
- USB_INTR_PENDING can now be a memory address, not just I/O
* Release 2007-09-19
- Split out common parts of assembler modules into separate include file
- Made endpoint numbers configurable so that given interface definitions
can be matched. See USB_CFG_EP3_NUMBER in usbconfig-prototype.h.
- Store endpoint number for interrupt/bulk-out so that usbFunctionWriteOut()
can handle any number of endpoints.
- Define usbDeviceConnect() and usbDeviceDisconnect() even if no
USB_CFG_PULLUP_IOPORTNAME is defined. Directly set D+ and D- to 0 in this
case.
* Release 2007-12-01
- Optimize usbDeviceConnect() and usbDeviceDisconnect() for less code size
when USB_CFG_PULLUP_IOPORTNAME is not defined.
* Release 2007-12-13
- Renamed all include-only assembler modules from *.S to *.inc so that
people don't add them to their project sources.
- Distribute leap bits in tx loop more evenly for 16 MHz module.
- Use "macro" and "endm" instead of ".macro" and ".endm" for IAR
- Avoid compiler warnings for constant expr range by casting some values in
USB descriptors.
* Release 2008-01-21
- Fixed bug in 15 and 16 MHz module where the new address set with
SET_ADDRESS was already accepted at the next NAK or ACK we send, not at
the next data packet we send. This caused problems when the host polled
too fast. Thanks to Alexander Neumann for his help and patience debugging
this issue!
* Release 2008-02-05
- Fixed bug in 16.5 MHz module where a register was used in the interrupt
handler before it was pushed. This bug was introduced with version
2007-09-19 when common parts were moved to a separate file.
- Optimized CRC routine (thanks to Reimar Doeffinger).
* Release 2008-02-16
- Removed outdated IAR compatibility stuff (code sections).
- Added hook macros for USB_RESET_HOOK() and USB_SET_ADDRESS_HOOK().
- Added optional routine usbMeasureFrameLength() for calibration of the
internal RC oscillator.
* Release 2008-02-28
- USB_INITIAL_DATATOKEN defaults to USBPID_DATA1 now, which means that we
start with sending USBPID_DATA0.
- Changed defaults in usbconfig-prototype.h
- Added free USB VID/PID pair for MIDI class devices
- Restructured AVR-USB as separate package, not part of PowerSwitch any more.
* Release 2008-04-18
- Restructured usbdrv.c so that it is easier to read and understand.
- Better code optimization with gcc 4.
- If a second interrupt in endpoint is enabled, also add it to config
descriptor.
- Added config option for long transfers (above 254 bytes), see
USB_CFG_LONG_TRANSFERS in usbconfig.h.
- Added 20 MHz module contributed by Jeroen Benschop.
* Release 2008-05-13
- Fixed bug in libs-host/hiddata.c function usbhidGetReport(): length
was not incremented, pointer to length was incremented instead.
- Added code to command line tool(s) which claims an interface. This code
is disabled by default, but may be necessary on newer Linux kernels.
- Added usbconfig.h option "USB_CFG_CHECK_DATA_TOGGLING".
- New header "usbportability.h" prepares ports to other development
environments.
- Long transfers (above 254 bytes) did not work when usbFunctionRead() was
used to supply the data. Fixed this bug. [Thanks to Alexander Neumann!]
- In hiddata.c (example code for sending/receiving data over HID), use
USB_RECIP_DEVICE instead of USB_RECIP_INTERFACE for control transfers so
that we need not claim the interface.
- in usbPoll() loop 20 times polling for RESET state instead of 10 times.
This accounts for the higher clock rates we now support.
- Added a module for 12.8 MHz RC oscillator with PLL in receiver loop.
- Added hook to SOF code so that oscillator can be tuned to USB frame clock.
- Added timeout to waitForJ loop. Helps preventing unexpected hangs.
- Added example code for oscillator tuning to libs-device (thanks to
Henrik Haftmann for the idea to this routine).
- Implemented option USB_CFG_SUPPRESS_INTR_CODE.
* Release 2008-10-22
- Fixed libs-device/osctune.h: OSCCAL is memory address on ATMega88 and
similar, not offset of 0x20 needs to be added.
- Allow distribution under GPLv3 for those who have to link against other
code distributed under GPLv3.
* Release 2008-11-26
- Removed libusb-win32 dependency for hid-data example in Makefile.windows.
It was never required and confused many people.
- Added extern uchar usbRxToken to usbdrv.h.
- Integrated a module with CRC checks at 18 MHz by Lukas Schrittwieser.
* Release 2009-03-23
- Hid-mouse example used settings from hid-data example, fixed that.
- Renamed project to V-USB due to a trademark issue with Atmel(r).
- Changed CommercialLicense.txt and USBID-License.txt to make the
background of USB ID registration clearer.
* Release 2009-04-15
- Changed CommercialLicense.txt to reflect the new range of PIDs from
Jason Kotzin.
- Removed USBID-License.txt in favor of USB-IDs-for-free.txt and
USB-ID-FAQ.txt
- Fixed a bug in the 12.8 MHz module: End Of Packet decection was made in
the center between bit 0 and 1 of each byte. This is where the data lines
are expected to change and the sampled data may therefore be nonsense.
We therefore check EOP ONLY if bits 0 AND 1 have both been read as 0 on D-.
- Fixed a bitstuffing problem in the 16 MHz module: If bit 6 was stuffed,
the unstuffing code in the receiver routine was 1 cycle too long. If
multiple bytes had the unstuffing in bit 6, the error summed up until the
receiver was out of sync.
- Included option for faster CRC routine.
Thanks to Slawomir Fras (BoskiDialer) for this code!
- Updated bits in Configuration Descriptor's bmAttributes according to
USB 1.1 (in particular bit 7, it is a must-be-set bit now).
* Release 2009-08-22
- Moved first DBG1() after odDebugInit() in all examples.
- Use vector INT0_vect instead of SIG_INTERRUPT0 if defined. This makes
V-USB compatible with the new "p" suffix devices (e.g. ATMega328p).
- USB_CFG_CLOCK_KHZ setting is now required in usbconfig.h (no default any
more).
- New option USB_CFG_DRIVER_FLASH_PAGE allows boot loaders on devices with
more than 64 kB flash.
- Built-in configuration descriptor allows custom definition for second
endpoint now.
* Release 2010-07-15
- Fixed bug in usbDriverSetup() which prevented descriptor sizes above 255
bytes.
- Avoid a compiler warning for unused parameter in usbHandleResetHook() when
compiler option -Wextra is enabled.
- Fixed wrong hex value for some IDs in USB-IDs-for-free.txt.
- Keep a define for USBATTR_BUSPOWER, although the flag does not exist
in USB 1.1 any more. Set it to 0. This is for backward compatibility.
* Release 2012-01-09
- Define a separate (defined) type for usbMsgPtr so that projects using a
tiny memory model can define it to an 8 bit type in usbconfig.h. This
change also saves a couple of bytes when using a scalar 16 bit type.
- Inserted "const" keyword for all PROGMEM declarations because new GCC
requires it.
- Fixed problem with dependence of usbportability.h on usbconfig.h. This
problem occurred with IAR CC only.
- Prepared repository for github.com.
* Release 2012-12-06

View File

@ -1,172 +0,0 @@
This is the Readme file to Objective Development's firmware-only USB driver
for Atmel AVR microcontrollers. For more information please visit
http://www.obdev.at/vusb/
This directory contains the USB firmware only. Copy it as-is to your own
project and add all .c and .S files to your project (these files are marked
with an asterisk in the list below). Then copy usbconfig-prototype.h as
usbconfig.h to your project and edit it according to your configuration.
TECHNICAL DOCUMENTATION
=======================
The technical documentation (API) for the firmware driver is contained in the
file "usbdrv.h". Please read all of it carefully! Configuration options are
documented in "usbconfig-prototype.h".
The driver consists of the following files:
Readme.txt ............. The file you are currently reading.
Changelog.txt .......... Release notes for all versions of the driver.
usbdrv.h ............... Driver interface definitions and technical docs.
* usbdrv.c ............... High level language part of the driver. Link this
module to your code!
* usbdrvasm.S ............ Assembler part of the driver. This module is mostly
a stub and includes one of the usbdrvasm*.S files
depending on processor clock. Link this module to
your code!
usbdrvasm*.inc ......... Assembler routines for particular clock frequencies.
Included by usbdrvasm.S, don't link it directly!
asmcommon.inc .......... Common assembler routines. Included by
usbdrvasm*.inc, don't link it directly!
usbconfig-prototype.h .. Prototype for your own usbdrv.h file.
* oddebug.c .............. Debug functions. Only used when DEBUG_LEVEL is
defined to a value greater than 0. Link this module
to your code!
oddebug.h .............. Interface definitions of the debug module.
usbportability.h ....... Header with compiler-dependent stuff.
usbdrvasm.asm .......... Compatibility stub for IAR-C-compiler. Use this
module instead of usbdrvasm.S when you assembler
with IAR's tools.
License.txt ............ Open Source license for this driver.
CommercialLicense.txt .. Optional commercial license for this driver.
USB-ID-FAQ.txt ......... General infos about USB Product- and Vendor-IDs.
USB-IDs-for-free.txt ... List and terms of use for free shared PIDs.
(*) ... These files should be linked to your project.
CPU CORE CLOCK FREQUENCY
========================
We supply assembler modules for clock frequencies of 12 MHz, 12.8 MHz, 15 MHz,
16 MHz, 16.5 MHz 18 MHz and 20 MHz. Other clock rates are not supported. The
actual clock rate must be configured in usbconfig.h.
12 MHz Clock
This is the traditional clock rate of V-USB because it's the lowest clock
rate where the timing constraints of the USB spec can be met.
15 MHz Clock
Similar to 12 MHz, but some NOPs inserted. On the other hand, the higher clock
rate allows for some loops which make the resulting code size somewhat smaller
than the 12 MHz version.
16 MHz Clock
This clock rate has been added for users of the Arduino board and other
ready-made boards which come with a fixed 16 MHz crystal. It's also an option
if you need the slightly higher clock rate for performance reasons. Since
16 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
is somewhat tricky and has to insert a leap cycle every third byte.
12.8 MHz and 16.5 MHz Clock
The assembler modules for these clock rates differ from the other modules
because they have been built for an RC oscillator with only 1% precision. The
receiver code inserts leap cycles to compensate for clock deviations. 1% is
also the precision which can be achieved by calibrating the internal RC
oscillator of the AVR. Please note that only AVRs with internal 64 MHz PLL
oscillator can reach 16.5 MHz with the RC oscillator. This includes the very
popular ATTiny25, ATTiny45, ATTiny85 series as well as the ATTiny26. Almost
all AVRs can reach 12.8 MHz, although this is outside the specified range.
See the EasyLogger example at http://www.obdev.at/vusb/easylogger.html for
code which calibrates the RC oscillator based on the USB frame clock.
18 MHz Clock
This module is closer to the USB specification because it performs an on the
fly CRC check for incoming packets. Packets with invalid checksum are
discarded as required by the spec. If you also implement checks for data
PID toggling on application level (see option USB_CFG_CHECK_DATA_TOGGLING
in usbconfig.h for more info), this ensures data integrity. Due to the CRC
tables and alignment requirements, this code is bigger than modules for other
clock rates. To activate this module, you must define USB_CFG_CHECK_CRC to 1
and USB_CFG_CLOCK_KHZ to 18000 in usbconfig.h.
20 MHz Clock
This module is for people who won't do it with less than the maximum. Since
20 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
uses similar tricks as the 16 MHz module to insert leap cycles.
USB IDENTIFIERS
===============
Every USB device needs a vendor- and a product-identifier (VID and PID). VIDs
are obtained from usb.org for a price of 1,500 USD. Once you have a VID, you
can assign PIDs at will.
Since an entry level cost of 1,500 USD is too high for most small companies
and hobbyists, we provide some VID/PID pairs for free. See the file
USB-IDs-for-free.txt for details.
Objective Development also has some license offerings which include product
IDs. See http://www.obdev.at/vusb/ for details.
DEVELOPMENT SYSTEM
==================
This driver has been developed and optimized for the GNU compiler version 3
and 4. We recommend that you use the GNU compiler suite because it is freely
available. V-USB has also been ported to the IAR compiler and assembler. It
has been tested with IAR 4.10B/W32 and 4.12A/W32 on an ATmega8 with the
"small" and "tiny" memory model. Not every release is tested with IAR CC and
the driver may therefore fail to compile with IAR. Please note that gcc is
more efficient for usbdrv.c because this module has been deliberately
optimized for gcc.
Gcc version 3 produces smaller code than version 4 due to new optimizing
capabilities which don't always improve things on 8 bit CPUs. The code size
generated by gcc 4 can be reduced with the compiler options
-fno-move-loop-invariants, -fno-tree-scev-cprop and
-fno-inline-small-functions in addition to -Os. On devices with more than
8k of flash memory, we also recommend the linker option --relax (written as
-Wl,--relax for gcc) to convert absolute calls into relative where possible.
For more information about optimizing options see:
http://www.tty1.net/blog/2008-04-29-avr-gcc-optimisations_en.html
These optimizations are good for gcc 4.x. Version 3.x of gcc does not support
most of these options and produces good code anyway.
USING V-USB FOR FREE
====================
The AVR firmware driver is published under the GNU General Public License
Version 2 (GPL2) and the GNU General Public License Version 3 (GPL3). It is
your choice whether you apply the terms of version 2 or version 3.
If you decide for the free GPL2 or GPL3, we STRONGLY ENCOURAGE you to do the
following things IN ADDITION to the obligations from the GPL:
(1) Publish your entire project on a web site and drop us a note with the URL.
Use the form at http://www.obdev.at/vusb/feedback.html for your submission.
If you don't have a web site, you can publish the project in obdev's
documentation wiki at
http://www.obdev.at/goto.php?t=vusb-wiki&p=hosted-projects.
(2) Adhere to minimum publication standards. Please include AT LEAST:
- a circuit diagram in PDF, PNG or GIF format
- full source code for the host software
- a Readme.txt file in ASCII format which describes the purpose of the
project and what can be found in which directories and which files
- a reference to http://www.obdev.at/vusb/
(3) If you improve the driver firmware itself, please give us a free license
to your modifications for our commercial license offerings.
COMMERCIAL LICENSES FOR V-USB
=============================
If you don't want to publish your source code under the terms of the GPL,
you can simply pay money for V-USB. As an additional benefit you get
USB PIDs for free, reserved exclusively to you. See the file
"CommercialLicense.txt" for details.

View File

@ -1,187 +0,0 @@
/* Name: asmcommon.inc
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2007-11-05
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file contains assembler code which is shared among the USB driver
implementations for different CPU cocks. Since the code must be inserted
in the middle of the module, it's split out into this file and #included.
Jump destinations called from outside:
sofError: Called when no start sequence was found.
se0: Called when a package has been successfully received.
overflow: Called when receive buffer overflows.
doReturn: Called after sending data.
Outside jump destinations used by this module:
waitForJ: Called to receive an already arriving packet.
sendAckAndReti:
sendNakAndReti:
sendCntAndReti:
usbSendAndReti:
The following macros must be defined before this file is included:
.macro POP_STANDARD
.endm
.macro POP_RETI
.endm
*/
#define token x1
overflow:
ldi x2, 1<<USB_INTR_PENDING_BIT
USB_STORE_PENDING(x2) ; clear any pending interrupts
ignorePacket:
clr token
rjmp storeTokenAndReturn
;----------------------------------------------------------------------------
; Processing of received packet (numbers in brackets are cycles after center of SE0)
;----------------------------------------------------------------------------
;This is the only non-error exit point for the software receiver loop
;we don't check any CRCs here because there is no time left.
se0:
subi cnt, USB_BUFSIZE ;[5]
neg cnt ;[6]
sub YL, cnt ;[7]
sbci YH, 0 ;[8]
ldi x2, 1<<USB_INTR_PENDING_BIT ;[9]
USB_STORE_PENDING(x2) ;[10] clear pending intr and check flag later. SE0 should be over.
ld token, y ;[11]
cpi token, USBPID_DATA0 ;[13]
breq handleData ;[14]
cpi token, USBPID_DATA1 ;[15]
breq handleData ;[16]
lds shift, usbDeviceAddr;[17]
ldd x2, y+1 ;[19] ADDR and 1 bit endpoint number
lsl x2 ;[21] shift out 1 bit endpoint number
cpse x2, shift ;[22]
rjmp ignorePacket ;[23]
/* only compute endpoint number in x3 if required later */
#if USB_CFG_HAVE_INTRIN_ENDPOINT || USB_CFG_IMPLEMENT_FN_WRITEOUT
ldd x3, y+2 ;[24] endpoint number + crc
rol x3 ;[26] shift in LSB of endpoint
#endif
cpi token, USBPID_IN ;[27]
breq handleIn ;[28]
cpi token, USBPID_SETUP ;[29]
breq handleSetupOrOut ;[30]
cpi token, USBPID_OUT ;[31]
brne ignorePacket ;[32] must be ack, nak or whatever
; rjmp handleSetupOrOut ; fallthrough
;Setup and Out are followed by a data packet two bit times (16 cycles) after
;the end of SE0. The sync code allows up to 40 cycles delay from the start of
;the sync pattern until the first bit is sampled. That's a total of 56 cycles.
handleSetupOrOut: ;[32]
#if USB_CFG_IMPLEMENT_FN_WRITEOUT /* if we have data for endpoint != 0, set usbCurrentTok to address */
andi x3, 0xf ;[32]
breq storeTokenAndReturn ;[33]
mov token, x3 ;[34] indicate that this is endpoint x OUT
#endif
storeTokenAndReturn:
sts usbCurrentTok, token;[35]
doReturn:
POP_STANDARD ;[37] 12...16 cycles
USB_LOAD_PENDING(YL) ;[49]
sbrc YL, USB_INTR_PENDING_BIT;[50] check whether data is already arriving
rjmp waitForJ ;[51] save the pops and pushes -- a new interrupt is already pending
sofError:
POP_RETI ;macro call
reti
handleData:
#if USB_CFG_CHECK_CRC
CRC_CLEANUP_AND_CHECK ; jumps to ignorePacket if CRC error
#endif
lds shift, usbCurrentTok;[18]
tst shift ;[20]
breq doReturn ;[21]
lds x2, usbRxLen ;[22]
tst x2 ;[24]
brne sendNakAndReti ;[25]
; 2006-03-11: The following two lines fix a problem where the device was not
; recognized if usbPoll() was called less frequently than once every 4 ms.
cpi cnt, 4 ;[26] zero sized data packets are status phase only -- ignore and ack
brmi sendAckAndReti ;[27] keep rx buffer clean -- we must not NAK next SETUP
#if USB_CFG_CHECK_DATA_TOGGLING
sts usbCurrentDataToken, token ; store for checking by C code
#endif
sts usbRxLen, cnt ;[28] store received data, swap buffers
sts usbRxToken, shift ;[30]
lds x2, usbInputBufOffset;[32] swap buffers
ldi cnt, USB_BUFSIZE ;[34]
sub cnt, x2 ;[35]
sts usbInputBufOffset, cnt;[36] buffers now swapped
rjmp sendAckAndReti ;[38] 40 + 17 = 57 until SOP
handleIn:
;We don't send any data as long as the C code has not processed the current
;input data and potentially updated the output data. That's more efficient
;in terms of code size than clearing the tx buffers when a packet is received.
lds x1, usbRxLen ;[30]
cpi x1, 1 ;[32] negative values are flow control, 0 means "buffer free"
brge sendNakAndReti ;[33] unprocessed input packet?
ldi x1, USBPID_NAK ;[34] prepare value for usbTxLen
#if USB_CFG_HAVE_INTRIN_ENDPOINT
andi x3, 0xf ;[35] x3 contains endpoint
#if USB_CFG_SUPPRESS_INTR_CODE
brne sendNakAndReti ;[36]
#else
brne handleIn1 ;[36]
#endif
#endif
lds cnt, usbTxLen ;[37]
sbrc cnt, 4 ;[39] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[40] 42 + 16 = 58 until SOP
sts usbTxLen, x1 ;[41] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf) ;[43]
ldi YH, hi8(usbTxBuf) ;[44]
rjmp usbSendAndReti ;[45] 57 + 12 = 59 until SOP
; Comment about when to set usbTxLen to USBPID_NAK:
; We should set it back when we receive the ACK from the host. This would
; be simple to implement: One static variable which stores whether the last
; tx was for endpoint 0 or 1 and a compare in the receiver to distinguish the
; ACK. However, we set it back immediately when we send the package,
; assuming that no error occurs and the host sends an ACK. We save one byte
; RAM this way and avoid potential problems with endless retries. The rest of
; the driver assumes error-free transfers anyway.
#if !USB_CFG_SUPPRESS_INTR_CODE && USB_CFG_HAVE_INTRIN_ENDPOINT /* placed here due to relative jump range */
handleIn1: ;[38]
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
; 2006-06-10 as suggested by O.Tamura: support second INTR IN / BULK IN endpoint
cpi x3, USB_CFG_EP3_NUMBER;[38]
breq handleIn3 ;[39]
#endif
lds cnt, usbTxLen1 ;[40]
sbrc cnt, 4 ;[42] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[43] 47 + 16 = 63 until SOP
sts usbTxLen1, x1 ;[44] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf1) ;[46]
ldi YH, hi8(usbTxBuf1) ;[47]
rjmp usbSendAndReti ;[48] 50 + 12 = 62 until SOP
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
handleIn3:
lds cnt, usbTxLen3 ;[41]
sbrc cnt, 4 ;[43]
rjmp sendCntAndReti ;[44] 49 + 16 = 65 until SOP
sts usbTxLen3, x1 ;[45] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf3) ;[47]
ldi YH, hi8(usbTxBuf3) ;[48]
rjmp usbSendAndReti ;[49] 51 + 12 = 63 until SOP
#endif
#endif

View File

@ -1,49 +0,0 @@
/* Name: oddebug.c
* Project: AVR library
* Author: Christian Starkjohann
* Creation Date: 2005-01-16
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#include "oddebug.h"
#if DEBUG_LEVEL > 0
#warning "Never compile production devices with debugging enabled"
static void uartPutc(char c)
{
while(!(ODDBG_USR & (1 << ODDBG_UDRE))); /* wait for data register empty */
ODDBG_UDR = c;
}
static uchar hexAscii(uchar h)
{
h &= 0xf;
if(h >= 10)
h += 'a' - (uchar)10 - '0';
h += '0';
return h;
}
static void printHex(uchar c)
{
uartPutc(hexAscii(c >> 4));
uartPutc(hexAscii(c));
}
void odDebug(uchar prefix, uchar *data, uchar len)
{
printHex(prefix);
uartPutc(':');
while(len--){
uartPutc(' ');
printHex(*data++);
}
uartPutc('\r');
uartPutc('\n');
}
#endif

View File

@ -1,628 +0,0 @@
/* Name: usbdrv.c
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#include "usbdrv.h"
#include "oddebug.h"
/*
General Description:
This module implements the C-part of the USB driver. See usbdrv.h for a
documentation of the entire driver.
*/
/* ------------------------------------------------------------------------- */
/* raw USB registers / interface to assembler code: */
uchar usbRxBuf[2*USB_BUFSIZE]; /* raw RX buffer: PID, 8 bytes data, 2 bytes CRC */
uchar usbInputBufOffset; /* offset in usbRxBuf used for low level receiving */
uchar usbDeviceAddr; /* assigned during enumeration, defaults to 0 */
uchar usbNewDeviceAddr; /* device ID which should be set after status phase */
uchar usbConfiguration; /* currently selected configuration. Administered by driver, but not used */
volatile schar usbRxLen; /* = 0; number of bytes in usbRxBuf; 0 means free, -1 for flow control */
uchar usbCurrentTok; /* last token received or endpoint number for last OUT token if != 0 */
uchar usbRxToken; /* token for data we received; or endpont number for last OUT */
volatile uchar usbTxLen = USBPID_NAK; /* number of bytes to transmit with next IN token or handshake token */
uchar usbTxBuf[USB_BUFSIZE];/* data to transmit with next IN, free if usbTxLen contains handshake token */
#if USB_COUNT_SOF
volatile uchar usbSofCount; /* incremented by assembler module every SOF */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
usbTxStatus_t usbTxStatus1;
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxStatus_t usbTxStatus3;
# endif
#endif
#if USB_CFG_CHECK_DATA_TOGGLING
uchar usbCurrentDataToken;/* when we check data toggling to ignore duplicate packets */
#endif
/* USB status registers / not shared with asm code */
usbMsgPtr_t usbMsgPtr; /* data to transmit next -- ROM or RAM address */
static usbMsgLen_t usbMsgLen = USB_NO_MSG; /* remaining number of bytes */
static uchar usbMsgFlags; /* flag values see below */
#define USB_FLG_MSGPTR_IS_ROM (1<<6)
#define USB_FLG_USE_USER_RW (1<<7)
/*
optimizing hints:
- do not post/pre inc/dec integer values in operations
- assign value of USB_READ_FLASH() to register variables and don't use side effects in arg
- use narrow scope for variables which should be in X/Y/Z register
- assign char sized expressions to variables to force 8 bit arithmetics
*/
/* -------------------------- String Descriptors --------------------------- */
#if USB_CFG_DESCR_PROPS_STRINGS == 0
#if USB_CFG_DESCR_PROPS_STRING_0 == 0
#undef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 sizeof(usbDescriptorString0)
PROGMEM const char usbDescriptorString0[] = { /* language descriptor */
4, /* sizeof(usbDescriptorString0): length of descriptor in bytes */
3, /* descriptor type */
0x09, 0x04, /* language index (0x0409 = US-English) */
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_VENDOR == 0 && USB_CFG_VENDOR_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR sizeof(usbDescriptorStringVendor)
PROGMEM const int usbDescriptorStringVendor[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_VENDOR_NAME_LEN),
USB_CFG_VENDOR_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_PRODUCT == 0 && USB_CFG_DEVICE_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT sizeof(usbDescriptorStringDevice)
PROGMEM const int usbDescriptorStringDevice[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_DEVICE_NAME_LEN),
USB_CFG_DEVICE_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER == 0 && USB_CFG_SERIAL_NUMBER_LEN
#undef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER sizeof(usbDescriptorStringSerialNumber)
PROGMEM const int usbDescriptorStringSerialNumber[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_SERIAL_NUMBER_LEN),
USB_CFG_SERIAL_NUMBER
};
#endif
#endif /* USB_CFG_DESCR_PROPS_STRINGS == 0 */
/* --------------------------- Device Descriptor --------------------------- */
#if USB_CFG_DESCR_PROPS_DEVICE == 0
#undef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE sizeof(usbDescriptorDevice)
PROGMEM const char usbDescriptorDevice[] = { /* USB device descriptor */
18, /* sizeof(usbDescriptorDevice): length of descriptor in bytes */
USBDESCR_DEVICE, /* descriptor type */
0x10, 0x01, /* USB version supported */
USB_CFG_DEVICE_CLASS,
USB_CFG_DEVICE_SUBCLASS,
0, /* protocol */
8, /* max packet size */
/* the following two casts affect the first byte of the constant only, but
* that's sufficient to avoid a warning with the default values.
*/
(char)USB_CFG_VENDOR_ID,/* 2 bytes */
(char)USB_CFG_DEVICE_ID,/* 2 bytes */
USB_CFG_DEVICE_VERSION, /* 2 bytes */
USB_CFG_DESCR_PROPS_STRING_VENDOR != 0 ? 1 : 0, /* manufacturer string index */
USB_CFG_DESCR_PROPS_STRING_PRODUCT != 0 ? 2 : 0, /* product string index */
USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER != 0 ? 3 : 0, /* serial number string index */
1, /* number of configurations */
};
#endif
/* ----------------------- Configuration Descriptor ------------------------ */
#if USB_CFG_DESCR_PROPS_HID_REPORT != 0 && USB_CFG_DESCR_PROPS_HID == 0
#undef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 9 /* length of HID descriptor in config descriptor below */
#endif
#if USB_CFG_DESCR_PROPS_CONFIGURATION == 0
#undef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION sizeof(usbDescriptorConfiguration)
PROGMEM const char usbDescriptorConfiguration[] = { /* USB configuration descriptor */
9, /* sizeof(usbDescriptorConfiguration): length of descriptor in bytes */
USBDESCR_CONFIG, /* descriptor type */
18 + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT3 +
(USB_CFG_DESCR_PROPS_HID & 0xff), 0,
/* total length of data returned (including inlined descriptors) */
1, /* number of interfaces in this configuration */
1, /* index of this configuration */
0, /* configuration name string index */
#if USB_CFG_IS_SELF_POWERED
(1 << 7) | USBATTR_SELFPOWER, /* attributes */
#else
(1 << 7), /* attributes */
#endif
USB_CFG_MAX_BUS_POWER/2, /* max USB current in 2mA units */
/* interface descriptor follows inline: */
9, /* sizeof(usbDescrInterface): length of descriptor in bytes */
USBDESCR_INTERFACE, /* descriptor type */
0, /* index of this interface */
0, /* alternate setting for this interface */
USB_CFG_HAVE_INTRIN_ENDPOINT + USB_CFG_HAVE_INTRIN_ENDPOINT3, /* endpoints excl 0: number of endpoint descriptors to follow */
USB_CFG_INTERFACE_CLASS,
USB_CFG_INTERFACE_SUBCLASS,
USB_CFG_INTERFACE_PROTOCOL,
0, /* string index for interface */
#if (USB_CFG_DESCR_PROPS_HID & 0xff) /* HID descriptor */
9, /* sizeof(usbDescrHID): length of descriptor in bytes */
USBDESCR_HID, /* descriptor type: HID */
0x01, 0x01, /* BCD representation of HID version */
0x00, /* target country code */
0x01, /* number of HID Report (or other HID class) Descriptor infos to follow */
0x22, /* descriptor type: report */
USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH, 0, /* total length of report descriptor */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT /* endpoint descriptor for endpoint 1 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)0x81, /* IN endpoint number 1 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3 /* endpoint descriptor for endpoint 3 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)(0x80 | USB_CFG_EP3_NUMBER), /* IN endpoint number 3 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
};
#endif
/* ------------------------------------------------------------------------- */
static inline void usbResetDataToggling(void)
{
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
USB_SET_DATATOKEN1(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_SET_DATATOKEN3(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# endif
#endif
}
static inline void usbResetStall(void)
{
#if USB_CFG_IMPLEMENT_HALT && USB_CFG_HAVE_INTRIN_ENDPOINT
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */
#if !USB_CFG_SUPPRESS_INTR_CODE
#if USB_CFG_HAVE_INTRIN_ENDPOINT
static void usbGenericSetInterrupt(uchar *data, uchar len, usbTxStatus_t *txStatus)
{
uchar *p;
char i;
#if USB_CFG_IMPLEMENT_HALT
if(usbTxLen1 == USBPID_STALL)
return;
#endif
if(txStatus->len & 0x10){ /* packet buffer was empty */
txStatus->buffer[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* toggle token */
}else{
txStatus->len = USBPID_NAK; /* avoid sending outdated (overwritten) interrupt data */
}
p = txStatus->buffer + 1;
i = len;
do{ /* if len == 0, we still copy 1 byte, but that's no problem */
*p++ = *data++;
}while(--i > 0); /* loop control at the end is 2 bytes shorter than at beginning */
usbCrc16Append(&txStatus->buffer[1], len);
txStatus->len = len + 4; /* len must be given including sync byte */
DBG2(0x21 + (((int)txStatus >> 3) & 3), txStatus->buffer, len + 3);
}
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus1);
}
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus3);
}
#endif
#endif /* USB_CFG_SUPPRESS_INTR_CODE */
/* ------------------ utilities for code following below ------------------- */
/* Use defines for the switch statement so that we can choose between an
* if()else if() and a switch/case based implementation. switch() is more
* efficient for a LARGE set of sequential choices, if() is better in all other
* cases.
*/
#if USB_CFG_USE_SWITCH_STATEMENT
# define SWITCH_START(cmd) switch(cmd){{
# define SWITCH_CASE(value) }break; case (value):{
# define SWITCH_CASE2(v1,v2) }break; case (v1): case(v2):{
# define SWITCH_CASE3(v1,v2,v3) }break; case (v1): case(v2): case(v3):{
# define SWITCH_DEFAULT }break; default:{
# define SWITCH_END }}
#else
# define SWITCH_START(cmd) {uchar _cmd = cmd; if(0){
# define SWITCH_CASE(value) }else if(_cmd == (value)){
# define SWITCH_CASE2(v1,v2) }else if(_cmd == (v1) || _cmd == (v2)){
# define SWITCH_CASE3(v1,v2,v3) }else if(_cmd == (v1) || _cmd == (v2) || (_cmd == v3)){
# define SWITCH_DEFAULT }else{
# define SWITCH_END }}
#endif
#ifndef USB_RX_USER_HOOK
#define USB_RX_USER_HOOK(data, len)
#endif
#ifndef USB_SET_ADDRESS_HOOK
#define USB_SET_ADDRESS_HOOK()
#endif
/* ------------------------------------------------------------------------- */
/* We use if() instead of #if in the macro below because #if can't be used
* in macros and the compiler optimizes constant conditions anyway.
* This may cause problems with undefined symbols if compiled without
* optimizing!
*/
#define GET_DESCRIPTOR(cfgProp, staticName) \
if(cfgProp){ \
if((cfgProp) & USB_PROP_IS_RAM) \
flags = 0; \
if((cfgProp) & USB_PROP_IS_DYNAMIC){ \
len = usbFunctionDescriptor(rq); \
}else{ \
len = USB_PROP_LENGTH(cfgProp); \
usbMsgPtr = (usbMsgPtr_t)(staticName); \
} \
}
/* usbDriverDescriptor() is similar to usbFunctionDescriptor(), but used
* internally for all types of descriptors.
*/
static inline usbMsgLen_t usbDriverDescriptor(usbRequest_t *rq)
{
usbMsgLen_t len = 0;
uchar flags = USB_FLG_MSGPTR_IS_ROM;
SWITCH_START(rq->wValue.bytes[1])
SWITCH_CASE(USBDESCR_DEVICE) /* 1 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_DEVICE, usbDescriptorDevice)
SWITCH_CASE(USBDESCR_CONFIG) /* 2 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_CONFIGURATION, usbDescriptorConfiguration)
SWITCH_CASE(USBDESCR_STRING) /* 3 */
#if USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC
if(USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_RAM)
flags = 0;
len = usbFunctionDescriptor(rq);
#else /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
SWITCH_START(rq->wValue.bytes[0])
SWITCH_CASE(0)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_0, usbDescriptorString0)
SWITCH_CASE(1)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_VENDOR, usbDescriptorStringVendor)
SWITCH_CASE(2)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_PRODUCT, usbDescriptorStringDevice)
SWITCH_CASE(3)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER, usbDescriptorStringSerialNumber)
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
#endif /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
#if USB_CFG_DESCR_PROPS_HID_REPORT /* only support HID descriptors if enabled */
SWITCH_CASE(USBDESCR_HID) /* 0x21 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID, usbDescriptorConfiguration + 18)
SWITCH_CASE(USBDESCR_HID_REPORT)/* 0x22 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID_REPORT, usbDescriptorHidReport)
#endif
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
usbMsgFlags = flags;
return len;
}
/* ------------------------------------------------------------------------- */
/* usbDriverSetup() is similar to usbFunctionSetup(), but it's used for
* standard requests instead of class and custom requests.
*/
static inline usbMsgLen_t usbDriverSetup(usbRequest_t *rq)
{
usbMsgLen_t len = 0;
uchar *dataPtr = usbTxBuf + 9; /* there are 2 bytes free space at the end of the buffer */
uchar value = rq->wValue.bytes[0];
#if USB_CFG_IMPLEMENT_HALT
uchar index = rq->wIndex.bytes[0];
#endif
dataPtr[0] = 0; /* default reply common to USBRQ_GET_STATUS and USBRQ_GET_INTERFACE */
SWITCH_START(rq->bRequest)
SWITCH_CASE(USBRQ_GET_STATUS) /* 0 */
uchar recipient = rq->bmRequestType & USBRQ_RCPT_MASK; /* assign arith ops to variables to enforce byte size */
if(USB_CFG_IS_SELF_POWERED && recipient == USBRQ_RCPT_DEVICE)
dataPtr[0] = USB_CFG_IS_SELF_POWERED;
#if USB_CFG_IMPLEMENT_HALT
if(recipient == USBRQ_RCPT_ENDPOINT && index == 0x81) /* request status for endpoint 1 */
dataPtr[0] = usbTxLen1 == USBPID_STALL;
#endif
dataPtr[1] = 0;
len = 2;
#if USB_CFG_IMPLEMENT_HALT
SWITCH_CASE2(USBRQ_CLEAR_FEATURE, USBRQ_SET_FEATURE) /* 1, 3 */
if(value == 0 && index == 0x81){ /* feature 0 == HALT for endpoint == 1 */
usbTxLen1 = rq->bRequest == USBRQ_CLEAR_FEATURE ? USBPID_NAK : USBPID_STALL;
usbResetDataToggling();
}
#endif
SWITCH_CASE(USBRQ_SET_ADDRESS) /* 5 */
usbNewDeviceAddr = value;
USB_SET_ADDRESS_HOOK();
SWITCH_CASE(USBRQ_GET_DESCRIPTOR) /* 6 */
len = usbDriverDescriptor(rq);
goto skipMsgPtrAssignment;
SWITCH_CASE(USBRQ_GET_CONFIGURATION) /* 8 */
dataPtr = &usbConfiguration; /* send current configuration value */
len = 1;
SWITCH_CASE(USBRQ_SET_CONFIGURATION) /* 9 */
usbConfiguration = value;
usbResetStall();
SWITCH_CASE(USBRQ_GET_INTERFACE) /* 10 */
len = 1;
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
SWITCH_CASE(USBRQ_SET_INTERFACE) /* 11 */
usbResetDataToggling();
usbResetStall();
#endif
SWITCH_DEFAULT /* 7=SET_DESCRIPTOR, 12=SYNC_FRAME */
/* Should we add an optional hook here? */
SWITCH_END
usbMsgPtr = (usbMsgPtr_t)dataPtr;
skipMsgPtrAssignment:
return len;
}
/* ------------------------------------------------------------------------- */
/* usbProcessRx() is called for every message received by the interrupt
* routine. It distinguishes between SETUP and DATA packets and processes
* them accordingly.
*/
static inline void usbProcessRx(uchar *data, uchar len)
{
usbRequest_t *rq = (void *)data;
/* usbRxToken can be:
* 0x2d 00101101 (USBPID_SETUP for setup data)
* 0xe1 11100001 (USBPID_OUT: data phase of setup transfer)
* 0...0x0f for OUT on endpoint X
*/
DBG2(0x10 + (usbRxToken & 0xf), data, len + 2); /* SETUP=1d, SETUP-DATA=11, OUTx=1x */
USB_RX_USER_HOOK(data, len)
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
if(usbRxToken < 0x10){ /* OUT to endpoint != 0: endpoint number in usbRxToken */
usbFunctionWriteOut(data, len);
return;
}
#endif
if(usbRxToken == (uchar)USBPID_SETUP){
if(len != 8) /* Setup size must be always 8 bytes. Ignore otherwise. */
return;
usbMsgLen_t replyLen;
usbTxBuf[0] = USBPID_DATA0; /* initialize data toggling */
usbTxLen = USBPID_NAK; /* abort pending transmit */
usbMsgFlags = 0;
uchar type = rq->bmRequestType & USBRQ_TYPE_MASK;
if(type != USBRQ_TYPE_STANDARD){ /* standard requests are handled by driver */
replyLen = usbFunctionSetup(data);
}else{
replyLen = usbDriverSetup(rq);
}
#if USB_CFG_IMPLEMENT_FN_READ || USB_CFG_IMPLEMENT_FN_WRITE
if(replyLen == USB_NO_MSG){ /* use user-supplied read/write function */
/* do some conditioning on replyLen, but on IN transfers only */
if((rq->bmRequestType & USBRQ_DIR_MASK) != USBRQ_DIR_HOST_TO_DEVICE){
if(sizeof(replyLen) < sizeof(rq->wLength.word)){ /* help compiler with optimizing */
replyLen = rq->wLength.bytes[0];
}else{
replyLen = rq->wLength.word;
}
}
usbMsgFlags = USB_FLG_USE_USER_RW;
}else /* The 'else' prevents that we limit a replyLen of USB_NO_MSG to the maximum transfer len. */
#endif
if(sizeof(replyLen) < sizeof(rq->wLength.word)){ /* help compiler with optimizing */
if(!rq->wLength.bytes[1] && replyLen > rq->wLength.bytes[0]) /* limit length to max */
replyLen = rq->wLength.bytes[0];
}else{
if(replyLen > rq->wLength.word) /* limit length to max */
replyLen = rq->wLength.word;
}
usbMsgLen = replyLen;
}else{ /* usbRxToken must be USBPID_OUT, which means data phase of setup (control-out) */
#if USB_CFG_IMPLEMENT_FN_WRITE
if(usbMsgFlags & USB_FLG_USE_USER_RW){
uchar rval = usbFunctionWrite(data, len);
if(rval == 0xff){ /* an error occurred */
usbTxLen = USBPID_STALL;
}else if(rval != 0){ /* This was the final package */
usbMsgLen = 0; /* answer with a zero-sized data packet */
}
}
#endif
}
}
/* ------------------------------------------------------------------------- */
/* This function is similar to usbFunctionRead(), but it's also called for
* data handled automatically by the driver (e.g. descriptor reads).
*/
static uchar usbDeviceRead(uchar *data, uchar len)
{
if(len > 0){ /* don't bother app with 0 sized reads */
#if USB_CFG_IMPLEMENT_FN_READ
if(usbMsgFlags & USB_FLG_USE_USER_RW){
len = usbFunctionRead(data, len);
}else
#endif
{
uchar i = len;
usbMsgPtr_t r = usbMsgPtr;
if(usbMsgFlags & USB_FLG_MSGPTR_IS_ROM){ /* ROM data */
do{
uchar c = USB_READ_FLASH(r); /* assign to char size variable to enforce byte ops */
*data++ = c;
r++;
}while(--i);
}else{ /* RAM data */
do{
*data++ = *((uchar *)r);
r++;
}while(--i);
}
usbMsgPtr = r;
}
}
return len;
}
/* ------------------------------------------------------------------------- */
/* usbBuildTxBlock() is called when we have data to transmit and the
* interrupt routine's transmit buffer is empty.
*/
static inline void usbBuildTxBlock(void)
{
usbMsgLen_t wantLen;
uchar len;
wantLen = usbMsgLen;
if(wantLen > 8)
wantLen = 8;
usbMsgLen -= wantLen;
usbTxBuf[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* DATA toggling */
len = usbDeviceRead(usbTxBuf + 1, wantLen);
if(len <= 8){ /* valid data packet */
usbCrc16Append(&usbTxBuf[1], len);
len += 4; /* length including sync byte */
if(len < 12) /* a partial package identifies end of message */
usbMsgLen = USB_NO_MSG;
}else{
len = USBPID_STALL; /* stall the endpoint */
usbMsgLen = USB_NO_MSG;
}
usbTxLen = len;
DBG2(0x20, usbTxBuf, len-1);
}
/* ------------------------------------------------------------------------- */
static inline void usbHandleResetHook(uchar notResetState)
{
#ifdef USB_RESET_HOOK
static uchar wasReset;
uchar isReset = !notResetState;
if(wasReset != isReset){
USB_RESET_HOOK(isReset);
wasReset = isReset;
}
#else
notResetState = notResetState; // avoid compiler warning
#endif
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbPoll(void)
{
schar len;
uchar i;
len = usbRxLen - 3;
if(len >= 0){
/* We could check CRC16 here -- but ACK has already been sent anyway. If you
* need data integrity checks with this driver, check the CRC in your app
* code and report errors back to the host. Since the ACK was already sent,
* retries must be handled on application level.
* unsigned crc = usbCrc16(buffer + 1, usbRxLen - 3);
*/
usbProcessRx(usbRxBuf + USB_BUFSIZE + 1 - usbInputBufOffset, len);
#if USB_CFG_HAVE_FLOWCONTROL
if(usbRxLen > 0) /* only mark as available if not inactivated */
usbRxLen = 0;
#else
usbRxLen = 0; /* mark rx buffer as available */
#endif
}
if(usbTxLen & 0x10){ /* transmit system idle */
if(usbMsgLen != USB_NO_MSG){ /* transmit data pending? */
usbBuildTxBlock();
}
}
for(i = 20; i > 0; i--){
uchar usbLineStatus = USBIN & USBMASK;
if(usbLineStatus != 0) /* SE0 has ended */
goto isNotReset;
}
/* RESET condition, called multiple times during reset */
usbNewDeviceAddr = 0;
usbDeviceAddr = 0;
usbResetStall();
DBG1(0xff, 0, 0);
isNotReset:
usbHandleResetHook(i);
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbInit(void)
{
#if USB_INTR_CFG_SET != 0
USB_INTR_CFG |= USB_INTR_CFG_SET;
#endif
#if USB_INTR_CFG_CLR != 0
USB_INTR_CFG &= ~(USB_INTR_CFG_CLR);
#endif
USB_INTR_ENABLE |= (1 << USB_INTR_ENABLE_BIT);
usbResetDataToggling();
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */

View File

@ -1,746 +0,0 @@
/* Name: usbdrv.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#ifndef __usbdrv_h_included__
#define __usbdrv_h_included__
#include "usbconfig.h"
#include "usbportability.h"
/*
Hardware Prerequisites:
=======================
USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+
triggers the interrupt (best achieved by using INT0 for D+), but it is also
possible to trigger the interrupt from D-. If D- is used, interrupts are also
triggered by SOF packets. D- requires a pull-up of 1.5k to +3.5V (and the
device must be powered at 3.5V) to identify as low-speed USB device. A
pull-down or pull-up of 1M SHOULD be connected from D+ to +3.5V to prevent
interference when no USB master is connected. If you use Zener diodes to limit
the voltage on D+ and D-, you MUST use a pull-down resistor, not a pull-up.
We use D+ as interrupt source and not D- because it does not trigger on
keep-alive and RESET states. If you want to count keep-alive events with
USB_COUNT_SOF, you MUST use D- as an interrupt source.
As a compile time option, the 1.5k pull-up resistor on D- can be made
switchable to allow the device to disconnect at will. See the definition of
usbDeviceConnect() and usbDeviceDisconnect() further down in this file.
Please adapt the values in usbconfig.h according to your hardware!
The device MUST be clocked at exactly 12 MHz, 15 MHz, 16 MHz or 20 MHz
or at 12.8 MHz resp. 16.5 MHz +/- 1%. See usbconfig-prototype.h for details.
Limitations:
============
Robustness with respect to communication errors:
The driver assumes error-free communication. It DOES check for errors in
the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte,
token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due
to timing constraints: We must start sending a reply within 7 bit times.
Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU
performance does not permit that. The driver does not check Data0/Data1
toggling, but application software can implement the check.
Input characteristics:
Since no differential receiver circuit is used, electrical interference
robustness may suffer. The driver samples only one of the data lines with
an ordinary I/O pin's input characteristics. However, since this is only a
low speed USB implementation and the specification allows for 8 times the
bit rate over the same hardware, we should be on the safe side. Even the spec
requires detection of asymmetric states at high bit rate for SE0 detection.
Number of endpoints:
The driver supports the following endpoints:
- Endpoint 0, the default control endpoint.
- Any number of interrupt- or bulk-out endpoints. The data is sent to
usbFunctionWriteOut() and USB_CFG_IMPLEMENT_FN_WRITEOUT must be defined
to 1 to activate this feature. The endpoint number can be found in the
global variable 'usbRxToken'.
- One default interrupt- or bulk-in endpoint. This endpoint is used for
interrupt- or bulk-in transfers which are not handled by any other endpoint.
You must define USB_CFG_HAVE_INTRIN_ENDPOINT in order to activate this
feature and call usbSetInterrupt() to send interrupt/bulk data.
- One additional interrupt- or bulk-in endpoint. This was endpoint 3 in
previous versions of this driver but can now be configured to any endpoint
number. You must define USB_CFG_HAVE_INTRIN_ENDPOINT3 in order to activate
this feature and call usbSetInterrupt3() to send interrupt/bulk data. The
endpoint number can be set with USB_CFG_EP3_NUMBER.
Please note that the USB standard forbids bulk endpoints for low speed devices!
Most operating systems allow them anyway, but the AVR will spend 90% of the CPU
time in the USB interrupt polling for bulk data.
Maximum data payload:
Data payload of control in and out transfers may be up to 254 bytes. In order
to accept payload data of out transfers, you need to implement
'usbFunctionWrite()'.
USB Suspend Mode supply current:
The USB standard limits power consumption to 500uA when the bus is in suspend
mode. This is not a problem for self-powered devices since they don't need
bus power anyway. Bus-powered devices can achieve this only by putting the
CPU in sleep mode. The driver does not implement suspend handling by itself.
However, the application may implement activity monitoring and wakeup from
sleep. The host sends regular SE0 states on the bus to keep it active. These
SE0 states can be detected by using D- as the interrupt source. Define
USB_COUNT_SOF to 1 and use the global variable usbSofCount to check for bus
activity.
Operation without an USB master:
The driver behaves neutral without connection to an USB master if D- reads
as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M)
pull-down or pull-up resistor on D+ (interrupt). If Zener diodes are used,
use a pull-down. If D- becomes statically 0, the driver may block in the
interrupt routine.
Interrupt latency:
The application must ensure that the USB interrupt is not disabled for more
than 25 cycles (this is for 12 MHz, faster clocks allow longer latency).
This implies that all interrupt routines must either have the "ISR_NOBLOCK"
attribute set (see "avr/interrupt.h") or be written in assembler with "sei"
as the first instruction.
Maximum interrupt duration / CPU cycle consumption:
The driver handles all USB communication during the interrupt service
routine. The routine will not return before an entire USB message is received
and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if
the host conforms to the standard. The driver will consume CPU cycles for all
USB messages, even if they address another (low-speed) device on the same bus.
*/
/* ------------------------------------------------------------------------- */
/* --------------------------- Module Interface ---------------------------- */
/* ------------------------------------------------------------------------- */
#define USBDRV_VERSION 20121206
/* This define uniquely identifies a driver version. It is a decimal number
* constructed from the driver's release date in the form YYYYMMDD. If the
* driver's behavior or interface changes, you can use this constant to
* distinguish versions. If it is not defined, the driver's release date is
* older than 2006-01-25.
*/
#ifndef USB_PUBLIC
#define USB_PUBLIC
#endif
/* USB_PUBLIC is used as declaration attribute for all functions exported by
* the USB driver. The default is no attribute (see above). You may define it
* to static either in usbconfig.h or from the command line if you include
* usbdrv.c instead of linking against it. Including the C module of the driver
* directly in your code saves a couple of bytes in flash memory.
*/
#ifndef __ASSEMBLER__
#ifndef uchar
#define uchar unsigned char
#endif
#ifndef schar
#define schar signed char
#endif
/* shortcuts for well defined 8 bit integer types */
#if USB_CFG_LONG_TRANSFERS /* if more than 254 bytes transfer size required */
# define usbMsgLen_t unsigned
#else
# define usbMsgLen_t uchar
#endif
/* usbMsgLen_t is the data type used for transfer lengths. By default, it is
* defined to uchar, allowing a maximum of 254 bytes (255 is reserved for
* USB_NO_MSG below). If the usbconfig.h defines USB_CFG_LONG_TRANSFERS to 1,
* a 16 bit data type is used, allowing up to 16384 bytes (the rest is used
* for flags in the descriptor configuration).
*/
#define USB_NO_MSG ((usbMsgLen_t)-1) /* constant meaning "no message" */
#ifndef usbMsgPtr_t
#define usbMsgPtr_t uchar *
#endif
/* Making usbMsgPtr_t a define allows the user of this library to define it to
* an 8 bit type on tiny devices. This reduces code size, especially if the
* compiler supports a tiny memory model.
* The type can be a pointer or scalar type, casts are made where necessary.
* Although it's paradoxical, Gcc 4 generates slightly better code for scalar
* types than for pointers.
*/
struct usbRequest; /* forward declaration */
USB_PUBLIC void usbInit(void);
/* This function must be called before interrupts are enabled and the main
* loop is entered. We exepct that the PORT and DDR bits for D+ and D- have
* not been changed from their default status (which is 0). If you have changed
* them, set both back to 0 (configure them as input with no internal pull-up).
*/
USB_PUBLIC void usbPoll(void);
/* This function must be called at regular intervals from the main loop.
* Maximum delay between calls is somewhat less than 50ms (USB timeout for
* accepting a Setup message). Otherwise the device will not be recognized.
* Please note that debug outputs through the UART take ~ 0.5ms per byte
* at 19200 bps.
*/
extern usbMsgPtr_t usbMsgPtr;
/* This variable may be used to pass transmit data to the driver from the
* implementation of usbFunctionWrite(). It is also used internally by the
* driver for standard control requests.
*/
USB_PUBLIC usbMsgLen_t usbFunctionSetup(uchar data[8]);
/* This function is called when the driver receives a SETUP transaction from
* the host which is not answered by the driver itself (in practice: class and
* vendor requests). All control transfers start with a SETUP transaction where
* the host communicates the parameters of the following (optional) data
* transfer. The SETUP data is available in the 'data' parameter which can
* (and should) be casted to 'usbRequest_t *' for a more user-friendly access
* to parameters.
*
* If the SETUP indicates a control-in transfer, you should provide the
* requested data to the driver. There are two ways to transfer this data:
* (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data
* block and return the length of the data in 'usbFunctionSetup()'. The driver
* will handle the rest. Or (2) return USB_NO_MSG in 'usbFunctionSetup()'. The
* driver will then call 'usbFunctionRead()' when data is needed. See the
* documentation for usbFunctionRead() for details.
*
* If the SETUP indicates a control-out transfer, the only way to receive the
* data from the host is through the 'usbFunctionWrite()' call. If you
* implement this function, you must return USB_NO_MSG in 'usbFunctionSetup()'
* to indicate that 'usbFunctionWrite()' should be used. See the documentation
* of this function for more information. If you just want to ignore the data
* sent by the host, return 0 in 'usbFunctionSetup()'.
*
* Note that calls to the functions usbFunctionRead() and usbFunctionWrite()
* are only done if enabled by the configuration in usbconfig.h.
*/
USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq);
/* You need to implement this function ONLY if you provide USB descriptors at
* runtime (which is an expert feature). It is very similar to
* usbFunctionSetup() above, but it is called only to request USB descriptor
* data. See the documentation of usbFunctionSetup() above for more info.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len);
/* This function sets the message which will be sent during the next interrupt
* IN transfer. The message is copied to an internal buffer and must not exceed
* a length of 8 bytes. The message may be 0 bytes long just to indicate the
* interrupt status to the host.
* If you need to transfer more bytes, use a control read after the interrupt.
*/
#define usbInterruptIsReady() (usbTxLen1 & 0x10)
/* This macro indicates whether the last interrupt message has already been
* sent. If you set a new interrupt message before the old was sent, the
* message already buffered will be lost.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len);
#define usbInterruptIsReady3() (usbTxLen3 & 0x10)
/* Same as above for endpoint 3 */
#endif
#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */
#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */
#define usbHidReportDescriptor usbDescriptorHidReport
/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */
/* If you implement an HID device, you need to provide a report descriptor.
* The HID report descriptor syntax is a bit complex. If you understand how
* report descriptors are constructed, we recommend that you use the HID
* Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/.
* Otherwise you should probably start with a working example.
*/
#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */
#if USB_CFG_IMPLEMENT_FN_WRITE
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len);
/* This function is called by the driver to provide a control transfer's
* payload data (control-out). It is called in chunks of up to 8 bytes. The
* total count provided in the current control transfer can be obtained from
* the 'length' property in the setup data. If an error occurred during
* processing, return 0xff (== -1). The driver will answer the entire transfer
* with a STALL token in this case. If you have received the entire payload
* successfully, return 1. If you expect more data, return 0. If you don't
* know whether the host will send more data (you should know, the total is
* provided in the usbFunctionSetup() call!), return 1.
* NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called
* for the remaining data. You must continue to return 0xff for STALL in these
* calls.
* In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITE */
#if USB_CFG_IMPLEMENT_FN_READ
USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len);
/* This function is called by the driver to ask the application for a control
* transfer's payload data (control-in). It is called in chunks of up to 8
* bytes each. You should copy the data to the location given by 'data' and
* return the actual number of bytes copied. If you return less than requested,
* the control-in transfer is terminated. If you return 0xff, the driver aborts
* the transfer with a STALL token.
* In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_READ */
extern uchar usbRxToken; /* may be used in usbFunctionWriteOut() below */
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len);
/* This function is called by the driver when data is received on an interrupt-
* or bulk-out endpoint. The endpoint number can be found in the global
* variable usbRxToken. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT to 1 in
* usbconfig.h to get this function called.
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT)))
#define usbDeviceDisconnect() ((USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT)))
#else /* USB_CFG_PULLUP_IOPORTNAME */
#define usbDeviceConnect() (USBDDR &= ~(1<<USBMINUS))
#define usbDeviceDisconnect() (USBDDR |= (1<<USBMINUS))
#endif /* USB_CFG_PULLUP_IOPORTNAME */
/* The macros usbDeviceConnect() and usbDeviceDisconnect() (intended to look
* like a function) connect resp. disconnect the device from the host's USB.
* If the constants USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT are defined
* in usbconfig.h, a disconnect consists of removing the pull-up resisitor
* from D-, otherwise the disconnect is done by brute-force pulling D- to GND.
* This does not conform to the spec, but it works.
* Please note that the USB interrupt must be disabled while the device is
* in disconnected state, or the interrupt handler will hang! You can either
* turn off the USB interrupt selectively with
* USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT)
* or use cli() to disable interrupts globally.
*/
extern unsigned usbCrc16(unsigned data, uchar len);
#define usbCrc16(data, len) usbCrc16((unsigned)(data), len)
/* This function calculates the binary complement of the data CRC used in
* USB data packets. The value is used to build raw transmit packets.
* You may want to use this function for data checksums or to verify received
* data. We enforce 16 bit calling conventions for compatibility with IAR's
* tiny memory model.
*/
extern unsigned usbCrc16Append(unsigned data, uchar len);
#define usbCrc16Append(data, len) usbCrc16Append((unsigned)(data), len)
/* This function is equivalent to usbCrc16() above, except that it appends
* the 2 bytes CRC (lowbyte first) in the 'data' buffer after reading 'len'
* bytes.
*/
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
extern unsigned usbMeasureFrameLength(void);
/* This function MUST be called IMMEDIATELY AFTER USB reset and measures 1/7 of
* the number of CPU cycles during one USB frame minus one low speed bit
* length. In other words: return value = 1499 * (F_CPU / 10.5 MHz)
* Since this is a busy wait, you MUST disable all interrupts with cli() before
* calling this function.
* This can be used to calibrate the AVR's RC oscillator.
*/
#endif
extern uchar usbConfiguration;
/* This value contains the current configuration set by the host. The driver
* allows setting and querying of this variable with the USB SET_CONFIGURATION
* and GET_CONFIGURATION requests, but does not use it otherwise.
* You may want to reflect the "configured" status with a LED on the device or
* switch on high power parts of the circuit only if the device is configured.
*/
#if USB_COUNT_SOF
extern volatile uchar usbSofCount;
/* This variable is incremented on every SOF packet. It is only available if
* the macro USB_COUNT_SOF is defined to a value != 0.
*/
#endif
#if USB_CFG_CHECK_DATA_TOGGLING
extern uchar usbCurrentDataToken;
/* This variable can be checked in usbFunctionWrite() and usbFunctionWriteOut()
* to ignore duplicate packets.
*/
#endif
#define USB_STRING_DESCRIPTOR_HEADER(stringLength) ((2*(stringLength)+2) | (3<<8))
/* This macro builds a descriptor header for a string descriptor given the
* string's length. See usbdrv.c for an example how to use it.
*/
#if USB_CFG_HAVE_FLOWCONTROL
extern volatile schar usbRxLen;
#define usbDisableAllRequests() usbRxLen = -1
/* Must be called from usbFunctionWrite(). This macro disables all data input
* from the USB interface. Requests from the host are answered with a NAK
* while they are disabled.
*/
#define usbEnableAllRequests() usbRxLen = 0
/* May only be called if requests are disabled. This macro enables input from
* the USB interface after it has been disabled with usbDisableAllRequests().
*/
#define usbAllRequestsAreDisabled() (usbRxLen < 0)
/* Use this macro to find out whether requests are disabled. It may be needed
* to ensure that usbEnableAllRequests() is never called when requests are
* enabled.
*/
#endif
#define USB_SET_DATATOKEN1(token) usbTxBuf1[0] = token
#define USB_SET_DATATOKEN3(token) usbTxBuf3[0] = token
/* These two macros can be used by application software to reset data toggling
* for interrupt-in endpoints 1 and 3. Since the token is toggled BEFORE
* sending data, you must set the opposite value of the token which should come
* first.
*/
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ----------------- Definitions for Descriptor Properties ----------------- */
/* ------------------------------------------------------------------------- */
/* This is advanced stuff. See usbconfig-prototype.h for more information
* about the various methods to define USB descriptors. If you do nothing,
* the default descriptors will be used.
*/
#define USB_PROP_IS_DYNAMIC (1u << 14)
/* If this property is set for a descriptor, usbFunctionDescriptor() will be
* used to obtain the particular descriptor. Data directly returned via
* usbMsgPtr are FLASH data by default, combine (OR) with USB_PROP_IS_RAM to
* return RAM data.
*/
#define USB_PROP_IS_RAM (1u << 15)
/* If this property is set for a descriptor, the data is read from RAM
* memory instead of Flash. The property is used for all methods to provide
* external descriptors.
*/
#define USB_PROP_LENGTH(len) ((len) & 0x3fff)
/* If a static external descriptor is used, this is the total length of the
* descriptor in bytes.
*/
/* all descriptors which may have properties: */
#ifndef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE 0
#endif
#ifndef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRINGS
#define USB_CFG_DESCR_PROPS_STRINGS 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#endif
#ifndef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 0
#endif
#if !(USB_CFG_DESCR_PROPS_HID_REPORT)
# undef USB_CFG_DESCR_PROPS_HID_REPORT
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* do some backward compatibility tricks */
# define USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# else
# define USB_CFG_DESCR_PROPS_HID_REPORT 0
# endif
#endif
#ifndef USB_CFG_DESCR_PROPS_UNKNOWN
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#endif
/* ------------------ forward declaration of descriptors ------------------- */
/* If you use external static descriptors, they must be stored in global
* arrays as declared below:
*/
#ifndef __ASSEMBLER__
extern
#if !(USB_CFG_DESCR_PROPS_DEVICE & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_CONFIGURATION & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorConfiguration[];
extern
#if !(USB_CFG_DESCR_PROPS_HID_REPORT & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorHidReport[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_0 & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorString0[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_VENDOR & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringVendor[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_PRODUCT & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringSerialNumber[];
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ------------------------ General Purpose Macros ------------------------- */
/* ------------------------------------------------------------------------- */
#define USB_CONCAT(a, b) a ## b
#define USB_CONCAT_EXPANDED(a, b) USB_CONCAT(a, b)
#define USB_OUTPORT(name) USB_CONCAT(PORT, name)
#define USB_INPORT(name) USB_CONCAT(PIN, name)
#define USB_DDRPORT(name) USB_CONCAT(DDR, name)
/* The double-define trick above lets us concatenate strings which are
* defined by macros.
*/
/* ------------------------------------------------------------------------- */
/* ------------------------- Constant definitions -------------------------- */
/* ------------------------------------------------------------------------- */
#if !defined __ASSEMBLER__ && (!defined USB_CFG_VENDOR_ID || !defined USB_CFG_DEVICE_ID)
#warning "You should define USB_CFG_VENDOR_ID and USB_CFG_DEVICE_ID in usbconfig.h"
/* If the user has not defined IDs, we default to obdev's free IDs.
* See USB-IDs-for-free.txt for details.
*/
#endif
/* make sure we have a VID and PID defined, byte order is lowbyte, highbyte */
#ifndef USB_CFG_VENDOR_ID
# define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
#endif
#ifndef USB_CFG_DEVICE_ID
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# define USB_CFG_DEVICE_ID 0xdf, 0x05 /* = 0x5df = 1503, shared PID for HIDs */
# elif USB_CFG_INTERFACE_CLASS == 2
# define USB_CFG_DEVICE_ID 0xe1, 0x05 /* = 0x5e1 = 1505, shared PID for CDC Modems */
# else
# define USB_CFG_DEVICE_ID 0xdc, 0x05 /* = 0x5dc = 1500, obdev's free PID */
# endif
#endif
/* Derive Output, Input and DataDirection ports from port names */
#ifndef USB_CFG_IOPORTNAME
#error "You must define USB_CFG_IOPORTNAME in usbconfig.h, see usbconfig-prototype.h"
#endif
#define USBOUT USB_OUTPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_OUT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBIN USB_INPORT(USB_CFG_IOPORTNAME)
#define USBDDR USB_DDRPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_DDR USB_DDRPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBMINUS USB_CFG_DMINUS_BIT
#define USBPLUS USB_CFG_DPLUS_BIT
#define USBIDLE (1<<USB_CFG_DMINUS_BIT) /* value representing J state */
#define USBMASK ((1<<USB_CFG_DPLUS_BIT) | (1<<USB_CFG_DMINUS_BIT)) /* mask for USB I/O bits */
/* defines for backward compatibility with older driver versions: */
#define USB_CFG_IOPORT USB_OUTPORT(USB_CFG_IOPORTNAME)
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define USB_CFG_PULLUP_IOPORT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#endif
#ifndef USB_CFG_EP3_NUMBER /* if not defined in usbconfig.h */
#define USB_CFG_EP3_NUMBER 3
#endif
#ifndef USB_CFG_HAVE_INTRIN_ENDPOINT3
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
#endif
#define USB_BUFSIZE 11 /* PID, 8 bytes data, 2 bytes CRC */
/* ----- Try to find registers and bits responsible for ext interrupt 0 ----- */
#ifndef USB_INTR_CFG /* allow user to override our default */
# if defined EICRA
# define USB_INTR_CFG EICRA
# else
# define USB_INTR_CFG MCUCR
# endif
#endif
#ifndef USB_INTR_CFG_SET /* allow user to override our default */
# if defined(USB_COUNT_SOF) || defined(USB_SOF_HOOK)
# define USB_INTR_CFG_SET (1 << ISC01) /* cfg for falling edge */
/* If any SOF logic is used, the interrupt must be wired to D- where
* we better trigger on falling edge
*/
# else
# define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) /* cfg for rising edge */
# endif
#endif
#ifndef USB_INTR_CFG_CLR /* allow user to override our default */
# define USB_INTR_CFG_CLR 0 /* no bits to clear */
#endif
#ifndef USB_INTR_ENABLE /* allow user to override our default */
# if defined GIMSK
# define USB_INTR_ENABLE GIMSK
# elif defined EIMSK
# define USB_INTR_ENABLE EIMSK
# else
# define USB_INTR_ENABLE GICR
# endif
#endif
#ifndef USB_INTR_ENABLE_BIT /* allow user to override our default */
# define USB_INTR_ENABLE_BIT INT0
#endif
#ifndef USB_INTR_PENDING /* allow user to override our default */
# if defined EIFR
# define USB_INTR_PENDING EIFR
# else
# define USB_INTR_PENDING GIFR
# endif
#endif
#ifndef USB_INTR_PENDING_BIT /* allow user to override our default */
# define USB_INTR_PENDING_BIT INTF0
#endif
/*
The defines above don't work for the following chips
at90c8534: no ISC0?, no PORTB, can't find a data sheet
at86rf401: no PORTB, no MCUCR etc, low clock rate
atmega103: no ISC0? (maybe omission in header, can't find data sheet)
atmega603: not defined in avr-libc
at43usb320, at43usb355, at76c711: have USB anyway
at94k: is different...
at90s1200, attiny11, attiny12, attiny15, attiny28: these have no RAM
*/
/* ------------------------------------------------------------------------- */
/* ----------------- USB Specification Constants and Types ----------------- */
/* ------------------------------------------------------------------------- */
/* USB Token values */
#define USBPID_SETUP 0x2d
#define USBPID_OUT 0xe1
#define USBPID_IN 0x69
#define USBPID_DATA0 0xc3
#define USBPID_DATA1 0x4b
#define USBPID_ACK 0xd2
#define USBPID_NAK 0x5a
#define USBPID_STALL 0x1e
#ifndef USB_INITIAL_DATATOKEN
#define USB_INITIAL_DATATOKEN USBPID_DATA1
#endif
#ifndef __ASSEMBLER__
typedef struct usbTxStatus{
volatile uchar len;
uchar buffer[USB_BUFSIZE];
}usbTxStatus_t;
extern usbTxStatus_t usbTxStatus1, usbTxStatus3;
#define usbTxLen1 usbTxStatus1.len
#define usbTxBuf1 usbTxStatus1.buffer
#define usbTxLen3 usbTxStatus3.len
#define usbTxBuf3 usbTxStatus3.buffer
typedef union usbWord{
unsigned word;
uchar bytes[2];
}usbWord_t;
typedef struct usbRequest{
uchar bmRequestType;
uchar bRequest;
usbWord_t wValue;
usbWord_t wIndex;
usbWord_t wLength;
}usbRequest_t;
/* This structure matches the 8 byte setup request */
#endif
/* bmRequestType field in USB setup:
* d t t r r r r r, where
* d ..... direction: 0=host->device, 1=device->host
* t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved
* r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other
*/
/* USB setup recipient values */
#define USBRQ_RCPT_MASK 0x1f
#define USBRQ_RCPT_DEVICE 0
#define USBRQ_RCPT_INTERFACE 1
#define USBRQ_RCPT_ENDPOINT 2
/* USB request type values */
#define USBRQ_TYPE_MASK 0x60
#define USBRQ_TYPE_STANDARD (0<<5)
#define USBRQ_TYPE_CLASS (1<<5)
#define USBRQ_TYPE_VENDOR (2<<5)
/* USB direction values: */
#define USBRQ_DIR_MASK 0x80
#define USBRQ_DIR_HOST_TO_DEVICE (0<<7)
#define USBRQ_DIR_DEVICE_TO_HOST (1<<7)
/* USB Standard Requests */
#define USBRQ_GET_STATUS 0
#define USBRQ_CLEAR_FEATURE 1
#define USBRQ_SET_FEATURE 3
#define USBRQ_SET_ADDRESS 5
#define USBRQ_GET_DESCRIPTOR 6
#define USBRQ_SET_DESCRIPTOR 7
#define USBRQ_GET_CONFIGURATION 8
#define USBRQ_SET_CONFIGURATION 9
#define USBRQ_GET_INTERFACE 10
#define USBRQ_SET_INTERFACE 11
#define USBRQ_SYNCH_FRAME 12
/* USB descriptor constants */
#define USBDESCR_DEVICE 1
#define USBDESCR_CONFIG 2
#define USBDESCR_STRING 3
#define USBDESCR_INTERFACE 4
#define USBDESCR_ENDPOINT 5
#define USBDESCR_HID 0x21
#define USBDESCR_HID_REPORT 0x22
#define USBDESCR_HID_PHYS 0x23
//#define USBATTR_BUSPOWER 0x80 // USB 1.1 does not define this value any more
#define USBATTR_BUSPOWER 0
#define USBATTR_SELFPOWER 0x40
#define USBATTR_REMOTEWAKE 0x20
/* USB HID Requests */
#define USBRQ_HID_GET_REPORT 0x01
#define USBRQ_HID_GET_IDLE 0x02
#define USBRQ_HID_GET_PROTOCOL 0x03
#define USBRQ_HID_SET_REPORT 0x09
#define USBRQ_HID_SET_IDLE 0x0a
#define USBRQ_HID_SET_PROTOCOL 0x0b
/* ------------------------------------------------------------------------- */
#endif /* __usbdrv_h_included__ */

View File

@ -1,392 +0,0 @@
/* Name: usbdrvasm.S
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2007-06-13
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/*
General Description:
This module is the assembler part of the USB driver. This file contains
general code (preprocessor acrobatics and CRC computation) and then includes
the file appropriate for the given clock rate.
*/
#define __SFR_OFFSET 0 /* used by avr-libc's register definitions */
#include "usbportability.h"
#include "usbdrv.h" /* for common defs */
/* register names */
#define x1 r16
#define x2 r17
#define shift r18
#define cnt r19
#define x3 r20
#define x4 r21
#define x5 r22
#define bitcnt x5
#define phase x4
#define leap x4
/* Some assembler dependent definitions and declarations: */
#ifdef __IAR_SYSTEMS_ASM__
extern usbRxBuf, usbDeviceAddr, usbNewDeviceAddr, usbInputBufOffset
extern usbCurrentTok, usbRxLen, usbRxToken, usbTxLen
extern usbTxBuf, usbTxStatus1, usbTxStatus3
# if USB_COUNT_SOF
extern usbSofCount
# endif
public usbCrc16
public usbCrc16Append
COMMON INTVEC
# ifndef USB_INTR_VECTOR
ORG INT0_vect
# else /* USB_INTR_VECTOR */
ORG USB_INTR_VECTOR
# undef USB_INTR_VECTOR
# endif /* USB_INTR_VECTOR */
# define USB_INTR_VECTOR usbInterruptHandler
rjmp USB_INTR_VECTOR
RSEG CODE
#else /* __IAR_SYSTEMS_ASM__ */
# ifndef USB_INTR_VECTOR /* default to hardware interrupt INT0 */
# ifdef INT0_vect
# define USB_INTR_VECTOR INT0_vect // this is the "new" define for the vector
# else
# define USB_INTR_VECTOR SIG_INTERRUPT0 // this is the "old" vector
# endif
# endif
.text
.global USB_INTR_VECTOR
.type USB_INTR_VECTOR, @function
.global usbCrc16
.global usbCrc16Append
#endif /* __IAR_SYSTEMS_ASM__ */
#if USB_INTR_PENDING < 0x40 /* This is an I/O address, use in and out */
# define USB_LOAD_PENDING(reg) in reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) out USB_INTR_PENDING, reg
#else /* It's a memory address, use lds and sts */
# define USB_LOAD_PENDING(reg) lds reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) sts USB_INTR_PENDING, reg
#endif
#define usbTxLen1 usbTxStatus1
#define usbTxBuf1 (usbTxStatus1 + 1)
#define usbTxLen3 usbTxStatus3
#define usbTxBuf3 (usbTxStatus3 + 1)
;----------------------------------------------------------------------------
; Utility functions
;----------------------------------------------------------------------------
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbCrc16 on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
RTMODEL "__rt_version", "3"
/* The line above will generate an error if cc calling conventions change.
* The value "3" above is valid for IAR 4.10B/W32
*/
# define argLen r18 /* argument 2 */
# define argPtrL r16 /* argument 1 */
# define argPtrH r17 /* argument 1 */
# define resCrcL r16 /* result */
# define resCrcH r17 /* result */
# define ptrL ZL
# define ptrH ZH
# define ptr Z
# define byte r22
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbCrc16 on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define argLen r22 /* argument 2 */
# define argPtrL r24 /* argument 1 */
# define argPtrH r25 /* argument 1 */
# define resCrcL r24 /* result */
# define resCrcH r25 /* result */
# define ptrL XL
# define ptrH XH
# define ptr x
# define byte r18
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#endif
#if USB_USE_FAST_CRC
; This implementation is faster, but has bigger code size
; Thanks to Slawomir Fras (BoskiDialer) for this code!
; It implements the following C pseudo-code:
; unsigned table(unsigned char x)
; {
; unsigned value;
;
; value = (unsigned)x << 6;
; value ^= (unsigned)x << 7;
; if(parity(x))
; value ^= 0xc001;
; return value;
; }
; unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen)
; {
; unsigned crc = 0xffff;
;
; while(argLen--)
; crc = table(lo8(crc) ^ *argPtr++) ^ hi8(crc);
; return ~crc;
; }
; extern unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen);
; argPtr r24+25 / r16+r17
; argLen r22 / r18
; temp variables:
; byte r18 / r22
; scratch r23
; resCrc r24+r25 / r16+r17
; ptr X / Z
usbCrc16:
mov ptrL, argPtrL
mov ptrH, argPtrH
ldi resCrcL, 0xFF
ldi resCrcH, 0xFF
rjmp usbCrc16LoopTest
usbCrc16ByteLoop:
ld byte, ptr+
eor resCrcL, byte ; resCrcL is now 'x' in table()
mov byte, resCrcL ; compute parity of 'x'
swap byte
eor byte, resCrcL
mov scratch, byte
lsr byte
lsr byte
eor byte, scratch
inc byte
lsr byte
andi byte, 1 ; byte is now parity(x)
mov scratch, resCrcL
mov resCrcL, resCrcH
eor resCrcL, byte ; low byte of if(parity(x)) value ^= 0xc001;
neg byte
andi byte, 0xc0
mov resCrcH, byte ; high byte of if(parity(x)) value ^= 0xc001;
clr byte
lsr scratch
ror byte
eor resCrcH, scratch
eor resCrcL, byte
lsr scratch
ror byte
eor resCrcH, scratch
eor resCrcL, byte
usbCrc16LoopTest:
subi argLen, 1
brsh usbCrc16ByteLoop
com resCrcL
com resCrcH
ret
#else /* USB_USE_FAST_CRC */
; This implementation is slower, but has less code size
;
; extern unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen);
; argPtr r24+25 / r16+r17
; argLen r22 / r18
; temp variables:
; byte r18 / r22
; bitCnt r19
; poly r20+r21
; scratch r23
; resCrc r24+r25 / r16+r17
; ptr X / Z
usbCrc16:
mov ptrL, argPtrL
mov ptrH, argPtrH
ldi resCrcL, 0
ldi resCrcH, 0
ldi polyL, lo8(0xa001)
ldi polyH, hi8(0xa001)
com argLen ; argLen = -argLen - 1: modified loop to ensure that carry is set
ldi bitCnt, 0 ; loop counter with starnd condition = end condition
rjmp usbCrcLoopEntry
usbCrcByteLoop:
ld byte, ptr+
eor resCrcL, byte
usbCrcBitLoop:
ror resCrcH ; carry is always set here (see brcs jumps to here)
ror resCrcL
brcs usbCrcNoXor
eor resCrcL, polyL
eor resCrcH, polyH
usbCrcNoXor:
subi bitCnt, 224 ; (8 * 224) % 256 = 0; this loop iterates 8 times
brcs usbCrcBitLoop
usbCrcLoopEntry:
subi argLen, -1
brcs usbCrcByteLoop
usbCrcReady:
ret
; Thanks to Reimar Doeffinger for optimizing this CRC routine!
#endif /* USB_USE_FAST_CRC */
; extern unsigned usbCrc16Append(unsigned char *data, unsigned char len);
usbCrc16Append:
rcall usbCrc16
st ptr+, resCrcL
st ptr+, resCrcH
ret
#undef argLen
#undef argPtrL
#undef argPtrH
#undef resCrcL
#undef resCrcH
#undef ptrL
#undef ptrH
#undef ptr
#undef byte
#undef bitCnt
#undef polyL
#undef polyH
#undef scratch
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbMeasureFrameLength on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
# define resL r16
# define resH r17
# define cnt16L r30
# define cnt16H r31
# define cntH r18
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbMeasureFrameLength on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define resL r24
# define resH r25
# define cnt16L r24
# define cnt16H r25
# define cntH r26
#endif
# define cnt16 cnt16L
; extern unsigned usbMeasurePacketLength(void);
; returns time between two idle strobes in multiples of 7 CPU clocks
.global usbMeasureFrameLength
usbMeasureFrameLength:
ldi cntH, 6 ; wait ~ 10 ms for D- == 0
clr cnt16L
clr cnt16H
usbMFTime16:
dec cntH
breq usbMFTimeout
usbMFWaitStrobe: ; first wait for D- == 0 (idle strobe)
sbiw cnt16, 1 ;[0] [6]
breq usbMFTime16 ;[2]
sbic USBIN, USBMINUS ;[3]
rjmp usbMFWaitStrobe ;[4]
usbMFWaitIdle: ; then wait until idle again
sbis USBIN, USBMINUS ;1 wait for D- == 1
rjmp usbMFWaitIdle ;2
ldi cnt16L, 1 ;1 represents cycles so far
clr cnt16H ;1
usbMFWaitLoop:
in cntH, USBIN ;[0] [7]
adiw cnt16, 1 ;[1]
breq usbMFTimeout ;[3]
andi cntH, USBMASK ;[4]
brne usbMFWaitLoop ;[5]
usbMFTimeout:
#if resL != cnt16L
mov resL, cnt16L
mov resH, cnt16H
#endif
ret
#undef resL
#undef resH
#undef cnt16
#undef cnt16L
#undef cnt16H
#undef cntH
#endif /* USB_CFG_HAVE_MEASURE_FRAME_LENGTH */
;----------------------------------------------------------------------------
; Now include the clock rate specific code
;----------------------------------------------------------------------------
#ifndef USB_CFG_CLOCK_KHZ
# ifdef F_CPU
# define USB_CFG_CLOCK_KHZ (F_CPU/1000)
# else
# error "USB_CFG_CLOCK_KHZ not defined in usbconfig.h and no F_CPU set!"
# endif
#endif
#if USB_CFG_CHECK_CRC /* separate dispatcher for CRC type modules */
# if USB_CFG_CLOCK_KHZ == 18000
# include "usbdrvasm18-crc.inc"
# else
# error "USB_CFG_CLOCK_KHZ is not one of the supported crc-rates!"
# endif
#else /* USB_CFG_CHECK_CRC */
# if USB_CFG_CLOCK_KHZ == 12000
# include "usbdrvasm12.inc"
# elif USB_CFG_CLOCK_KHZ == 12800
# include "usbdrvasm128.inc"
# elif USB_CFG_CLOCK_KHZ == 15000
# include "usbdrvasm15.inc"
# elif USB_CFG_CLOCK_KHZ == 16000
# include "usbdrvasm16.inc"
# elif USB_CFG_CLOCK_KHZ == 16500
# include "usbdrvasm165.inc"
# elif USB_CFG_CLOCK_KHZ == 20000
# include "usbdrvasm20.inc"
# else
# error "USB_CFG_CLOCK_KHZ is not one of the supported non-crc-rates!"
# endif
#endif /* USB_CFG_CHECK_CRC */

View File

@ -1,749 +0,0 @@
/* Name: usbdrvasm128.inc
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2008-10-11
* Tabsize: 4
* Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 12.8 MHz version of the USB driver. It is intended for use
with the internal RC oscillator. Although 12.8 MHz is outside the guaranteed
calibration range of the oscillator, almost all AVRs can reach this frequency.
This version contains a phase locked loop in the receiver routine to cope with
slight clock rate deviations of up to +/- 1%.
See usbdrv.h for a description of the entire driver.
LIMITATIONS
===========
Although it may seem very handy to save the crystal and use the internal
RC oscillator of the CPU, this method (and this module) has some serious
limitations:
(1) The guaranteed calibration range of the oscillator is only 8.1 MHz.
They typical range is 14.5 MHz and most AVRs can actually reach this rate.
(2) Writing EEPROM and Flash may be unreliable (short data lifetime) since
the write procedure is timed from the RC oscillator.
(3) End Of Packet detection (SE0) should be in bit 1, bit it is only checked
if bits 0 and 1 both read as 0 on D- and D+ read as 0 in the middle. This may
cause problems with old hubs which delay SE0 by up to one cycle.
(4) Code size is much larger than that of the other modules.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
Implementation notes:
======================
min frequency: 67 cycles for 8 bit -> 12.5625 MHz
max frequency: 69.286 cycles for 8 bit -> 12.99 MHz
nominal frequency: 12.77 MHz ( = sqrt(min * max))
sampling positions: (next even number in range [+/- 0.5])
cycle index range: 0 ... 66
bits:
.5, 8.875, 17.25, 25.625, 34, 42.375, 50.75, 59.125
[0/1], [9], [17], [25/+26], [34], [+42/43], [51], [59]
bit number: 0 1 2 3 4 5 6 7
spare cycles 1 2 1 2 1 1 1 0
operations to perform: duration cycle
----------------
eor fix, shift 1 -> 00
andi phase, USBMASK 1 -> 08
breq se0 1 -> 16 (moved to 11)
st y+, data 2 -> 24, 25
mov data, fix 1 -> 33
ser data 1 -> 41
subi cnt, 1 1 -> 49
brcs overflow 1 -> 50
layout of samples and operations:
[##] = sample bit
<##> = sample phase
*##* = operation
0: *00* [01] 02 03 04 <05> 06 07
1: *08* [09] 10 11 12 <13> 14 15 *16*
2: [17] 18 19 20 <21> 22 23
3: *24* *25* [26] 27 28 29 <30> 31 32
4: *33* [34] 35 36 37 <38> 39 40
5: *41* [42] 43 44 45 <46> 47 48
6: *49* *50* [51] 52 53 54 <55> 56 57 58
7: [59] 60 61 62 <63> 64 65 66
*****************************************************************************/
/* we prefer positive expressions (do if condition) instead of negative
* (skip if condition), therefore use defines for skip instructions:
*/
#define ifioclr sbis
#define ifioset sbic
#define ifrclr sbrs
#define ifrset sbrc
/* The registers "fix" and "data" swap their meaning during the loop. Use
* defines to keep their name constant.
*/
#define fix x2
#define data x1
#undef phase /* phase has a default definition to x4 */
#define phase x3
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG [sofError], YH, shift, x1, x2, x3, cnt, r0
push YL ;2 push only what is necessary to sync with edge ASAP
in YL, SREG ;1
push YL ;2
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;The first part waits at most 1 bit long since we must be in sync pattern.
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
;waitForJ, ensure that this prerequisite is met.
waitForJ:
inc YL
sbis USBIN, USBMINUS
brne waitForJ ; just make sure we have ANY timeout
waitForK:
;The following code results in a sampling window of 1/4 bit which meets the spec.
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS ;[0]
rjmp foundK ;[1]
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
#ifdef USB_SOF_HOOK
USB_SOF_HOOK
#endif
rjmp sofError
foundK:
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 4 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push YH ;[2]
lds YL, usbInputBufOffset;[4]
clr YH ;[6]
subi YL, lo8(-(usbRxBuf));[7]
sbci YH, hi8(-(usbRxBuf));[8]
sbis USBIN, USBMINUS ;[9] we want two bits K [we want to sample at 8 + 4 - 1.5 = 10.5]
rjmp haveTwoBitsK ;[10]
pop YH ;[11] undo the push from before
rjmp waitForK ;[13] this was not the end of sync, retry
haveTwoBitsK:
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
#define fix x2
#define data x1
push shift ;[12]
push x1 ;[14]
push x2 ;[16]
ldi shift, 0x80 ;[18] prevent bit-unstuffing but init low bits to 0
ifioset USBIN, USBMINUS ;[19] [01] <--- bit 0 [10.5 + 8 = 18.5]
ori shift, 1<<0 ;[02]
push x3 ;[03]
push cnt ;[05]
push r0 ;[07]
ifioset USBIN, USBMINUS ;[09] <--- bit 1
ori shift, 1<<1 ;[10]
ser fix ;[11]
ldi cnt, USB_BUFSIZE ;[12]
mov data, shift ;[13]
lsl shift ;[14]
nop2 ;[15]
ifioset USBIN, USBMINUS ;[17] <--- bit 2
ori data, 3<<2 ;[18] store in bit 2 AND bit 3
eor shift, data ;[19] do nrzi decoding
andi data, 1<<3 ;[20]
in phase, USBIN ;[21] <- phase
brne jumpToEntryAfterSet ;[22] if USBMINS at bit 3 was 1
nop ;[23]
rjmp entryAfterClr ;[24]
jumpToEntryAfterSet:
rjmp entryAfterSet ;[24]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
#undef fix
#define fix x1
#undef data
#define data x2
bit7IsSet:
ifrclr phase, USBMINUS ;[62] check phase only if D- changed
lpm ;[63]
in phase, USBIN ;[64] <- phase (one cycle too late)
ori shift, 1 << 7 ;[65]
nop ;[66]
;;;;rjmp bit0AfterSet ; -> [00] == [67] moved block up to save jump
bit0AfterSet:
eor fix, shift ;[00]
#undef fix
#define fix x2
#undef data
#define data x1 /* we now have result in data, fix is reset to 0xff */
ifioclr USBIN, USBMINUS ;[01] <--- sample 0
rjmp bit0IsClr ;[02]
andi shift, ~(7 << 0) ;[03]
breq unstuff0s ;[04]
in phase, USBIN ;[05] <- phase
rjmp bit1AfterSet ;[06]
unstuff0s:
in phase, USBIN ;[06] <- phase (one cycle too late)
andi fix, ~(1 << 0) ;[07]
ifioclr USBIN, USBMINUS ;[00]
ifioset USBIN, USBPLUS ;[01]
rjmp bit0IsClr ;[02] executed if first expr false or second true
se0AndStore: ; executed only if both bits 0
st y+, x1 ;[15/17] cycles after start of byte
rjmp se0 ;[17/19]
bit0IsClr:
ifrset phase, USBMINUS ;[04] check phase only if D- changed
lpm ;[05]
in phase, USBIN ;[06] <- phase (one cycle too late)
ori shift, 1 << 0 ;[07]
bit1AfterClr:
andi phase, USBMASK ;[08]
ifioset USBIN, USBMINUS ;[09] <--- sample 1
rjmp bit1IsSet ;[10]
breq se0AndStore ;[11] if D- was 0 in bits 0 AND 1 and D+ was 0 in between, we have SE0
andi shift, ~(7 << 1) ;[12]
in phase, USBIN ;[13] <- phase
breq unstuff1c ;[14]
rjmp bit2AfterClr ;[15]
unstuff1c:
andi fix, ~(1 << 1) ;[16]
nop2 ;[08]
nop2 ;[10]
bit1IsSet:
ifrclr phase, USBMINUS ;[12] check phase only if D- changed
lpm ;[13]
in phase, USBIN ;[14] <- phase (one cycle too late)
ori shift, 1 << 1 ;[15]
nop ;[16]
bit2AfterSet:
ifioclr USBIN, USBMINUS ;[17] <--- sample 2
rjmp bit2IsClr ;[18]
andi shift, ~(7 << 2) ;[19]
breq unstuff2s ;[20]
in phase, USBIN ;[21] <- phase
rjmp bit3AfterSet ;[22]
unstuff2s:
in phase, USBIN ;[22] <- phase (one cycle too late)
andi fix, ~(1 << 2) ;[23]
nop2 ;[16]
nop2 ;[18]
bit2IsClr:
ifrset phase, USBMINUS ;[20] check phase only if D- changed
lpm ;[21]
in phase, USBIN ;[22] <- phase (one cycle too late)
ori shift, 1 << 2 ;[23]
bit3AfterClr:
st y+, data ;[24]
entryAfterClr:
ifioset USBIN, USBMINUS ;[26] <--- sample 3
rjmp bit3IsSet ;[27]
andi shift, ~(7 << 3) ;[28]
breq unstuff3c ;[29]
in phase, USBIN ;[30] <- phase
rjmp bit4AfterClr ;[31]
unstuff3c:
in phase, USBIN ;[31] <- phase (one cycle too late)
andi fix, ~(1 << 3) ;[32]
nop2 ;[25]
nop2 ;[27]
bit3IsSet:
ifrclr phase, USBMINUS ;[29] check phase only if D- changed
lpm ;[30]
in phase, USBIN ;[31] <- phase (one cycle too late)
ori shift, 1 << 3 ;[32]
bit4AfterSet:
mov data, fix ;[33] undo this move by swapping defines
#undef fix
#define fix x1
#undef data
#define data x2
ifioclr USBIN, USBMINUS ;[34] <--- sample 4
rjmp bit4IsClr ;[35]
andi shift, ~(7 << 4) ;[36]
breq unstuff4s ;[37]
in phase, USBIN ;[38] <- phase
rjmp bit5AfterSet ;[39]
unstuff4s:
in phase, USBIN ;[39] <- phase (one cycle too late)
andi fix, ~(1 << 4) ;[40]
nop2 ;[33]
nop2 ;[35]
bit4IsClr:
ifrset phase, USBMINUS ;[37] check phase only if D- changed
lpm ;[38]
in phase, USBIN ;[39] <- phase (one cycle too late)
ori shift, 1 << 4 ;[40]
bit5AfterClr:
ser data ;[41]
ifioset USBIN, USBMINUS ;[42] <--- sample 5
rjmp bit5IsSet ;[43]
andi shift, ~(7 << 5) ;[44]
breq unstuff5c ;[45]
in phase, USBIN ;[46] <- phase
rjmp bit6AfterClr ;[47]
unstuff5c:
in phase, USBIN ;[47] <- phase (one cycle too late)
andi fix, ~(1 << 5) ;[48]
nop2 ;[41]
nop2 ;[43]
bit5IsSet:
ifrclr phase, USBMINUS ;[45] check phase only if D- changed
lpm ;[46]
in phase, USBIN ;[47] <- phase (one cycle too late)
ori shift, 1 << 5 ;[48]
bit6AfterSet:
subi cnt, 1 ;[49]
brcs jumpToOverflow ;[50]
ifioclr USBIN, USBMINUS ;[51] <--- sample 6
rjmp bit6IsClr ;[52]
andi shift, ~(3 << 6) ;[53]
cpi shift, 2 ;[54]
in phase, USBIN ;[55] <- phase
brlt unstuff6s ;[56]
rjmp bit7AfterSet ;[57]
jumpToOverflow:
rjmp overflow
unstuff6s:
andi fix, ~(1 << 6) ;[50]
lpm ;[51]
bit6IsClr:
ifrset phase, USBMINUS ;[54] check phase only if D- changed
lpm ;[55]
in phase, USBIN ;[56] <- phase (one cycle too late)
ori shift, 1 << 6 ;[57]
nop ;[58]
bit7AfterClr:
ifioset USBIN, USBMINUS ;[59] <--- sample 7
rjmp bit7IsSet ;[60]
andi shift, ~(1 << 7) ;[61]
cpi shift, 4 ;[62]
in phase, USBIN ;[63] <- phase
brlt unstuff7c ;[64]
rjmp bit0AfterClr ;[65] -> [00] == [67]
unstuff7c:
andi fix, ~(1 << 7) ;[58]
nop ;[59]
rjmp bit7IsSet ;[60]
bit7IsClr:
ifrset phase, USBMINUS ;[62] check phase only if D- changed
lpm ;[63]
in phase, USBIN ;[64] <- phase (one cycle too late)
ori shift, 1 << 7 ;[65]
nop ;[66]
;;;;rjmp bit0AfterClr ; -> [00] == [67] moved block up to save jump
bit0AfterClr:
eor fix, shift ;[00]
#undef fix
#define fix x2
#undef data
#define data x1 /* we now have result in data, fix is reset to 0xff */
ifioset USBIN, USBMINUS ;[01] <--- sample 0
rjmp bit0IsSet ;[02]
andi shift, ~(7 << 0) ;[03]
breq unstuff0c ;[04]
in phase, USBIN ;[05] <- phase
rjmp bit1AfterClr ;[06]
unstuff0c:
in phase, USBIN ;[06] <- phase (one cycle too late)
andi fix, ~(1 << 0) ;[07]
ifioclr USBIN, USBMINUS ;[00]
ifioset USBIN, USBPLUS ;[01]
rjmp bit0IsSet ;[02] executed if first expr false or second true
rjmp se0AndStore ;[03] executed only if both bits 0
bit0IsSet:
ifrclr phase, USBMINUS ;[04] check phase only if D- changed
lpm ;[05]
in phase, USBIN ;[06] <- phase (one cycle too late)
ori shift, 1 << 0 ;[07]
bit1AfterSet:
andi shift, ~(7 << 1) ;[08] compensated by "ori shift, 1<<1" if bit1IsClr
ifioclr USBIN, USBMINUS ;[09] <--- sample 1
rjmp bit1IsClr ;[10]
breq unstuff1s ;[11]
nop2 ;[12] do not check for SE0 if bit 0 was 1
in phase, USBIN ;[14] <- phase (one cycle too late)
rjmp bit2AfterSet ;[15]
unstuff1s:
in phase, USBIN ;[13] <- phase
andi fix, ~(1 << 1) ;[14]
lpm ;[07]
nop2 ;[10]
bit1IsClr:
ifrset phase, USBMINUS ;[12] check phase only if D- changed
lpm ;[13]
in phase, USBIN ;[14] <- phase (one cycle too late)
ori shift, 1 << 1 ;[15]
nop ;[16]
bit2AfterClr:
ifioset USBIN, USBMINUS ;[17] <--- sample 2
rjmp bit2IsSet ;[18]
andi shift, ~(7 << 2) ;[19]
breq unstuff2c ;[20]
in phase, USBIN ;[21] <- phase
rjmp bit3AfterClr ;[22]
unstuff2c:
in phase, USBIN ;[22] <- phase (one cycle too late)
andi fix, ~(1 << 2) ;[23]
nop2 ;[16]
nop2 ;[18]
bit2IsSet:
ifrclr phase, USBMINUS ;[20] check phase only if D- changed
lpm ;[21]
in phase, USBIN ;[22] <- phase (one cycle too late)
ori shift, 1 << 2 ;[23]
bit3AfterSet:
st y+, data ;[24]
entryAfterSet:
ifioclr USBIN, USBMINUS ;[26] <--- sample 3
rjmp bit3IsClr ;[27]
andi shift, ~(7 << 3) ;[28]
breq unstuff3s ;[29]
in phase, USBIN ;[30] <- phase
rjmp bit4AfterSet ;[31]
unstuff3s:
in phase, USBIN ;[31] <- phase (one cycle too late)
andi fix, ~(1 << 3) ;[32]
nop2 ;[25]
nop2 ;[27]
bit3IsClr:
ifrset phase, USBMINUS ;[29] check phase only if D- changed
lpm ;[30]
in phase, USBIN ;[31] <- phase (one cycle too late)
ori shift, 1 << 3 ;[32]
bit4AfterClr:
mov data, fix ;[33] undo this move by swapping defines
#undef fix
#define fix x1
#undef data
#define data x2
ifioset USBIN, USBMINUS ;[34] <--- sample 4
rjmp bit4IsSet ;[35]
andi shift, ~(7 << 4) ;[36]
breq unstuff4c ;[37]
in phase, USBIN ;[38] <- phase
rjmp bit5AfterClr ;[39]
unstuff4c:
in phase, USBIN ;[39] <- phase (one cycle too late)
andi fix, ~(1 << 4) ;[40]
nop2 ;[33]
nop2 ;[35]
bit4IsSet:
ifrclr phase, USBMINUS ;[37] check phase only if D- changed
lpm ;[38]
in phase, USBIN ;[39] <- phase (one cycle too late)
ori shift, 1 << 4 ;[40]
bit5AfterSet:
ser data ;[41]
ifioclr USBIN, USBMINUS ;[42] <--- sample 5
rjmp bit5IsClr ;[43]
andi shift, ~(7 << 5) ;[44]
breq unstuff5s ;[45]
in phase, USBIN ;[46] <- phase
rjmp bit6AfterSet ;[47]
unstuff5s:
in phase, USBIN ;[47] <- phase (one cycle too late)
andi fix, ~(1 << 5) ;[48]
nop2 ;[41]
nop2 ;[43]
bit5IsClr:
ifrset phase, USBMINUS ;[45] check phase only if D- changed
lpm ;[46]
in phase, USBIN ;[47] <- phase (one cycle too late)
ori shift, 1 << 5 ;[48]
bit6AfterClr:
subi cnt, 1 ;[49]
brcs overflow ;[50]
ifioset USBIN, USBMINUS ;[51] <--- sample 6
rjmp bit6IsSet ;[52]
andi shift, ~(3 << 6) ;[53]
cpi shift, 2 ;[54]
in phase, USBIN ;[55] <- phase
brlt unstuff6c ;[56]
rjmp bit7AfterClr ;[57]
unstuff6c:
andi fix, ~(1 << 6) ;[50]
lpm ;[51]
bit6IsSet:
ifrclr phase, USBMINUS ;[54] check phase only if D- changed
lpm ;[55]
in phase, USBIN ;[56] <- phase (one cycle too late)
ori shift, 1 << 6 ;[57]
bit7AfterSet:
ifioclr USBIN, USBMINUS ;[59] <--- sample 7
rjmp bit7IsClr ;[60]
andi shift, ~(1 << 7) ;[61]
cpi shift, 4 ;[62]
in phase, USBIN ;[63] <- phase
brlt unstuff7s ;[64]
rjmp bit0AfterSet ;[65] -> [00] == [67]
unstuff7s:
andi fix, ~(1 << 7) ;[58]
nop ;[59]
rjmp bit7IsClr ;[60]
macro POP_STANDARD ; 14 cycles
pop r0
pop cnt
pop x3
pop x2
pop x1
pop shift
pop YH
endm
macro POP_RETI ; 5 cycles
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
;----------------------------------------------------------------------------
; Transmitting data
;----------------------------------------------------------------------------
txByteLoop:
txBitloop:
stuffN1Delay: ; [03]
ror shift ;[-5] [11] [63]
brcc doExorN1 ;[-4] [64]
subi x3, 1 ;[-3]
brne commonN1 ;[-2]
lsl shift ;[-1] compensate ror after rjmp stuffDelay
nop ;[00] stuffing consists of just waiting 8 cycles
rjmp stuffN1Delay ;[01] after ror, C bit is reliably clear
sendNakAndReti:
ldi cnt, USBPID_NAK ;[-19]
rjmp sendCntAndReti ;[-18]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov r0, cnt ;[-16]
ldi YL, 0 ;[-15] R0 address is 0
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1) or USBOUT = 0x01
; K = (D+ = 1), (D- = 0) or USBOUT = 0x02
; Spec allows 7.5 bit times from EOP to SOP for replies (= 60 cycles)
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte
;uses: x1...x3, shift, cnt, Y [x1 = mirror USBOUT, x2 = USBMASK, x3 = bitstuff cnt]
;Numbers in brackets are time since first bit of sync pattern is sent (start of instruction)
usbSendAndReti:
in x2, USBDDR ;[-10] 10 cycles until SOP
ori x2, USBMASK ;[-9]
sbi USBOUT, USBMINUS ;[-8] prepare idle state; D+ and D- must have been 0 (no pullups)
out USBDDR, x2 ;[-6] <--- acquire bus
in x1, USBOUT ;[-5] port mirror for tx loop
ldi shift, 0x40 ;[-4] sync byte is first byte sent (we enter loop after ror)
ldi x2, USBMASK ;[-3]
doExorN1:
eor x1, x2 ;[-2] [06] [62]
ldi x3, 6 ;[-1] [07] [63]
commonN1:
stuffN2Delay:
out USBOUT, x1 ;[00] [08] [64] <--- set bit
ror shift ;[01]
brcc doExorN2 ;[02]
subi x3, 1 ;[03]
brne commonN2 ;[04]
lsl shift ;[05] compensate ror after rjmp stuffDelay
rjmp stuffN2Delay ;[06] after ror, C bit is reliably clear
doExorN2:
eor x1, x2 ;[04] [12]
ldi x3, 6 ;[05] [13]
commonN2:
nop2 ;[06] [14]
subi cnt, 171 ;[08] [16] trick: (3 * 171) & 0xff = 1
out USBOUT, x1 ;[09] [17] <--- set bit
brcs txBitloop ;[10] [27] [44]
stuff6Delay:
ror shift ;[45] [53]
brcc doExor6 ;[46]
subi x3, 1 ;[47]
brne common6 ;[48]
lsl shift ;[49] compensate ror after rjmp stuffDelay
nop ;[50] stuffing consists of just waiting 8 cycles
rjmp stuff6Delay ;[51] after ror, C bit is reliably clear
doExor6:
eor x1, x2 ;[48] [56]
ldi x3, 6 ;[49]
common6:
stuff7Delay:
ror shift ;[50] [58]
out USBOUT, x1 ;[51] <--- set bit
brcc doExor7 ;[52]
subi x3, 1 ;[53]
brne common7 ;[54]
lsl shift ;[55] compensate ror after rjmp stuffDelay
rjmp stuff7Delay ;[56] after ror, C bit is reliably clear
doExor7:
eor x1, x2 ;[54] [62]
ldi x3, 6 ;[55]
common7:
ld shift, y+ ;[56]
nop ;[58]
tst cnt ;[59]
out USBOUT, x1 ;[60] [00]<--- set bit
brne txByteLoop ;[61] [01]
;make SE0:
cbr x1, USBMASK ;[02] prepare SE0 [spec says EOP may be 15 to 18 cycles]
lds x2, usbNewDeviceAddr;[03]
lsl x2 ;[05] we compare with left shifted address
subi YL, 2 + 0 ;[06] Only assign address on data packets, not ACK/NAK in r0
sbci YH, 0 ;[07]
out USBOUT, x1 ;[00] <-- out SE0 -- from now 2 bits = 16 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[01]
sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[03] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[04]
ori x1, USBIDLE ;[05]
in x2, USBDDR ;[06]
cbr x2, USBMASK ;[07] set both pins to input
mov x3, x1 ;[08]
cbr x3, USBMASK ;[09] configure no pullup on both pins
lpm ;[10]
lpm ;[13]
out USBOUT, x1 ;[16] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[17] <-- release bus now
out USBOUT, x3 ;[18] <-- ensure no pull-up resistors are active
rjmp doReturn
/*****************************************************************************
The following PHP script generates a code skeleton for the receiver routine:
<?php
function printCmdBuffer($thisBit)
{
global $cycle;
$nextBit = ($thisBit + 1) % 8;
$s = ob_get_contents();
ob_end_clean();
$s = str_replace("#", $thisBit, $s);
$s = str_replace("@", $nextBit, $s);
$lines = explode("\n", $s);
for($i = 0; $i < count($lines); $i++){
$s = $lines[$i];
if(ereg("\\[([0-9-][0-9])\\]", $s, $regs)){
$c = $cycle + (int)$regs[1];
$s = ereg_replace("\\[[0-9-][0-9]\\]", sprintf("[%02d]", $c), $s);
}
if(strlen($s) > 0)
echo "$s\n";
}
}
function printBit($isAfterSet, $bitNum)
{
ob_start();
if($isAfterSet){
?>
ifioclr USBIN, USBMINUS ;[00] <--- sample
rjmp bit#IsClr ;[01]
andi shift, ~(7 << #) ;[02]
breq unstuff#s ;[03]
in phase, USBIN ;[04] <- phase
rjmp bit@AfterSet ;[05]
unstuff#s:
in phase, USBIN ;[05] <- phase (one cycle too late)
andi fix, ~(1 << #) ;[06]
nop2 ;[-1]
nop2 ;[01]
bit#IsClr:
ifrset phase, USBMINUS ;[03] check phase only if D- changed
lpm ;[04]
in phase, USBIN ;[05] <- phase (one cycle too late)
ori shift, 1 << # ;[06]
<?php
}else{
?>
ifioset USBIN, USBMINUS ;[00] <--- sample
rjmp bit#IsSet ;[01]
andi shift, ~(7 << #) ;[02]
breq unstuff#c ;[03]
in phase, USBIN ;[04] <- phase
rjmp bit@AfterClr ;[05]
unstuff#c:
in phase, USBIN ;[05] <- phase (one cycle too late)
andi fix, ~(1 << #) ;[06]
nop2 ;[-1]
nop2 ;[01]
bit#IsSet:
ifrclr phase, USBMINUS ;[03] check phase only if D- changed
lpm ;[04]
in phase, USBIN ;[05] <- phase (one cycle too late)
ori shift, 1 << # ;[06]
<?php
}
printCmdBuffer($bitNum);
}
$bitStartCycles = array(1, 9, 17, 26, 34, 42, 51, 59);
for($i = 0; $i < 16; $i++){
$bit = $i % 8;
$emitClrCode = ($i + (int)($i / 8)) % 2;
$cycle = $bitStartCycles[$bit];
if($emitClrCode){
printf("bit%dAfterClr:\n", $bit);
}else{
printf("bit%dAfterSet:\n", $bit);
}
ob_start();
echo " ***** ;[-1]\n";
printCmdBuffer($bit);
printBit(!$emitClrCode, $bit);
if($i == 7)
echo "\n";
}
?>
*****************************************************************************/

View File

@ -1,345 +0,0 @@
/* Name: usbdrvasm16.inc
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2007-06-15
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 16 MHz version of the asssembler part of the USB driver. It
requires a 16 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 16 MHz -> 10.6666666 cycles per bit, 85.333333333 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt
push YL ;[-25] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-23]
push YL ;[-22]
push YH ;[-20]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;The first part waits at most 1 bit long since we must be in sync pattern.
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
;waitForJ, ensure that this prerequisite is met.
waitForJ:
inc YL
sbis USBIN, USBMINUS
brne waitForJ ; just make sure we have ANY timeout
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-15]
rjmp foundK ;[-14]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
#ifdef USB_SOF_HOOK
USB_SOF_HOOK
#endif
rjmp sofError
foundK: ;[-12]
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push bitcnt ;[-12]
; [---] ;[-11]
lds YL, usbInputBufOffset;[-10]
; [---] ;[-9]
clr YH ;[-8]
subi YL, lo8(-(usbRxBuf));[-7] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-6] [rx loop init]
push shift ;[-5]
; [---] ;[-4]
ldi bitcnt, 0x55 ;[-3] [rx loop init]
sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early)
rjmp haveTwoBitsK ;[-1]
pop shift ;[0] undo the push from before
pop bitcnt ;[2] undo the push from before
rjmp waitForK ;[4] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 21 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK:
push x1 ;[1]
push x2 ;[3]
push x3 ;[5]
ldi shift, 0 ;[7]
ldi x3, 1<<4 ;[8] [rx loop init] first sample is inverse bit, compensate that
push x4 ;[9] == leap
in x1, USBIN ;[11] <-- sample bit 0
andi x1, USBMASK ;[12]
bst x1, USBMINUS ;[13]
bld shift, 7 ;[14]
push cnt ;[15]
ldi leap, 0 ;[17] [rx loop init]
ldi cnt, USB_BUFSIZE;[18] [rx loop init]
rjmp rxbit1 ;[19] arrives at [21]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
; duration of unstuffing code should be 10.66666667 cycles. We adjust "leap"
; accordingly to approximate this value in the long run.
unstuff6:
andi x2, USBMASK ;[03]
ori x3, 1<<6 ;[04] will not be shifted any more
andi shift, ~0x80;[05]
mov x1, x2 ;[06] sampled bit 7 is actually re-sampled bit 6
subi leap, -1 ;[07] total duration = 11 bits -> subtract 1/3
rjmp didUnstuff6 ;[08]
unstuff7:
ori x3, 1<<7 ;[09] will not be shifted any more
in x2, USBIN ;[00] [10] re-sample bit 7
andi x2, USBMASK ;[01]
andi shift, ~0x80;[02]
subi leap, 2 ;[03] total duration = 10 bits -> add 1/3
rjmp didUnstuff7 ;[04]
unstuffEven:
ori x3, 1<<6 ;[09] will be shifted right 6 times for bit 0
in x1, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x1, USBMASK ;[02]
breq se0 ;[03]
subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3
nop2 ;[05]
rjmp didUnstuffE ;[06]
unstuffOdd:
ori x3, 1<<5 ;[09] will be shifted right 4 times for bit 1
in x2, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x2, USBMASK ;[02]
breq se0 ;[03]
subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3
nop2 ;[05]
rjmp didUnstuffO ;[06]
rxByteLoop:
andi x1, USBMASK ;[03]
eor x2, x1 ;[04]
subi leap, 1 ;[05]
brpl skipLeap ;[06]
subi leap, -3 ;1 one leap cycle every 3rd byte -> 85 + 1/3 cycles per byte
nop ;1
skipLeap:
subi x2, 1 ;[08]
ror shift ;[09]
didUnstuff6:
cpi shift, 0xfc ;[10]
in x2, USBIN ;[00] [11] <-- sample bit 7
brcc unstuff6 ;[01]
andi x2, USBMASK ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
didUnstuff7:
cpi shift, 0xfc ;[06]
brcc unstuff7 ;[07]
eor x3, shift ;[08] reconstruct: x3 is 1 at bit locations we changed, 0 at others
st y+, x3 ;[09] store data
rxBitLoop:
in x1, USBIN ;[00] [11] <-- sample bit 0/2/4
andi x1, USBMASK ;[01]
eor x2, x1 ;[02]
andi x3, 0x3f ;[03] topmost two bits reserved for 6 and 7
subi x2, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffEven ;[07]
didUnstuffE:
lsr x3 ;[08]
lsr x3 ;[09]
rxbit1:
in x2, USBIN ;[00] [10] <-- sample bit 1/3/5
andi x2, USBMASK ;[01]
breq se0 ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffOdd ;[07]
didUnstuffO:
subi bitcnt, 0xab;[08] == addi 0x55, 0x55 = 0x100/3
brcs rxBitLoop ;[09]
subi cnt, 1 ;[10]
in x1, USBIN ;[00] [11] <-- sample bit 6
brcc rxByteLoop ;[01]
rjmp overflow
macro POP_STANDARD ; 14 cycles
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop bitcnt
endm
macro POP_RETI ; 7 cycles
pop YH
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
bitstuffN:
eor x1, x4 ;[5]
ldi x2, 0 ;[6]
nop2 ;[7]
nop ;[9]
out USBOUT, x1 ;[10] <-- out
rjmp didStuffN ;[0]
bitstuff6:
eor x1, x4 ;[5]
ldi x2, 0 ;[6] Carry is zero due to brcc
rol shift ;[7] compensate for ror shift at branch destination
rjmp didStuff6 ;[8]
bitstuff7:
ldi x2, 0 ;[2] Carry is zero due to brcc
rjmp didStuff7 ;[3]
sendNakAndReti:
ldi x3, USBPID_NAK ;[-18]
rjmp sendX3AndReti ;[-17]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov x3, cnt ;[-16]
sendX3AndReti:
ldi YL, 20 ;[-15] x3==r20 address is 20
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We don't match the transfer rate exactly (don't insert leap cycles every third
;byte) because the spec demands only 1.5% precision anyway.
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
txByteLoop:
ldi bitcnt, 0x35 ;[-4] [6] binary 0011 0101
txBitLoop:
sbrs shift, 0 ;[-3] [7]
eor x1, x4 ;[-2] [8]
out USBOUT, x1 ;[-1] [9] <-- out N
ror shift ;[0] [10]
ror x2 ;[1]
didStuffN:
cpi x2, 0xfc ;[2]
brcc bitstuffN ;[3]
lsr bitcnt ;[4]
brcc txBitLoop ;[5]
brne txBitLoop ;[6]
sbrs shift, 0 ;[7]
eor x1, x4 ;[8]
didStuff6:
out USBOUT, x1 ;[-1] [9] <-- out 6
ror shift ;[0] [10]
ror x2 ;[1]
cpi x2, 0xfc ;[2]
brcc bitstuff6 ;[3]
ror shift ;[4]
didStuff7:
ror x2 ;[5]
sbrs x2, 7 ;[6]
eor x1, x4 ;[7]
nop ;[8]
cpi x2, 0xfc ;[9]
out USBOUT, x1 ;[-1][10] <-- out 7
brcc bitstuff7 ;[0] [11]
ld shift, y+ ;[1]
dec cnt ;[3]
brne txByteLoop ;[4]
;make SE0:
cbr x1, USBMASK ;[5] prepare SE0 [spec says EOP may be 21 to 25 cycles]
lds x2, usbNewDeviceAddr;[6]
lsl x2 ;[8] we compare with left shifted address
subi YL, 20 + 2 ;[9] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;[10]
out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[0]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[2] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[3]
ori x1, USBIDLE ;[4]
in x2, USBDDR ;[5]
cbr x2, USBMASK ;[6] set both pins to input
mov x3, x1 ;[7]
cbr x3, USBMASK ;[8] configure no pullup on both pins
ldi x4, 4 ;[9]
se0Delay:
dec x4 ;[10] [13] [16] [19]
brne se0Delay ;[11] [14] [17] [20]
out USBOUT, x1 ;[21] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[22] <-- release bus now
out USBOUT, x3 ;[23] <-- ensure no pull-up resistors are active
rjmp doReturn

View File

@ -1,143 +0,0 @@
/* Name: usbportability.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2008-06-17
* Tabsize: 4
* Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/*
General Description:
This header is intended to contain all (or at least most of) the compiler
and library dependent stuff. The C code is written for avr-gcc and avr-libc.
The API of other development environments is converted to gcc's and avr-libc's
API by means of defines.
This header also contains all system includes since they depend on the
development environment.
Thanks to Oleg Semyonov for his help with the IAR tools port!
*/
#ifndef __usbportability_h_INCLUDED__
#define __usbportability_h_INCLUDED__
/* We check explicitly for IAR and CodeVision. Default is avr-gcc/avr-libc. */
/* ------------------------------------------------------------------------- */
#if defined __IAR_SYSTEMS_ICC__ || defined __IAR_SYSTEMS_ASM__ /* check for IAR */
/* ------------------------------------------------------------------------- */
#ifndef ENABLE_BIT_DEFINITIONS
# define ENABLE_BIT_DEFINITIONS 1 /* Enable bit definitions */
#endif
/* Include IAR headers */
#include <ioavr.h>
#ifndef __IAR_SYSTEMS_ASM__
# include <inavr.h>
#endif
#define __attribute__(arg) /* not supported on IAR */
#ifdef __IAR_SYSTEMS_ASM__
# define __ASSEMBLER__ /* IAR does not define standard macro for asm */
#endif
#ifdef __HAS_ELPM__
# define PROGMEM __farflash
#else
# define PROGMEM __flash
#endif
#define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr))
/* The following definitions are not needed by the driver, but may be of some
* help if you port a gcc based project to IAR.
*/
#define cli() __disable_interrupt()
#define sei() __enable_interrupt()
#define wdt_reset() __watchdog_reset()
#define _BV(x) (1 << (x))
/* assembler compatibility macros */
#define nop2 rjmp $+2 /* jump to next instruction */
#define XL r26
#define XH r27
#define YL r28
#define YH r29
#define ZL r30
#define ZH r31
#define lo8(x) LOW(x)
#define hi8(x) (((x)>>8) & 0xff) /* not HIGH to allow XLINK to make a proper range check */
/* Depending on the device you use, you may get problems with the way usbdrv.h
* handles the differences between devices. Since IAR does not use #defines
* for MCU registers, we can't check for the existence of a particular
* register with an #ifdef. If the autodetection mechanism fails, include
* definitions for the required USB_INTR_* macros in your usbconfig.h. See
* usbconfig-prototype.h and usbdrv.h for details.
*/
/* ------------------------------------------------------------------------- */
#elif __CODEVISIONAVR__ /* check for CodeVision AVR */
/* ------------------------------------------------------------------------- */
/* This port is not working (yet) */
/* #define F_CPU _MCU_CLOCK_FREQUENCY_ seems to be defined automatically */
#include <io.h>
#include <delay.h>
#define __attribute__(arg) /* not supported on IAR */
#define PROGMEM __flash
#define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr))
#ifndef __ASSEMBLER__
static inline void cli(void)
{
#asm("cli");
}
static inline void sei(void)
{
#asm("sei");
}
#endif
#define _delay_ms(t) delay_ms(t)
#define _BV(x) (1 << (x))
#define USB_CFG_USE_SWITCH_STATEMENT 1 /* macro for if() cascase fails for unknown reason */
#define macro .macro
#define endm .endmacro
#define nop2 rjmp .+0 /* jump to next instruction */
/* ------------------------------------------------------------------------- */
#else /* default development environment is avr-gcc/avr-libc */
/* ------------------------------------------------------------------------- */
#include <avr/io.h>
#ifdef __ASSEMBLER__
# define _VECTOR(N) __vector_ ## N /* io.h does not define this for asm */
#else
# include <avr/pgmspace.h>
#endif
#if USB_CFG_DRIVER_FLASH_PAGE
# define USB_READ_FLASH(addr) pgm_read_byte_far(((long)USB_CFG_DRIVER_FLASH_PAGE << 16) | (long)(addr))
#else
# define USB_READ_FLASH(addr) pgm_read_byte(addr)
#endif
#define macro .macro
#define endm .endm
#define nop2 rjmp .+0 /* jump to next instruction */
#endif /* development environment */
/* for conveniecne, ensure that PRG_RDB exists */
#ifndef PRG_RDB
# define PRG_RDB(addr) USB_READ_FLASH(addr)
#endif
#endif /* __usbportability_h_INCLUDED__ */

View File

@ -1,139 +0,0 @@
# =====================================================================================
#
# ________ .__ __ ________ ____ ________
# \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
# / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
# / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
# \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
# \__> \/ \/ \/ \/ \/
# www.optixx.org
#
#
# Version: 1.0
# Created: 07/21/2009 03:32:16 PM
# Author: david@optixx.org
# Based on: custom-class, a basic USB example
# Author: Christian Starkjohann
# =====================================================================================
DEBUG = 1
TTY = /dev/tty.PL2303-00002126
DEVICE = atmega644
F_CPU = 20000000
TARGET = main
AVRDUDE = avrdude -c usbasp -p $(DEVICE)
SIZE = avr-size
BOOT_LOADER = 1
BOOT_COMPRESS = rle
BOOT_ROM01 = ../../roms/qd16boot_ver01.smc
BOOT_ROM02 = ../../roms/qd16boot_ver02.smc
ifeq ($(DEBUG),1)
BOOT_DEBUG = debug
LDFLAGS =-Wl,-u,vfprintf
CFLAGS =-Iusbdrv -I. -DDEBUG_LEVEL=0
OBJECTS = usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o \
main.o usb_bulk.o uart.o fifo.o sram.o debug.o \
dump.o timer.o watchdog.o loader.o info.o shared_memory.o crc.o \
system.o pwm.o util.o shell.o irq.o command.o
else
BOOT_DEBUG = nodebug
LDFLAGS =
CFLAGS =-Iusbdrv -I. -DDEBUG_LEVEL=0 -DNO_DEBUG -DNO_INFO
OBJECTS = usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o main.o usb_bulk.o \
sram.o crc.o debug.o dump.o loader.o \
system.o util.o info.o shared_memory.o command.o irq.o \
pwm.o
endif
ifeq ($(BOOT_LOADER), 1)
BOOT_ROM = $(BOOT_ROM01)
else
BOOT_ROM = $(BOOT_ROM02)
endif
ifeq ($(BOOT_COMPRESS), rle)
BOOT_CONVERTER = python ../../scripts/conv_rle.py
CFLAGS += -DBOOT_COMPRESS_RLE
OBJECTS += rle.o
endif
ifeq ($(BOOT_COMPRESS), zip)
BOOT_CONVERTER = python ../../scripts/conv_zip.py
CFLAGS += -DBOOT_COMPRESS_ZIP
OBJECTS += neginf/neginf.o
endif
ifeq ($(BOOT_COMPRESS), fastlz)
BOOT_CONVERTER = python ../../scripts/conv_fastlz.py
CFLAGS += -DBOOT_COMPRESS_FASTLZ
OBJECTS += fastlz.o
endif
COMPILE = avr-gcc -Wall -Os -DF_CPU=$(F_CPU) $(CFLAGS) -mmcu=$(DEVICE)
##############################################################################
# Fuse values for particular devices
##############################################################################
# http://www.engbedded.com/fusecalc/
FUSE_L = 0xf7
FUSE_H = 0xda
all: hex
help:
@echo "This Makefile has no default rule. Use one of the following:"
@echo "make hex ....... to build main.hex"
@echo "make fuse ...... to flash the fuses"
@echo "make flash ..... to flash the firmware (use this on metaboard)"
@echo "make clean ..... to delete objects and hex file"
hex: main.hex
@echo "$(TARGET) compiled for: $(DEVICE)"
@./checksize $(TARGET).elf
# rule for programming fuse bits:
fuse:
@[ "$(FUSE_H)" != "" -a "$(FUSE_L)" != "" ] || \
{ echo "*** Edit Makefile and choose values for FUSE_L and FUSE_H!"; exit 1; }
$(AVRDUDE) -U hfuse:w:$(FUSE_H):m -U lfuse:w:$(FUSE_L):m
flash: main.hex
$(AVRDUDE) -U flash:w:main.hex:i
convert-boot-rom:
$(BOOT_CONVERTER) $(BOOT_ROM)
release: main.hex
cp -v main.hex ../../files/firmware/firmware-loader0$(BOOT_LOADER)-$(BOOT_COMPRESS)-$(BOOT_DEBUG)-$$(date +%Y%m%d).hex
.c.o:
$(COMPILE) -c $< -o $@
.S.o:
$(COMPILE) -x assembler-with-cpp -c $< -o $@
.c.s:
$(COMPILE) -S $< -o $@
usbdrv:
cp -r ../../../usbdrv .
main.elf: usbdrv $(OBJECTS) # usbdrv dependency only needed because we copy it
$(COMPILE) -o main.elf $(OBJECTS) $(LDFLAGS)
main.hex: main.elf
rm -f main.hex main.eep.hex
avr-objcopy -j .text -j .data -O ihex main.elf main.hex
avr-size main.hex
disasm: main.elf
avr-objdump -d main.elf
cpp:
$(COMPILE) -E main.c
clean:
rm -f main.hex main.lst main.obj main.cof main.list main.map main.eep.hex main.elf *.o usbdrv/*.o main.s usbdrv/oddebug.s usbdrv/usbdrv.s

View File

@ -1,35 +0,0 @@
#!/bin/sh
# Name: checksize
# Project: PowerSwitch/AVR-USB
# Author: Christian Starkjohann
# Creation Date: 2004-12-29
# Tabsize: 4
# Copyright: (c) 2005 OBJECTIVE DEVELOPMENT Software GmbH.
# Revision: $:Id: checksize 83 2006-01-05 22:20:53Z cs $
error=0
codelimit=65536 # default value
datalimit=4064 # default value; leave 32 bytes for stack
if [ $# -gt 1 ]; then
codelimit="$2"
fi
if [ $# -gt 2 ]; then
datalimit="$3"
fi
set -- `avr-size -d "$1" | awk '/[0-9]/ {print $1 + $2, $2 + $3, $2}'`
if [ $1 -gt $codelimit ]; then
echo "*** code size $1 exceeds limit of $codelimit"
error=1
else
echo "ROM: $1 bytes (data=$3)"
fi
if [ $2 -gt $datalimit ]; then
echo "*** data size $2 exceeds limit of $datalimit"
error=1
else
echo "RAM: $2 bytes"
fi
exit $error

View File

@ -1,199 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdlib.h>
#include "config.h"
#include "requests.h"
#include "sram.h"
#include "info.h"
#include "irq.h"
#include "usbdrv.h"
#if defined(BOOT_COMPRESS_RLE)
#include "rle.h"
#endif
#if defined(BOOT_COMPRESS_ZIP)
#include "neginf/neginf.h"
#include "inflate.h"
#endif
#if defined(BOOT_COMPRESS_FASTLZ)
#include "fastlz.h"
#endif
#include "loader.h"
#include "system.h"
extern usb_transaction_t usb_trans;
extern system_t my_system;
extern const char *_rom[];
extern const char _rom01[];
extern const int _rom_size[];
void usb_connect()
{
uint8_t i = 0;
info_P(PSTR("USB init\n"));
usbDeviceDisconnect(); /* enforce re-enumeration, do this while */
cli();
info_P(PSTR("USB disconnect\n"));
i = 10;
while (--i) { /* fake USB disconnect for > 250 ms */
_delay_ms(50);
}
led_on();
usbDeviceConnect();
info_P(PSTR("USB connect\n"));
}
void boot_startup_rom(uint16_t init_delay)
{
uint8_t i;
#if defined(BOOT_COMPRESS_RLE)
uint32_t addr = 0x000000;
#endif
#if defined(BOOT_COMPRESS_ZIP)
uint8_t c;
uint16_t j;
PGM_VOID_P p_addr;
#endif
info_P(PSTR("Fetch Loader: %s from AVR PROGMEM\n"), LOADER_NAME);
system_set_bus_avr();
// snes_irq_lo();
// system_snes_irq_off();
system_set_rom_lorom();
// info_P(PSTR("Activate AVR bus\n"));
// avr_bus_active();
// info_P(PSTR("IRQ off\n"));
// snes_irq_lo();
// snes_irq_off();
// snes_lorom();
info_P(PSTR("Unpack Loader with using method: %s\n"), LOADER_COMPRESS);
#if defined(BOOT_COMPRESS_RLE)
for (i = 0; i < ROM_BUFFER_CNT; i++) {
addr += rle_decode(_rom[i], _rom_size[i], addr);
}
#endif
#if defined(BOOT_COMPRESS_ZIP)
//inflate_init();
neginf_init(0);
for (i=0; i<ROM_BUFFER_CNT; i++){
p_addr = _rom[i];
info_P(PSTR("idx=%i addr=%lx %s\n"), i, p_addr);
for (j=0; j<_rom_size[i]; j++){
c = pgm_read_byte((PGM_VOID_P)p_addr++);
neginf_process_byte(c);
}
}
#endif
#if defined(BOOT_COMPRESS_FASTLZ)
uint32_t rlen = _rom_size[0]+ _rom_size[1];
fastlz_decompress2(_rom[0], _rom[0], rlen);
#endif
info_P(PSTR("\n"));
#if DO_CRC_CHECK_LOADER
dump_memory(0x010000 - 0x100, 0x010000);
uint16_t crc;
crc = crc_check_bulk_memory((uint32_t) 0x000000, 0x010000, 0x010000);
info(PSTR("crc=%x\n"), crc);
#endif
// snes_irq_lo();
// snes_irq_off();
// snes_hirom();
// snes_wr_disable();
// system_set_bus_snes();
// system_set_rom_hirom();
// system_set_wr_disable();
// system_snes_irq_off();
snes_irq_lo();
system_snes_irq_off();
system_set_rom_hirom();
system_set_wr_disable();
system_set_bus_snes();
system_send_snes_reset();
info_P(PSTR("Move Loader to wram"));
for (i = 0; i < 30; i++) {
_delay_ms(20);
info_P(PSTR("."));
}
info_P(PSTR("\n"));
}
void banner()
{
uint8_t i;
for (i = 0; i < 40; i++)
info_P(PSTR("\n"));
info_P(PSTR
(" ________ .__ __ ________ ____ ________\n"));
info_P(PSTR
(" \\_____ \\ __ __|__| ____ | | __\\______ \\ _______ _/_ |/ _____/\n"));
info_P(PSTR
(" / / \\ \\| | \\ |/ ___\\| |/ / | | \\_/ __ \\ \\/ /| / __ \\ \n"));
info_P(PSTR
(" / \\_/. \\ | / \\ \\___| < | ` \\ ___/\\ / | \\ |__\\ \\ \n"));
info_P(PSTR
(" \\_____\\ \\_/____/|__|\\___ >__|_ \\/_______ /\\___ >\\_/ |___|\\_____ / \n"));
info_P(PSTR
(" \\__> \\/ \\/ \\/ \\/ \\/ \n"));
info_P(PSTR("\n"));
info_P(PSTR(" www.optixx.org\n"));
info_P(PSTR("\n"));
info_P(PSTR("Hardware Version: %s Software Version: %s Build Date: %s \n"), HW_VERSION, SW_VERSION, __DATE__ );
}
void transaction_status()
{
info_P(PSTR("\nAddr 0x%06lx\n"), usb_trans.req_addr);
info_P(PSTR("Bank 0x%02x\n"), usb_trans.req_bank);
info_P(PSTR("Banksize 0x%06lx\n"), usb_trans.req_bank_size);
info_P(PSTR("Bankcount 0x%02x\n"), usb_trans.req_bank_cnt);
info_P(PSTR("Status 0x%02x\n"), usb_trans.req_state);
info_P(PSTR("Percent %02i\n"), usb_trans.req_percent);
info_P(PSTR("TX buffer %02i\n"), usb_trans.tx_remaining);
info_P(PSTR("RX buffer %02i\n"), usb_trans.rx_remaining);
info_P(PSTR("Syncerr %02i\n"), usb_trans.sync_errors);
}

View File

@ -1,31 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __COMMAND_H__
#define __COMMAND_H__
void usb_connect();
void boot_startup_rom(uint16_t init_delay);
void banner();
void transaction_status();
#endif

View File

@ -1,296 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
* Based on: custom-class, a basic USB example
* Author: Christian Starkjohann
* =====================================================================================
*/
#include <stdio.h>
#include "opendevice.h"
/*
* -------------------------------------------------------------------------
*/
#define MATCH_SUCCESS 1
#define MATCH_FAILED 0
#define MATCH_ABORT -1
/*
* private interface: match text and p, return MATCH_SUCCESS, MATCH_FAILED, or
* MATCH_ABORT.
*/
static int _shellStyleMatch(char *text, char *p)
{
int last,
matched,
reverse;
for (; *p; text++, p++) {
if (*text == 0 && *p != '*')
return MATCH_ABORT;
switch (*p) {
case '\\':
/*
* Literal match with following character.
*/
p++;
/*
* FALLTHROUGH
*/
default:
if (*text != *p)
return MATCH_FAILED;
continue;
case '?':
/*
* Match anything.
*/
continue;
case '*':
while (*++p == '*')
/*
* Consecutive stars act just like one.
*/
continue;
if (*p == 0)
/*
* Trailing star matches everything.
*/
return MATCH_SUCCESS;
while (*text)
if ((matched = _shellStyleMatch(text++, p)) != MATCH_FAILED)
return matched;
return MATCH_ABORT;
case '[':
reverse = p[1] == '^';
if (reverse) /* Inverted character class. */
p++;
matched = MATCH_FAILED;
if (p[1] == ']' || p[1] == '-')
if (*++p == *text)
matched = MATCH_SUCCESS;
for (last = *p; *++p && *p != ']'; last = *p)
if (*p == '-' && p[1] != ']' ? *text <= *++p
&& *text >= last : *text == *p)
matched = MATCH_SUCCESS;
if (matched == reverse)
return MATCH_FAILED;
continue;
}
}
return *text == 0;
}
/*
* public interface for shell style matching: returns 0 if fails, 1 if matches
*/
static int shellStyleMatch(char *text, char *pattern)
{
if (pattern == NULL) /* NULL pattern is synonymous to "*" */
return 1;
return _shellStyleMatch(text, pattern) == MATCH_SUCCESS;
}
/*
* -------------------------------------------------------------------------
*/
int usbGetStringAscii(usb_dev_handle * dev, int index, char *buf, int buflen)
{
char buffer[256];
int rval,
i;
if ((rval = usb_get_string_simple(dev, index, buf, buflen)) >= 0) /* use
* libusb
* version
* if
* it
* works
*/
return rval;
if ((rval =
usb_control_msg(dev, USB_ENDPOINT_IN, USB_REQ_GET_DESCRIPTOR,
(USB_DT_STRING << 8) + index, 0x0409, buffer,
sizeof(buffer), 5000)) < 0)
return rval;
if (buffer[1] != USB_DT_STRING) {
*buf = 0;
return 0;
}
if ((unsigned char) buffer[0] < rval)
rval = (unsigned char) buffer[0];
rval /= 2;
/*
* lossy conversion to ISO Latin1:
*/
for (i = 1; i < rval; i++) {
if (i > buflen) /* destination buffer overflow */
break;
buf[i - 1] = buffer[2 * i];
if (buffer[2 * i + 1] != 0) /* outside of ISO Latin1 range */
buf[i - 1] = '?';
}
buf[i - 1] = 0;
return i - 1;
}
/*
* -------------------------------------------------------------------------
*/
int usbOpenDevice(usb_dev_handle ** device, int vendorID,
char *vendorNamePattern, int productID,
char *productNamePattern, char *serialNamePattern,
FILE * printMatchingDevicesFp, FILE * warningsFp)
{
struct usb_bus *bus;
struct usb_device *dev;
usb_dev_handle *handle = NULL;
int errorCode = USBOPEN_ERR_NOTFOUND;
usb_find_busses();
usb_find_devices();
for (bus = usb_get_busses(); bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) { /* iterate over
* all devices
* on all
* busses */
if ((vendorID == 0 || dev->descriptor.idVendor == vendorID)
&& (productID == 0 || dev->descriptor.idProduct == productID)) {
char vendor[256],
product[256],
serial[256];
int len;
handle = usb_open(dev); /* we need to open the device in order
* to query strings */
if (!handle) {
errorCode = USBOPEN_ERR_ACCESS;
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot open VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct, usb_strerror());
continue;
}
/*
* now check whether the names match:
*/
len = vendor[0] = 0;
if (dev->descriptor.iManufacturer > 0) {
len =
usbGetStringAscii(handle, dev->descriptor.iManufacturer,
vendor, sizeof(vendor));
}
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query manufacturer for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct, usb_strerror());
} else {
errorCode = USBOPEN_ERR_NOTFOUND;
/*
* printf("seen device from vendor ->%s<-\n", vendor);
*/
if (shellStyleMatch(vendor, vendorNamePattern)) {
len = product[0] = 0;
if (dev->descriptor.iProduct > 0) {
len =
usbGetStringAscii(handle,
dev->descriptor.iProduct,
product, sizeof(product));
}
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query product for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
usb_strerror());
} else {
errorCode = USBOPEN_ERR_NOTFOUND;
/*
* printf("seen product ->%s<-\n", product);
*/
if (shellStyleMatch(product, productNamePattern)) {
len = serial[0] = 0;
if (dev->descriptor.iSerialNumber > 0) {
len =
usbGetStringAscii(handle,
dev->descriptor.
iSerialNumber, serial,
sizeof(serial));
}
if (len < 0) {
errorCode = USBOPEN_ERR_ACCESS;
if (warningsFp != NULL)
fprintf(warningsFp,
"Warning: cannot query serial for VID=0x%04x PID=0x%04x: %s\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
usb_strerror());
}
if (shellStyleMatch(serial, serialNamePattern)) {
if (printMatchingDevicesFp != NULL) {
if (serial[0] == 0) {
fprintf(printMatchingDevicesFp,
"VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\"\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
vendor, product);
} else {
fprintf(printMatchingDevicesFp,
"VID=0x%04x PID=0x%04x vendor=\"%s\" product=\"%s\" serial=\"%s\"\n",
dev->descriptor.idVendor,
dev->descriptor.idProduct,
vendor, product, serial);
}
} else {
break;
}
}
}
}
}
}
usb_close(handle);
handle = NULL;
}
}
if (handle) /* we have found a deice */
break;
}
if (handle != NULL) {
errorCode = 0;
*device = handle;
}
if (printMatchingDevicesFp != NULL) /* never return an error for listing
* only */
errorCode = 0;
return errorCode;
}
/*
* -------------------------------------------------------------------------
*/

View File

@ -1,77 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
* Based on: custom-class, a basic USB example
* Author: Christian Starkjohann
* =====================================================================================
*/
#ifndef __OPENDEVICE_H_INCLUDED__
#define __OPENDEVICE_H_INCLUDED__
#include <usb.h> /* this is libusb, see http://libusb.sourceforge.net/ */
#include <stdio.h>
int usbGetStringAscii(usb_dev_handle *dev, int index, char *buf, int buflen);
/* This function gets a string descriptor from the device. 'index' is the
* string descriptor index. The string is returned in ISO Latin 1 encoding in
* 'buf' and it is terminated with a 0-character. The buffer size must be
* passed in 'buflen' to prevent buffer overflows. A libusb device handle
* must be given in 'dev'.
* Returns: The length of the string (excluding the terminating 0) or
* a negative number in case of an error. If there was an error, use
* usb_strerror() to obtain the error message.
*/
int usbOpenDevice(usb_dev_handle **device, int vendorID, char *vendorNamePattern, int productID, char *productNamePattern, char *serialNamePattern, FILE *printMatchingDevicesFp, FILE *warningsFp);
/* This function iterates over all devices on all USB busses and searches for
* a device. Matching is done first by means of Vendor- and Product-ID (passed
* in 'vendorID' and 'productID'. An ID of 0 matches any numeric ID (wildcard).
* When a device matches by its IDs, matching by names is performed. Name
* matching can be done on textual vendor name ('vendorNamePattern'), product
* name ('productNamePattern') and serial number ('serialNamePattern'). A
* device matches only if all non-null pattern match. If you don't care about
* a string, pass NULL for the pattern. Patterns are Unix shell style pattern:
* '*' stands for 0 or more characters, '?' for one single character, a list
* of characters in square brackets for a single character from the list
* (dashes are allowed to specify a range) and if the lis of characters begins
* with a caret ('^'), it matches one character which is NOT in the list.
* Other parameters to the function: If 'warningsFp' is not NULL, warning
* messages are printed to this file descriptor with fprintf(). If
* 'printMatchingDevicesFp' is not NULL, no device is opened but matching
* devices are printed to the given file descriptor with fprintf().
* If a device is opened, the resulting USB handle is stored in '*device'. A
* pointer to a "usb_dev_handle *" type variable must be passed here.
* Returns: 0 on success, an error code (see defines below) on failure.
*/
/* usbOpenDevice() error codes: */
#define USBOPEN_SUCCESS 0 /* no error */
#define USBOPEN_ERR_ACCESS 1 /* not enough permissions to open device */
#define USBOPEN_ERR_IO 2 /* I/O error */
#define USBOPEN_ERR_NOTFOUND 3 /* device not found */
/* Obdev's free USB IDs, see USBID-License.txt for details */
#define USB_VID_OBDEV_SHARED 5824 /* obdev's shared vendor ID */
#define USB_PID_OBDEV_SHARED_CUSTOM 1500 /* shared PID for custom class devices */
#define USB_PID_OBDEV_SHARED_HID 1503 /* shared PID for HIDs except mice & keyboards */
#define USB_PID_OBDEV_SHARED_CDCACM 1505 /* shared PID for CDC Modem devices */
#define USB_PID_OBDEV_SHARED_MIDI 1508 /* shared PID for MIDI class devices */
#endif /* __OPENDEVICE_H_INCLUDED__ */

View File

@ -1,313 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
* Based on: custom-class, a basic USB example
* Author: Christian Starkjohann
* =====================================================================================
*/
#define BANK_SIZE_SHIFT 15
#define BANK_SIZE (1<<BANK_SIZE_SHIFT)
#define READ_BUFFER_SIZE (1<<BANK_SIZE_SHIFT)
#define SEND_BUFFER_SIZE 128
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/stat.h>
#include <usb.h> /* this is libusb */
#include "opendevice.h" /* common code moved to separate module */
#include "../requests.h" /* custom request numbers */
#include "../usbconfig.h" /* device's VID/PID and names */
void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet)
{
uint16_t i,
j;
uint16_t sum = 0;
uint8_t clear = 0;
for (i = 0; i < len; i += 16) {
sum = 0;
for (j = 0; j < 16; j++) {
sum += packet[i + j];
}
if (!sum) {
clear = 1;
continue;
}
if (clear) {
printf("*\n");
clear = 0;
}
printf("%08x:", addr + i);
for (j = 0; j < 16; j++) {
printf(" %02x", packet[i + j]);
}
printf(" |");
for (j = 0; j < 16; j++) {
if (packet[i + j] >= 33 && packet[i + j] <= 126)
printf("%c", packet[i + j]);
else
printf(".");
}
printf("|\n");
}
}
uint16_t crc_xmodem_update(uint16_t crc, uint8_t data)
{
int i;
crc = crc ^ ((uint16_t) data << 8);
for (i = 0; i < 8; i++) {
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
return crc;
}
uint16_t do_crc(uint8_t * data, uint16_t size)
{
uint16_t crc = 0;
uint16_t i;
for (i = 0; i < size; i++) {
crc = crc_xmodem_update(crc, data[i]);
}
return crc;
}
uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size)
{
uint16_t i;
for (i = 0; i < size; i++)
crc = crc_xmodem_update(crc, data[i]);
return crc;
}
static void usage(char *name)
{
fprintf(stderr, "usage:\n");
fprintf(stderr, " %s upload filename.. upload\n", name);
}
int main(int argc, char **argv)
{
usb_dev_handle *handle = NULL;
const unsigned char rawVid[2] = { USB_CFG_VENDOR_ID }, rawPid[2] = {
USB_CFG_DEVICE_ID};
char vendor[] = { USB_CFG_VENDOR_NAME, 0 }, product[] = {
USB_CFG_DEVICE_NAME, 0};
int cnt, vid, pid;
uint8_t *read_buffer;
uint8_t *crc_buffer;
uint8_t *ptr;
uint32_t addr = 0;
uint16_t addr_lo = 0;
uint16_t addr_hi = 0;
uint32_t step = 0;
uint16_t crc = 0;
uint8_t bank = 0;
uint8_t bank_cnt = 0;
uint32_t file_size = 0;
uint32_t file_offset = 0;
FILE *fp;
usb_init();
if (argc < 2) { /* we need at least one argument */
usage(argv[0]);
exit(1);
}
/*
* compute VID/PID from usbconfig.h so that there is a central source
* of information
*/
vid = rawVid[1] * 256 + rawVid[0];
pid = rawPid[1] * 256 + rawPid[0];
/*
* The following function is in opendevice.c:
*/
if (usbOpenDevice(&handle, vid, vendor, pid, product, NULL, NULL, NULL) !=
0) {
fprintf(stderr,
"Could not find USB device \"%s\" with vid=0x%x pid=0x%x\n",
product, vid, pid);
exit(1);
}
printf("Open USB device \"%s\" with vid=0x%x pid=0x%x\n", product, vid,
pid);
if (strcasecmp(argv[1], "upload") == 0) {
if (argc < 3) { /* we need at least one argument */
usage(argv[0]);
exit(1);
}
fp = fopen(argv[2], "r");
if (fp == NULL) {
fprintf(stderr, "Cannot open file %s ", argv[2]);
exit(1);
}
fseek (fp, 0, SEEK_END);
file_size = ftell (fp);
file_offset = 512;
if (strstr(argv[2],".smc") || strstr(argv[2],".swc")){
printf("Skip 512 Byte header\n");
file_size -= 512;
fseek (fp, 512, SEEK_SET);
} else {
fseek (fp, 0, SEEK_SET);
}
bank_cnt = file_size / BANK_SIZE;
printf("Transfer '%s' %i Bytes, %i Banks\n",argv[2],file_size,bank_cnt);
read_buffer = (unsigned char *) malloc(READ_BUFFER_SIZE);
crc_buffer = (unsigned char *) malloc(0x1000);
memset(crc_buffer, 0, 0x1000);
addr = 0x000000;
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_MODE_AVR, 0, 0, NULL,
0, 5000);
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_OUT,
USB_BULK_UPLOAD_INIT, BANK_SIZE_SHIFT , bank_cnt, NULL, 0, 5000);
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
usb_close(handle);
exit(-1);
}
ptr = crc_buffer;
while ((cnt = fread(read_buffer, READ_BUFFER_SIZE, 1, fp)) > 0) {
ptr = crc_buffer;
for (step = 0; step < READ_BUFFER_SIZE; step += SEND_BUFFER_SIZE) {
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0x00ff;
if (addr == 0x000000){
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_BULK_UPLOAD_ADDR, addr_hi,
addr_lo, (char *) read_buffer + step,
SEND_BUFFER_SIZE, 5000);
} else {
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_BULK_UPLOAD_NEXT, addr_hi,
addr_lo, (char *) read_buffer + step,
SEND_BUFFER_SIZE, 5000);
}
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
usb_close(handle);
exit(-1);
}
memcpy(ptr, read_buffer + step, SEND_BUFFER_SIZE);
addr += SEND_BUFFER_SIZE;
ptr += SEND_BUFFER_SIZE;
if ( addr % BANK_SIZE == 0){
crc = do_crc(crc_buffer, 0x1000);
printf ("bank=0x%02x addr=0x%08x addr=0x%08x crc=0x%04x\n", bank, addr - 0x1000, addr, crc);
ptr = crc_buffer;
if ( addr % BANK_SIZE == 0) {
bank++;
}
}
}
}
bank = 0;
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_BULK_UPLOAD_END, 0, 0, NULL,
0, 5000);
fseek(fp, file_offset, SEEK_SET);
while ((cnt = fread(read_buffer, READ_BUFFER_SIZE, 1, fp)) > 0) {
printf ("bank=0x%02x crc=0x%04x\n", bank++,
do_crc(read_buffer, READ_BUFFER_SIZE));
}
fclose(fp);
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_MODE_SNES, 0, 0, NULL,
0, 5000);
if (cnt < 1) {
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
} else {
fprintf(stderr, "only %d bytes received.\n", cnt);
}
}
} else if (strcasecmp(argv[1], "crc") == 0) {
/*
* if(argc < 2){ usage(argv[0]); exit(1); }
*/
addr = 0x000000;
addr_lo = addr & 0xffff;
addr_hi = (addr >> 16) & 0xff;
printf("Request CRC for Addr: 0x%06x\n", addr);
cnt = usb_control_msg(handle,
USB_TYPE_VENDOR | USB_RECIP_DEVICE |
USB_ENDPOINT_OUT, USB_CRC_ADDR, addr_hi, addr_lo,
NULL, (1 << 15) / 4, 5000);
if (cnt < 1) {
if (cnt < 0) {
fprintf(stderr, "USB error: %s\n", usb_strerror());
} else {
fprintf(stderr, "only %d bytes received.\n", cnt);
}
}
} else {
usage(argv[0]);
exit(1);
}
usb_close(handle);
return 0;
}

View File

@ -1,809 +0,0 @@
; ModuleID = '/Users/david/Devel/arch/avr/code/snesram/poc/avr_usbload/commandline/snesuploader.c'
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin9"
%struct.__sFILE = type <{ i8*, i32, i32, i16, i16, %struct.__sbuf, i32, i8*, i32 (i8*)*, i32 (i8*, i8*, i32)*, i64 (i8*, i64, i32)*, i32 (i8*, i8*, i32)*, %struct.__sbuf, %struct.__sFILEX*, i32, [3 x i8], [1 x i8], %struct.__sbuf, i32, i64 }>
%struct.__sFILEX = type opaque
%struct.__sbuf = type <{ i8*, i32 }>
%struct.usb_dev_handle = type opaque
@"\01LC" = internal constant [3 x i8] c"*\0A\00" ; <[3 x i8]*> [#uses=1]
@"\01LC1" = internal constant [6 x i8] c"%08x:\00" ; <[6 x i8]*> [#uses=1]
@"\01LC2" = internal constant [6 x i8] c" %02x\00" ; <[6 x i8]*> [#uses=1]
@"\01LC3" = internal constant [3 x i8] c" |\00" ; <[3 x i8]*> [#uses=1]
@"\01LC4" = internal constant [3 x i8] c"%c\00" ; <[3 x i8]*> [#uses=1]
@"\01LC5" = internal constant [2 x i8] c".\00" ; <[2 x i8]*> [#uses=1]
@"\01LC6" = internal constant [3 x i8] c"|\0A\00" ; <[3 x i8]*> [#uses=1]
@__stderrp = external global %struct.__sFILE* ; <%struct.__sFILE**> [#uses=8]
@"\01LC7" = internal constant [55 x i8] c"Could not find USB device \22%s\22 with vid=0x%x pid=0x%x\0A\00" ; <[55 x i8]*> [#uses=1]
@"\01LC8" = internal constant [45 x i8] c"Open USB device \22%s\22 with vid=0x%x pid=0x%x\0A\00" ; <[45 x i8]*> [#uses=1]
@"\01LC9" = internal constant [7 x i8] c"upload\00" ; <[7 x i8]*> [#uses=1]
@"\01LC10" = internal constant [2 x i8] c"r\00" ; <[2 x i8]*> [#uses=1]
@"\01LC11" = internal constant [21 x i8] c"Cannot open file %s \00" ; <[21 x i8]*> [#uses=1]
@"\01LC12" = internal constant [70 x i8] c"Addr: 0x%06x Bank: 0x%02x HiAddr: 0x%02x LoAddr: 0x%04x Crc: 0x%04x\0A\00" ; <[70 x i8]*> [#uses=1]
@"\01LC13" = internal constant [15 x i8] c"USB error: %s\0A\00" ; <[15 x i8]*> [#uses=1]
@"\01LC14" = internal constant [25 x i8] c"only %d bytes received.\0A\00" ; <[25 x i8]*> [#uses=1]
@"\01LC15" = internal constant [4 x i8] c"crc\00" ; <[4 x i8]*> [#uses=1]
@"\01LC16" = internal constant [30 x i8] c"Request CRC for Addr: 0x%06x\0A\00" ; <[30 x i8]*> [#uses=1]
@"\01LC17" = internal constant [8 x i8] c"usage:\0A\00" ; <[8 x i8]*> [#uses=1]
@"\01LC18" = internal constant [31 x i8] c" %s upload filename.. upload\0A\00" ; <[31 x i8]*> [#uses=1]
define void @dump_packet(i32 %addr, i32 %len, i8* %packet) nounwind {
entry:
%addr.addr = alloca i32 ; <i32*> [#uses=2]
%len.addr = alloca i32 ; <i32*> [#uses=2]
%packet.addr = alloca i8* ; <i8**> [#uses=6]
%i = alloca i16, align 2 ; <i16*> [#uses=10]
%j = alloca i16, align 2 ; <i16*> [#uses=17]
%sum = alloca i16, align 2 ; <i16*> [#uses=5]
%clear = alloca i8, align 1 ; <i8*> [#uses=4]
store i32 %addr, i32* %addr.addr
store i32 %len, i32* %len.addr
store i8* %packet, i8** %packet.addr
store i16 0, i16* %sum
store i8 0, i8* %clear
store i16 0, i16* %i
br label %for.cond
for.cond: ; preds = %for.inc98, %entry
%tmp = load i16* %i ; <i16> [#uses=1]
%conv = zext i16 %tmp to i32 ; <i32> [#uses=1]
%tmp1 = load i32* %len.addr ; <i32> [#uses=1]
%cmp = icmp ult i32 %conv, %tmp1 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end103
for.body: ; preds = %for.cond
store i16 0, i16* %sum
store i16 0, i16* %j
br label %for.cond3
for.cond3: ; preds = %for.inc, %for.body
%tmp4 = load i16* %j ; <i16> [#uses=1]
%conv5 = zext i16 %tmp4 to i32 ; <i32> [#uses=1]
%cmp6 = icmp slt i32 %conv5, 16 ; <i1> [#uses=1]
br i1 %cmp6, label %for.body8, label %for.end
for.body8: ; preds = %for.cond3
%tmp9 = load i16* %sum ; <i16> [#uses=1]
%conv10 = zext i16 %tmp9 to i32 ; <i32> [#uses=1]
%tmp11 = load i16* %i ; <i16> [#uses=1]
%conv12 = zext i16 %tmp11 to i32 ; <i32> [#uses=1]
%tmp13 = load i16* %j ; <i16> [#uses=1]
%conv14 = zext i16 %tmp13 to i32 ; <i32> [#uses=1]
%add = add i32 %conv12, %conv14 ; <i32> [#uses=1]
%tmp15 = load i8** %packet.addr ; <i8*> [#uses=1]
%arrayidx = getelementptr i8* %tmp15, i32 %add ; <i8*> [#uses=1]
%tmp16 = load i8* %arrayidx ; <i8> [#uses=1]
%conv17 = zext i8 %tmp16 to i32 ; <i32> [#uses=1]
%add18 = add i32 %conv10, %conv17 ; <i32> [#uses=1]
%conv19 = trunc i32 %add18 to i16 ; <i16> [#uses=1]
store i16 %conv19, i16* %sum
br label %for.inc
for.inc: ; preds = %for.body8
%tmp20 = load i16* %j ; <i16> [#uses=1]
%inc = add i16 %tmp20, 1 ; <i16> [#uses=1]
store i16 %inc, i16* %j
br label %for.cond3
for.end: ; preds = %for.cond3
%tmp21 = load i16* %sum ; <i16> [#uses=1]
%tobool = icmp ne i16 %tmp21, 0 ; <i1> [#uses=1]
br i1 %tobool, label %if.end, label %if.then
if.then: ; preds = %for.end
store i8 1, i8* %clear
br label %for.inc98
if.end: ; preds = %for.end
%tmp22 = load i8* %clear ; <i8> [#uses=1]
%tobool23 = icmp ne i8 %tmp22, 0 ; <i1> [#uses=1]
br i1 %tobool23, label %if.then24, label %if.end25
if.then24: ; preds = %if.end
%call = call i32 (i8*, ...)* @printf(i8* getelementptr ([3 x i8]* @"\01LC", i32 0, i32 0)) ; <i32> [#uses=0]
store i8 0, i8* %clear
br label %if.end25
if.end25: ; preds = %if.then24, %if.end
%tmp26 = load i32* %addr.addr ; <i32> [#uses=1]
%tmp27 = load i16* %i ; <i16> [#uses=1]
%conv28 = zext i16 %tmp27 to i32 ; <i32> [#uses=1]
%add29 = add i32 %tmp26, %conv28 ; <i32> [#uses=1]
%call30 = call i32 (i8*, ...)* @printf(i8* getelementptr ([6 x i8]* @"\01LC1", i32 0, i32 0), i32 %add29) ; <i32> [#uses=0]
store i16 0, i16* %j
br label %for.cond31
for.cond31: ; preds = %for.inc47, %if.end25
%tmp32 = load i16* %j ; <i16> [#uses=1]
%conv33 = zext i16 %tmp32 to i32 ; <i32> [#uses=1]
%cmp34 = icmp slt i32 %conv33, 16 ; <i1> [#uses=1]
br i1 %cmp34, label %for.body36, label %for.end50
for.body36: ; preds = %for.cond31
%tmp37 = load i16* %i ; <i16> [#uses=1]
%conv38 = zext i16 %tmp37 to i32 ; <i32> [#uses=1]
%tmp39 = load i16* %j ; <i16> [#uses=1]
%conv40 = zext i16 %tmp39 to i32 ; <i32> [#uses=1]
%add41 = add i32 %conv38, %conv40 ; <i32> [#uses=1]
%tmp42 = load i8** %packet.addr ; <i8*> [#uses=1]
%arrayidx43 = getelementptr i8* %tmp42, i32 %add41 ; <i8*> [#uses=1]
%tmp44 = load i8* %arrayidx43 ; <i8> [#uses=1]
%conv45 = zext i8 %tmp44 to i32 ; <i32> [#uses=1]
%call46 = call i32 (i8*, ...)* @printf(i8* getelementptr ([6 x i8]* @"\01LC2", i32 0, i32 0), i32 %conv45) ; <i32> [#uses=0]
br label %for.inc47
for.inc47: ; preds = %for.body36
%tmp48 = load i16* %j ; <i16> [#uses=1]
%inc49 = add i16 %tmp48, 1 ; <i16> [#uses=1]
store i16 %inc49, i16* %j
br label %for.cond31
for.end50: ; preds = %for.cond31
%call51 = call i32 (i8*, ...)* @printf(i8* getelementptr ([3 x i8]* @"\01LC3", i32 0, i32 0)) ; <i32> [#uses=0]
store i16 0, i16* %j
br label %for.cond52
for.cond52: ; preds = %for.inc93, %for.end50
%tmp53 = load i16* %j ; <i16> [#uses=1]
%conv54 = zext i16 %tmp53 to i32 ; <i32> [#uses=1]
%cmp55 = icmp slt i32 %conv54, 16 ; <i1> [#uses=1]
br i1 %cmp55, label %for.body57, label %for.end96
for.body57: ; preds = %for.cond52
%tmp58 = load i16* %i ; <i16> [#uses=1]
%conv59 = zext i16 %tmp58 to i32 ; <i32> [#uses=1]
%tmp60 = load i16* %j ; <i16> [#uses=1]
%conv61 = zext i16 %tmp60 to i32 ; <i32> [#uses=1]
%add62 = add i32 %conv59, %conv61 ; <i32> [#uses=1]
%tmp63 = load i8** %packet.addr ; <i8*> [#uses=1]
%arrayidx64 = getelementptr i8* %tmp63, i32 %add62 ; <i8*> [#uses=1]
%tmp65 = load i8* %arrayidx64 ; <i8> [#uses=1]
%conv66 = zext i8 %tmp65 to i32 ; <i32> [#uses=1]
%cmp67 = icmp sge i32 %conv66, 33 ; <i1> [#uses=1]
br i1 %cmp67, label %land.lhs.true, label %if.else
land.lhs.true: ; preds = %for.body57
%tmp69 = load i16* %i ; <i16> [#uses=1]
%conv70 = zext i16 %tmp69 to i32 ; <i32> [#uses=1]
%tmp71 = load i16* %j ; <i16> [#uses=1]
%conv72 = zext i16 %tmp71 to i32 ; <i32> [#uses=1]
%add73 = add i32 %conv70, %conv72 ; <i32> [#uses=1]
%tmp74 = load i8** %packet.addr ; <i8*> [#uses=1]
%arrayidx75 = getelementptr i8* %tmp74, i32 %add73 ; <i8*> [#uses=1]
%tmp76 = load i8* %arrayidx75 ; <i8> [#uses=1]
%conv77 = zext i8 %tmp76 to i32 ; <i32> [#uses=1]
%cmp78 = icmp sle i32 %conv77, 126 ; <i1> [#uses=1]
br i1 %cmp78, label %if.then80, label %if.else
if.then80: ; preds = %land.lhs.true
%tmp81 = load i16* %i ; <i16> [#uses=1]
%conv82 = zext i16 %tmp81 to i32 ; <i32> [#uses=1]
%tmp83 = load i16* %j ; <i16> [#uses=1]
%conv84 = zext i16 %tmp83 to i32 ; <i32> [#uses=1]
%add85 = add i32 %conv82, %conv84 ; <i32> [#uses=1]
%tmp86 = load i8** %packet.addr ; <i8*> [#uses=1]
%arrayidx87 = getelementptr i8* %tmp86, i32 %add85 ; <i8*> [#uses=1]
%tmp88 = load i8* %arrayidx87 ; <i8> [#uses=1]
%conv89 = zext i8 %tmp88 to i32 ; <i32> [#uses=1]
%call90 = call i32 (i8*, ...)* @printf(i8* getelementptr ([3 x i8]* @"\01LC4", i32 0, i32 0), i32 %conv89) ; <i32> [#uses=0]
br label %if.end92
if.else: ; preds = %land.lhs.true, %for.body57
%call91 = call i32 (i8*, ...)* @printf(i8* getelementptr ([2 x i8]* @"\01LC5", i32 0, i32 0)) ; <i32> [#uses=0]
br label %if.end92
if.end92: ; preds = %if.else, %if.then80
br label %for.inc93
for.inc93: ; preds = %if.end92
%tmp94 = load i16* %j ; <i16> [#uses=1]
%inc95 = add i16 %tmp94, 1 ; <i16> [#uses=1]
store i16 %inc95, i16* %j
br label %for.cond52
for.end96: ; preds = %for.cond52
%call97 = call i32 (i8*, ...)* @printf(i8* getelementptr ([3 x i8]* @"\01LC6", i32 0, i32 0)) ; <i32> [#uses=0]
br label %for.inc98
for.inc98: ; preds = %for.end96, %if.then
%tmp99 = load i16* %i ; <i16> [#uses=1]
%conv100 = zext i16 %tmp99 to i32 ; <i32> [#uses=1]
%add101 = add i32 %conv100, 16 ; <i32> [#uses=1]
%conv102 = trunc i32 %add101 to i16 ; <i16> [#uses=1]
store i16 %conv102, i16* %i
br label %for.cond
for.end103: ; preds = %for.cond
ret void
}
declare i32 @printf(i8*, ...)
define zeroext i16 @crc_xmodem_update(i16 zeroext %crc, i8 zeroext %data) nounwind {
entry:
%retval = alloca i16 ; <i16*> [#uses=2]
%crc.addr = alloca i16 ; <i16*> [#uses=9]
%data.addr = alloca i8 ; <i8*> [#uses=2]
%i = alloca i32, align 4 ; <i32*> [#uses=4]
store i16 %crc, i16* %crc.addr
store i8 %data, i8* %data.addr
%tmp = load i16* %crc.addr ; <i16> [#uses=1]
%conv = zext i16 %tmp to i32 ; <i32> [#uses=1]
%tmp1 = load i8* %data.addr ; <i8> [#uses=1]
%conv2 = zext i8 %tmp1 to i32 ; <i32> [#uses=1]
%conv3 = trunc i32 %conv2 to i16 ; <i16> [#uses=1]
%conv4 = zext i16 %conv3 to i32 ; <i32> [#uses=1]
%shl = shl i32 %conv4, 8 ; <i32> [#uses=1]
%xor = xor i32 %conv, %shl ; <i32> [#uses=1]
%conv5 = trunc i32 %xor to i16 ; <i16> [#uses=1]
store i16 %conv5, i16* %crc.addr
store i32 0, i32* %i
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%tmp6 = load i32* %i ; <i32> [#uses=1]
%cmp = icmp slt i32 %tmp6, 8 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%tmp8 = load i16* %crc.addr ; <i16> [#uses=1]
%conv9 = zext i16 %tmp8 to i32 ; <i32> [#uses=1]
%and = and i32 %conv9, 32768 ; <i32> [#uses=1]
%tobool = icmp ne i32 %and, 0 ; <i1> [#uses=1]
br i1 %tobool, label %if.then, label %if.else
if.then: ; preds = %for.body
%tmp10 = load i16* %crc.addr ; <i16> [#uses=1]
%conv11 = zext i16 %tmp10 to i32 ; <i32> [#uses=1]
%shl12 = shl i32 %conv11, 1 ; <i32> [#uses=1]
%xor13 = xor i32 %shl12, 4129 ; <i32> [#uses=1]
%conv14 = trunc i32 %xor13 to i16 ; <i16> [#uses=1]
store i16 %conv14, i16* %crc.addr
br label %if.end
if.else: ; preds = %for.body
%tmp15 = load i16* %crc.addr ; <i16> [#uses=1]
%conv16 = zext i16 %tmp15 to i32 ; <i32> [#uses=1]
%shl17 = shl i32 %conv16, 1 ; <i32> [#uses=1]
%conv18 = trunc i32 %shl17 to i16 ; <i16> [#uses=1]
store i16 %conv18, i16* %crc.addr
br label %if.end
if.end: ; preds = %if.else, %if.then
br label %for.inc
for.inc: ; preds = %if.end
%tmp19 = load i32* %i ; <i32> [#uses=1]
%inc = add i32 %tmp19, 1 ; <i32> [#uses=1]
store i32 %inc, i32* %i
br label %for.cond
for.end: ; preds = %for.cond
%tmp20 = load i16* %crc.addr ; <i16> [#uses=1]
store i16 %tmp20, i16* %retval
%0 = load i16* %retval ; <i16> [#uses=1]
ret i16 %0
}
define zeroext i16 @do_crc(i8* %data, i16 zeroext %size) nounwind {
entry:
%retval = alloca i16 ; <i16*> [#uses=2]
%data.addr = alloca i8* ; <i8**> [#uses=2]
%size.addr = alloca i16 ; <i16*> [#uses=2]
%crc = alloca i16, align 2 ; <i16*> [#uses=4]
%i = alloca i16, align 2 ; <i16*> [#uses=5]
store i8* %data, i8** %data.addr
store i16 %size, i16* %size.addr
store i16 0, i16* %crc
store i16 0, i16* %i
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%tmp = load i16* %i ; <i16> [#uses=1]
%conv = zext i16 %tmp to i32 ; <i32> [#uses=1]
%tmp1 = load i16* %size.addr ; <i16> [#uses=1]
%conv2 = zext i16 %tmp1 to i32 ; <i32> [#uses=1]
%cmp = icmp slt i32 %conv, %conv2 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%tmp4 = load i16* %crc ; <i16> [#uses=1]
%tmp5 = load i16* %i ; <i16> [#uses=1]
%tmp6 = load i8** %data.addr ; <i8*> [#uses=1]
%idxprom = zext i16 %tmp5 to i32 ; <i32> [#uses=1]
%arrayidx = getelementptr i8* %tmp6, i32 %idxprom ; <i8*> [#uses=1]
%tmp7 = load i8* %arrayidx ; <i8> [#uses=1]
%call = call zeroext i16 @crc_xmodem_update(i16 zeroext %tmp4, i8 zeroext %tmp7) ; <i16> [#uses=1]
store i16 %call, i16* %crc
br label %for.inc
for.inc: ; preds = %for.body
%tmp8 = load i16* %i ; <i16> [#uses=1]
%inc = add i16 %tmp8, 1 ; <i16> [#uses=1]
store i16 %inc, i16* %i
br label %for.cond
for.end: ; preds = %for.cond
%tmp9 = load i16* %crc ; <i16> [#uses=1]
store i16 %tmp9, i16* %retval
%0 = load i16* %retval ; <i16> [#uses=1]
ret i16 %0
}
define zeroext i16 @do_crc_update(i16 zeroext %crc, i8* %data, i16 zeroext %size) nounwind {
entry:
%retval = alloca i16 ; <i16*> [#uses=2]
%crc.addr = alloca i16 ; <i16*> [#uses=4]
%data.addr = alloca i8* ; <i8**> [#uses=2]
%size.addr = alloca i16 ; <i16*> [#uses=2]
%i = alloca i16, align 2 ; <i16*> [#uses=5]
store i16 %crc, i16* %crc.addr
store i8* %data, i8** %data.addr
store i16 %size, i16* %size.addr
store i16 0, i16* %i
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%tmp = load i16* %i ; <i16> [#uses=1]
%conv = zext i16 %tmp to i32 ; <i32> [#uses=1]
%tmp1 = load i16* %size.addr ; <i16> [#uses=1]
%conv2 = zext i16 %tmp1 to i32 ; <i32> [#uses=1]
%cmp = icmp slt i32 %conv, %conv2 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%tmp4 = load i16* %crc.addr ; <i16> [#uses=1]
%tmp5 = load i16* %i ; <i16> [#uses=1]
%tmp6 = load i8** %data.addr ; <i8*> [#uses=1]
%idxprom = zext i16 %tmp5 to i32 ; <i32> [#uses=1]
%arrayidx = getelementptr i8* %tmp6, i32 %idxprom ; <i8*> [#uses=1]
%tmp7 = load i8* %arrayidx ; <i8> [#uses=1]
%call = call zeroext i16 @crc_xmodem_update(i16 zeroext %tmp4, i8 zeroext %tmp7) ; <i16> [#uses=1]
store i16 %call, i16* %crc.addr
br label %for.inc
for.inc: ; preds = %for.body
%tmp8 = load i16* %i ; <i16> [#uses=1]
%inc = add i16 %tmp8, 1 ; <i16> [#uses=1]
store i16 %inc, i16* %i
br label %for.cond
for.end: ; preds = %for.cond
%tmp9 = load i16* %crc.addr ; <i16> [#uses=1]
store i16 %tmp9, i16* %retval
%0 = load i16* %retval ; <i16> [#uses=1]
ret i16 %0
}
define i32 @main(i32 %argc, i8** %argv) nounwind {
entry:
%retval = alloca i32 ; <i32*> [#uses=2]
%argc.addr = alloca i32 ; <i32*> [#uses=3]
%argv.addr = alloca i8** ; <i8***> [#uses=8]
%handle = alloca %struct.usb_dev_handle*, align 4 ; <%struct.usb_dev_handle**> [#uses=7]
%rawVid = alloca [2 x i8], align 1 ; <[2 x i8]*> [#uses=4]
%rawPid = alloca [2 x i8], align 1 ; <[2 x i8]*> [#uses=4]
%vendor = alloca [11 x i8], align 1 ; <[11 x i8]*> [#uses=12]
%product = alloca [8 x i8], align 1 ; <[8 x i8]*> [#uses=11]
%cnt = alloca i32, align 4 ; <i32*> [#uses=9]
%vid = alloca i32, align 4 ; <i32*> [#uses=4]
%pid = alloca i32, align 4 ; <i32*> [#uses=4]
%cnt_crc = alloca i32, align 4 ; <i32*> [#uses=6]
%read_buffer = alloca i8*, align 4 ; <i8**> [#uses=4]
%crc_buffer = alloca i8*, align 4 ; <i8**> [#uses=5]
%addr = alloca i32, align 4 ; <i32*> [#uses=11]
%addr_lo = alloca i16, align 2 ; <i16*> [#uses=7]
%addr_hi = alloca i16, align 2 ; <i16*> [#uses=7]
%step = alloca i16, align 2 ; <i16*> [#uses=6]
%crc = alloca i16, align 2 ; <i16*> [#uses=3]
%bank = alloca i8, align 1 ; <i8*> [#uses=4]
%fp = alloca %struct.__sFILE*, align 4 ; <%struct.__sFILE**> [#uses=3]
store i32 %argc, i32* %argc.addr
store i8** %argv, i8*** %argv.addr
store %struct.usb_dev_handle* null, %struct.usb_dev_handle** %handle
%.array = getelementptr [2 x i8]* %rawVid, i32 0, i32 0 ; <i8*> [#uses=1]
store i8 -64, i8* %.array
%.array1 = getelementptr [2 x i8]* %rawVid, i32 0, i32 1 ; <i8*> [#uses=1]
store i8 22, i8* %.array1
%.array2 = getelementptr [2 x i8]* %rawPid, i32 0, i32 0 ; <i8*> [#uses=1]
store i8 -36, i8* %.array2
%.array3 = getelementptr [2 x i8]* %rawPid, i32 0, i32 1 ; <i8*> [#uses=1]
store i8 5, i8* %.array3
%.array4 = getelementptr [11 x i8]* %vendor, i32 0, i32 0 ; <i8*> [#uses=1]
store i8 111, i8* %.array4
%.array5 = getelementptr [11 x i8]* %vendor, i32 0, i32 1 ; <i8*> [#uses=1]
store i8 112, i8* %.array5
%.array6 = getelementptr [11 x i8]* %vendor, i32 0, i32 2 ; <i8*> [#uses=1]
store i8 116, i8* %.array6
%.array7 = getelementptr [11 x i8]* %vendor, i32 0, i32 3 ; <i8*> [#uses=1]
store i8 105, i8* %.array7
%.array8 = getelementptr [11 x i8]* %vendor, i32 0, i32 4 ; <i8*> [#uses=1]
store i8 120, i8* %.array8
%.array9 = getelementptr [11 x i8]* %vendor, i32 0, i32 5 ; <i8*> [#uses=1]
store i8 120, i8* %.array9
%.array10 = getelementptr [11 x i8]* %vendor, i32 0, i32 6 ; <i8*> [#uses=1]
store i8 46, i8* %.array10
%.array11 = getelementptr [11 x i8]* %vendor, i32 0, i32 7 ; <i8*> [#uses=1]
store i8 111, i8* %.array11
%.array12 = getelementptr [11 x i8]* %vendor, i32 0, i32 8 ; <i8*> [#uses=1]
store i8 114, i8* %.array12
%.array13 = getelementptr [11 x i8]* %vendor, i32 0, i32 9 ; <i8*> [#uses=1]
store i8 103, i8* %.array13
%.array14 = getelementptr [11 x i8]* %vendor, i32 0, i32 10 ; <i8*> [#uses=1]
store i8 0, i8* %.array14
%.array15 = getelementptr [8 x i8]* %product, i32 0, i32 0 ; <i8*> [#uses=1]
store i8 83, i8* %.array15
%.array16 = getelementptr [8 x i8]* %product, i32 0, i32 1 ; <i8*> [#uses=1]
store i8 78, i8* %.array16
%.array17 = getelementptr [8 x i8]* %product, i32 0, i32 2 ; <i8*> [#uses=1]
store i8 69, i8* %.array17
%.array18 = getelementptr [8 x i8]* %product, i32 0, i32 3 ; <i8*> [#uses=1]
store i8 83, i8* %.array18
%.array19 = getelementptr [8 x i8]* %product, i32 0, i32 4 ; <i8*> [#uses=1]
store i8 82, i8* %.array19
%.array20 = getelementptr [8 x i8]* %product, i32 0, i32 5 ; <i8*> [#uses=1]
store i8 65, i8* %.array20
%.array21 = getelementptr [8 x i8]* %product, i32 0, i32 6 ; <i8*> [#uses=1]
store i8 77, i8* %.array21
%.array22 = getelementptr [8 x i8]* %product, i32 0, i32 7 ; <i8*> [#uses=1]
store i8 0, i8* %.array22
store i32 0, i32* %cnt_crc
store i32 0, i32* %addr
store i16 0, i16* %addr_lo
store i16 0, i16* %addr_hi
store i16 0, i16* %step
store i16 0, i16* %crc
store i8 0, i8* %bank
call void @usb_init()
%tmp = load i32* %argc.addr ; <i32> [#uses=1]
%cmp = icmp slt i32 %tmp, 2 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
%tmp23 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx = getelementptr i8** %tmp23, i32 0 ; <i8**> [#uses=1]
%tmp24 = load i8** %arrayidx ; <i8*> [#uses=1]
call void @usage(i8* %tmp24)
call void @exit(i32 1) noreturn
unreachable
; No predecessors!
br label %if.end
if.end: ; preds = %0, %entry
%arraydecay = getelementptr [2 x i8]* %rawVid, i32 0, i32 0 ; <i8*> [#uses=1]
%arrayidx25 = getelementptr i8* %arraydecay, i32 1 ; <i8*> [#uses=1]
%tmp26 = load i8* %arrayidx25 ; <i8> [#uses=1]
%conv = zext i8 %tmp26 to i32 ; <i32> [#uses=1]
%mul = mul i32 %conv, 256 ; <i32> [#uses=1]
%arraydecay27 = getelementptr [2 x i8]* %rawVid, i32 0, i32 0 ; <i8*> [#uses=1]
%arrayidx28 = getelementptr i8* %arraydecay27, i32 0 ; <i8*> [#uses=1]
%tmp29 = load i8* %arrayidx28 ; <i8> [#uses=1]
%conv30 = zext i8 %tmp29 to i32 ; <i32> [#uses=1]
%add = add i32 %mul, %conv30 ; <i32> [#uses=1]
store i32 %add, i32* %vid
%arraydecay31 = getelementptr [2 x i8]* %rawPid, i32 0, i32 0 ; <i8*> [#uses=1]
%arrayidx32 = getelementptr i8* %arraydecay31, i32 1 ; <i8*> [#uses=1]
%tmp33 = load i8* %arrayidx32 ; <i8> [#uses=1]
%conv34 = zext i8 %tmp33 to i32 ; <i32> [#uses=1]
%mul35 = mul i32 %conv34, 256 ; <i32> [#uses=1]
%arraydecay36 = getelementptr [2 x i8]* %rawPid, i32 0, i32 0 ; <i8*> [#uses=1]
%arrayidx37 = getelementptr i8* %arraydecay36, i32 0 ; <i8*> [#uses=1]
%tmp38 = load i8* %arrayidx37 ; <i8> [#uses=1]
%conv39 = zext i8 %tmp38 to i32 ; <i32> [#uses=1]
%add40 = add i32 %mul35, %conv39 ; <i32> [#uses=1]
store i32 %add40, i32* %pid
%tmp41 = load i32* %vid ; <i32> [#uses=1]
%arraydecay42 = getelementptr [11 x i8]* %vendor, i32 0, i32 0 ; <i8*> [#uses=1]
%tmp43 = load i32* %pid ; <i32> [#uses=1]
%arraydecay44 = getelementptr [8 x i8]* %product, i32 0, i32 0 ; <i8*> [#uses=1]
%call = call i32 @usbOpenDevice(%struct.usb_dev_handle** %handle, i32 %tmp41, i8* %arraydecay42, i32 %tmp43, i8* %arraydecay44, i8* null, %struct.__sFILE* null, %struct.__sFILE* null) ; <i32> [#uses=1]
%cmp45 = icmp ne i32 %call, 0 ; <i1> [#uses=1]
br i1 %cmp45, label %if.then47, label %if.end53
if.then47: ; preds = %if.end
%tmp48 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%arraydecay49 = getelementptr [8 x i8]* %product, i32 0, i32 0 ; <i8*> [#uses=1]
%tmp50 = load i32* %vid ; <i32> [#uses=1]
%tmp51 = load i32* %pid ; <i32> [#uses=1]
%call52 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp48, i8* getelementptr ([55 x i8]* @"\01LC7", i32 0, i32 0), i8* %arraydecay49, i32 %tmp50, i32 %tmp51) ; <i32> [#uses=0]
call void @exit(i32 1) noreturn
unreachable
; No predecessors!
br label %if.end53
if.end53: ; preds = %1, %if.end
%arraydecay54 = getelementptr [8 x i8]* %product, i32 0, i32 0 ; <i8*> [#uses=1]
%tmp55 = load i32* %vid ; <i32> [#uses=1]
%tmp56 = load i32* %pid ; <i32> [#uses=1]
%call57 = call i32 (i8*, ...)* @printf(i8* getelementptr ([45 x i8]* @"\01LC8", i32 0, i32 0), i8* %arraydecay54, i32 %tmp55, i32 %tmp56) ; <i32> [#uses=0]
%tmp58 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx59 = getelementptr i8** %tmp58, i32 1 ; <i8**> [#uses=1]
%tmp60 = load i8** %arrayidx59 ; <i8*> [#uses=1]
%call61 = call i32 @strcasecmp(i8* %tmp60, i8* getelementptr ([7 x i8]* @"\01LC9", i32 0, i32 0)) ; <i32> [#uses=1]
%cmp62 = icmp eq i32 %call61, 0 ; <i1> [#uses=1]
br i1 %cmp62, label %if.then64, label %if.else171
if.then64: ; preds = %if.end53
%tmp65 = load i32* %argc.addr ; <i32> [#uses=1]
%cmp66 = icmp slt i32 %tmp65, 3 ; <i1> [#uses=1]
br i1 %cmp66, label %if.then68, label %if.end72
if.then68: ; preds = %if.then64
%tmp69 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx70 = getelementptr i8** %tmp69, i32 0 ; <i8**> [#uses=1]
%tmp71 = load i8** %arrayidx70 ; <i8*> [#uses=1]
call void @usage(i8* %tmp71)
call void @exit(i32 1) noreturn
unreachable
; No predecessors!
br label %if.end72
if.end72: ; preds = %2, %if.then64
%tmp73 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx74 = getelementptr i8** %tmp73, i32 2 ; <i8**> [#uses=1]
%tmp75 = load i8** %arrayidx74 ; <i8*> [#uses=1]
%call76 = call %struct.__sFILE* @fopen(i8* %tmp75, i8* getelementptr ([2 x i8]* @"\01LC10", i32 0, i32 0)) ; <%struct.__sFILE*> [#uses=1]
store %struct.__sFILE* %call76, %struct.__sFILE** %fp
%tmp77 = load %struct.__sFILE** %fp ; <%struct.__sFILE*> [#uses=1]
%cmp78 = icmp eq %struct.__sFILE* %tmp77, null ; <i1> [#uses=1]
br i1 %cmp78, label %if.then80, label %if.end86
if.then80: ; preds = %if.end72
%tmp81 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%tmp82 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx83 = getelementptr i8** %tmp82, i32 2 ; <i8**> [#uses=1]
%tmp84 = load i8** %arrayidx83 ; <i8*> [#uses=1]
%call85 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp81, i8* getelementptr ([21 x i8]* @"\01LC11", i32 0, i32 0), i8* %tmp84) ; <i32> [#uses=0]
call void @exit(i32 1) noreturn
unreachable
; No predecessors!
br label %if.end86
if.end86: ; preds = %3, %if.end72
%call87 = call i8* @malloc(i32 1024) ; <i8*> [#uses=1]
store i8* %call87, i8** %read_buffer
%call88 = call i8* @malloc(i32 32768) ; <i8*> [#uses=1]
store i8* %call88, i8** %crc_buffer
%tmp89 = load i8** %crc_buffer ; <i8*> [#uses=1]
%call90 = call i8* @memset(i8* %tmp89, i32 0, i32 32768) ; <i8*> [#uses=0]
store i32 0, i32* %addr
%tmp91 = load %struct.usb_dev_handle** %handle ; <%struct.usb_dev_handle*> [#uses=1]
%call92 = call i32 @usb_control_msg(%struct.usb_dev_handle* %tmp91, i32 64, i32 0, i32 0, i32 0, i8* null, i32 0, i32 5000) ; <i32> [#uses=0]
br label %while.cond
while.cond: ; preds = %if.end148, %if.end86
%tmp93 = load i8** %read_buffer ; <i8*> [#uses=1]
%tmp94 = load %struct.__sFILE** %fp ; <%struct.__sFILE*> [#uses=1]
%call95 = call i32 @fread(i8* %tmp93, i32 1024, i32 1, %struct.__sFILE* %tmp94) ; <i32> [#uses=2]
store i32 %call95, i32* %cnt
%cmp96 = icmp sgt i32 %call95, 0 ; <i1> [#uses=1]
br i1 %cmp96, label %while.body, label %while.end
while.body: ; preds = %while.cond
store i16 0, i16* %step
br label %for.cond
for.cond: ; preds = %for.inc, %while.body
%tmp98 = load i16* %step ; <i16> [#uses=1]
%conv99 = zext i16 %tmp98 to i32 ; <i32> [#uses=1]
%cmp100 = icmp slt i32 %conv99, 1024 ; <i1> [#uses=1]
br i1 %cmp100, label %for.body, label %for.end
for.body: ; preds = %for.cond
%tmp102 = load i32* %addr ; <i32> [#uses=1]
%and = and i32 %tmp102, 65535 ; <i32> [#uses=1]
%conv103 = trunc i32 %and to i16 ; <i16> [#uses=1]
store i16 %conv103, i16* %addr_lo
%tmp104 = load i32* %addr ; <i32> [#uses=1]
%shr = lshr i32 %tmp104, 16 ; <i32> [#uses=1]
%and105 = and i32 %shr, 255 ; <i32> [#uses=1]
%conv106 = trunc i32 %and105 to i16 ; <i16> [#uses=1]
store i16 %conv106, i16* %addr_hi
%tmp107 = load %struct.usb_dev_handle** %handle ; <%struct.usb_dev_handle*> [#uses=1]
%tmp108 = load i16* %addr_hi ; <i16> [#uses=1]
%conv109 = zext i16 %tmp108 to i32 ; <i32> [#uses=1]
%tmp110 = load i16* %addr_lo ; <i16> [#uses=1]
%conv111 = zext i16 %tmp110 to i32 ; <i32> [#uses=1]
%tmp112 = load i8** %read_buffer ; <i8*> [#uses=1]
%tmp113 = load i16* %step ; <i16> [#uses=1]
%conv114 = zext i16 %tmp113 to i32 ; <i32> [#uses=1]
%add.ptr = getelementptr i8* %tmp112, i32 %conv114 ; <i8*> [#uses=1]
%call115 = call i32 @usb_control_msg(%struct.usb_dev_handle* %tmp107, i32 64, i32 1, i32 %conv109, i32 %conv111, i8* %add.ptr, i32 128, i32 5000) ; <i32> [#uses=0]
%tmp116 = load i32* %addr ; <i32> [#uses=1]
%add117 = add i32 %tmp116, 128 ; <i32> [#uses=1]
store i32 %add117, i32* %addr
br label %for.inc
for.inc: ; preds = %for.body
%tmp118 = load i16* %step ; <i16> [#uses=1]
%conv119 = zext i16 %tmp118 to i32 ; <i32> [#uses=1]
%add120 = add i32 %conv119, 128 ; <i32> [#uses=1]
%conv121 = trunc i32 %add120 to i16 ; <i16> [#uses=1]
store i16 %conv121, i16* %step
br label %for.cond
for.end: ; preds = %for.cond
%tmp122 = load i8** %crc_buffer ; <i8*> [#uses=1]
%tmp123 = load i32* %cnt_crc ; <i32> [#uses=1]
%add.ptr124 = getelementptr i8* %tmp122, i32 %tmp123 ; <i8*> [#uses=1]
%tmp125 = load i8** %read_buffer ; <i8*> [#uses=1]
%call126 = call i8* @memcpy(i8* %add.ptr124, i8* %tmp125, i32 1024) ; <i8*> [#uses=0]
%tmp127 = load i32* %cnt_crc ; <i32> [#uses=1]
%add128 = add i32 %tmp127, 1024 ; <i32> [#uses=1]
store i32 %add128, i32* %cnt_crc
%tmp129 = load i32* %cnt_crc ; <i32> [#uses=1]
%cmp130 = icmp sge i32 %tmp129, 32768 ; <i1> [#uses=1]
br i1 %cmp130, label %if.then132, label %if.end148
if.then132: ; preds = %for.end
%tmp133 = load i8** %crc_buffer ; <i8*> [#uses=1]
%call134 = call zeroext i16 @do_crc(i8* %tmp133, i16 zeroext -32768) ; <i16> [#uses=1]
store i16 %call134, i16* %crc
%tmp135 = load i32* %addr ; <i32> [#uses=1]
%tmp136 = load i8* %bank ; <i8> [#uses=1]
%conv137 = zext i8 %tmp136 to i32 ; <i32> [#uses=1]
%tmp138 = load i16* %addr_hi ; <i16> [#uses=1]
%conv139 = zext i16 %tmp138 to i32 ; <i32> [#uses=1]
%tmp140 = load i16* %addr_lo ; <i16> [#uses=1]
%conv141 = zext i16 %tmp140 to i32 ; <i32> [#uses=1]
%tmp142 = load i16* %crc ; <i16> [#uses=1]
%conv143 = zext i16 %tmp142 to i32 ; <i32> [#uses=1]
%call144 = call i32 (i8*, ...)* @printf(i8* getelementptr ([70 x i8]* @"\01LC12", i32 0, i32 0), i32 %tmp135, i32 %conv137, i32 %conv139, i32 %conv141, i32 %conv143) ; <i32> [#uses=0]
%tmp145 = load i8** %crc_buffer ; <i8*> [#uses=1]
%call146 = call i8* @memset(i8* %tmp145, i32 0, i32 32768) ; <i8*> [#uses=0]
%tmp147 = load i8* %bank ; <i8> [#uses=1]
%inc = add i8 %tmp147, 1 ; <i8> [#uses=1]
store i8 %inc, i8* %bank
store i32 0, i32* %cnt_crc
br label %if.end148
if.end148: ; preds = %if.then132, %for.end
br label %while.cond
while.end: ; preds = %while.cond
%tmp149 = load %struct.usb_dev_handle** %handle ; <%struct.usb_dev_handle*> [#uses=1]
%tmp150 = load i16* %addr_hi ; <i16> [#uses=1]
%conv151 = zext i16 %tmp150 to i32 ; <i32> [#uses=1]
%tmp152 = load i16* %addr_lo ; <i16> [#uses=1]
%conv153 = zext i16 %tmp152 to i32 ; <i32> [#uses=1]
%call154 = call i32 @usb_control_msg(%struct.usb_dev_handle* %tmp149, i32 64, i32 4, i32 %conv151, i32 %conv153, i8* null, i32 0, i32 5000) ; <i32> [#uses=1]
store i32 %call154, i32* %cnt
%tmp155 = load i32* %cnt ; <i32> [#uses=1]
%cmp156 = icmp slt i32 %tmp155, 1 ; <i1> [#uses=1]
br i1 %cmp156, label %if.then158, label %if.end170
if.then158: ; preds = %while.end
%tmp159 = load i32* %cnt ; <i32> [#uses=1]
%cmp160 = icmp slt i32 %tmp159, 0 ; <i1> [#uses=1]
br i1 %cmp160, label %if.then162, label %if.else
if.then162: ; preds = %if.then158
%tmp163 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%call164 = call i8* @usb_strerror() ; <i8*> [#uses=1]
%call165 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp163, i8* getelementptr ([15 x i8]* @"\01LC13", i32 0, i32 0), i8* %call164) ; <i32> [#uses=0]
br label %if.end169
if.else: ; preds = %if.then158
%tmp166 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%tmp167 = load i32* %cnt ; <i32> [#uses=1]
%call168 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp166, i8* getelementptr ([25 x i8]* @"\01LC14", i32 0, i32 0), i32 %tmp167) ; <i32> [#uses=0]
br label %if.end169
if.end169: ; preds = %if.else, %if.then162
br label %if.end170
if.end170: ; preds = %if.end169, %while.end
br label %if.end216
if.else171: ; preds = %if.end53
%tmp172 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx173 = getelementptr i8** %tmp172, i32 1 ; <i8**> [#uses=1]
%tmp174 = load i8** %arrayidx173 ; <i8*> [#uses=1]
%call175 = call i32 @strcasecmp(i8* %tmp174, i8* getelementptr ([4 x i8]* @"\01LC15", i32 0, i32 0)) ; <i32> [#uses=1]
%cmp176 = icmp eq i32 %call175, 0 ; <i1> [#uses=1]
br i1 %cmp176, label %if.then178, label %if.else211
if.then178: ; preds = %if.else171
store i32 0, i32* %addr
%tmp179 = load i32* %addr ; <i32> [#uses=1]
%and180 = and i32 %tmp179, 65535 ; <i32> [#uses=1]
%conv181 = trunc i32 %and180 to i16 ; <i16> [#uses=1]
store i16 %conv181, i16* %addr_lo
%tmp182 = load i32* %addr ; <i32> [#uses=1]
%shr183 = lshr i32 %tmp182, 16 ; <i32> [#uses=1]
%and184 = and i32 %shr183, 255 ; <i32> [#uses=1]
%conv185 = trunc i32 %and184 to i16 ; <i16> [#uses=1]
store i16 %conv185, i16* %addr_hi
%tmp186 = load i32* %addr ; <i32> [#uses=1]
%call187 = call i32 (i8*, ...)* @printf(i8* getelementptr ([30 x i8]* @"\01LC16", i32 0, i32 0), i32 %tmp186) ; <i32> [#uses=0]
%tmp188 = load %struct.usb_dev_handle** %handle ; <%struct.usb_dev_handle*> [#uses=1]
%tmp189 = load i16* %addr_hi ; <i16> [#uses=1]
%conv190 = zext i16 %tmp189 to i32 ; <i32> [#uses=1]
%tmp191 = load i16* %addr_lo ; <i16> [#uses=1]
%conv192 = zext i16 %tmp191 to i32 ; <i32> [#uses=1]
%call193 = call i32 @usb_control_msg(%struct.usb_dev_handle* %tmp188, i32 64, i32 5, i32 %conv190, i32 %conv192, i8* null, i32 8192, i32 5000) ; <i32> [#uses=1]
store i32 %call193, i32* %cnt
%tmp194 = load i32* %cnt ; <i32> [#uses=1]
%cmp195 = icmp slt i32 %tmp194, 1 ; <i1> [#uses=1]
br i1 %cmp195, label %if.then197, label %if.end210
if.then197: ; preds = %if.then178
%tmp198 = load i32* %cnt ; <i32> [#uses=1]
%cmp199 = icmp slt i32 %tmp198, 0 ; <i1> [#uses=1]
br i1 %cmp199, label %if.then201, label %if.else205
if.then201: ; preds = %if.then197
%tmp202 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%call203 = call i8* @usb_strerror() ; <i8*> [#uses=1]
%call204 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp202, i8* getelementptr ([15 x i8]* @"\01LC13", i32 0, i32 0), i8* %call203) ; <i32> [#uses=0]
br label %if.end209
if.else205: ; preds = %if.then197
%tmp206 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%tmp207 = load i32* %cnt ; <i32> [#uses=1]
%call208 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp206, i8* getelementptr ([25 x i8]* @"\01LC14", i32 0, i32 0), i32 %tmp207) ; <i32> [#uses=0]
br label %if.end209
if.end209: ; preds = %if.else205, %if.then201
br label %if.end210
if.end210: ; preds = %if.end209, %if.then178
br label %if.end215
if.else211: ; preds = %if.else171
%tmp212 = load i8*** %argv.addr ; <i8**> [#uses=1]
%arrayidx213 = getelementptr i8** %tmp212, i32 0 ; <i8**> [#uses=1]
%tmp214 = load i8** %arrayidx213 ; <i8*> [#uses=1]
call void @usage(i8* %tmp214)
call void @exit(i32 1) noreturn
unreachable
; No predecessors!
br label %if.end215
if.end215: ; preds = %4, %if.end210
br label %if.end216
if.end216: ; preds = %if.end215, %if.end170
%tmp217 = load %struct.usb_dev_handle** %handle ; <%struct.usb_dev_handle*> [#uses=1]
%call218 = call i32 @usb_close(%struct.usb_dev_handle* %tmp217) ; <i32> [#uses=0]
store i32 0, i32* %retval
%5 = load i32* %retval ; <i32> [#uses=1]
ret i32 %5
}
declare void @usb_init()
define internal void @usage(i8* %name) nounwind {
entry:
%name.addr = alloca i8* ; <i8**> [#uses=2]
store i8* %name, i8** %name.addr
%tmp = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%call = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp, i8* getelementptr ([8 x i8]* @"\01LC17", i32 0, i32 0)) ; <i32> [#uses=0]
%tmp1 = load %struct.__sFILE** @__stderrp ; <%struct.__sFILE*> [#uses=1]
%tmp2 = load i8** %name.addr ; <i8*> [#uses=1]
%call3 = call i32 (%struct.__sFILE*, i8*, ...)* @fprintf(%struct.__sFILE* %tmp1, i8* getelementptr ([31 x i8]* @"\01LC18", i32 0, i32 0), i8* %tmp2) ; <i32> [#uses=0]
ret void
}
declare void @exit(i32) noreturn
declare i32 @usbOpenDevice(%struct.usb_dev_handle**, i32, i8*, i32, i8*, i8*, %struct.__sFILE*, %struct.__sFILE*)
declare i32 @fprintf(%struct.__sFILE*, i8*, ...)
declare i32 @strcasecmp(i8*, i8*)
declare %struct.__sFILE* @fopen(i8*, i8*)
declare i8* @malloc(i32)
declare i8* @memset(i8*, i32, i32)
declare i32 @usb_control_msg(%struct.usb_dev_handle*, i32, i32, i32, i32, i8*, i32, i32)
declare i32 @fread(i8*, i32, i32, %struct.__sFILE*)
declare i8* @memcpy(i8*, i8*, i32)
declare i8* @usb_strerror()
declare i32 @usb_close(%struct.usb_dev_handle*)

View File

@ -1,58 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __CONFIH_H__
#define __CONFIH_H__
#define DEBUG 1
#define DEBUG_USB 2
#define DEBUG_USB_TRANS 4
#define DEBUG_SRAM 8
#define DEBUG_SRAM_RAW 16
#define DEBUG_SREG 32
#define DEBUG_CRC 64
#define DEBUG_SHM 128
#define REQ_STATUS_IDLE 0x01
#define REQ_STATUS_UPLOAD 0x02
#define REQ_STATUS_BULK_UPLOAD 0x03
#define REQ_STATUS_BULK_NEXT 0x04
#define REQ_STATUS_CRC 0x05
#define REQ_STATUS_SNES 0x06
#define REQ_STATUS_AVR 0x07
#define USB_MAX_TRANS 0xff
#define USB_CRC_CHECK 0x01
#define TRANSFER_BUFFER_SIZE 0x000
#define FORMAT_BUFFER_LEN 0x080
#define RECEIVE_BUF_LEN 0x030
#define HW_VERSION "2.6"
#define SW_VERSION "1.2"
#define DO_CRC_CHECK_LOADER 0
#define DO_CRC_CHECK 1
#define DO_SHM_SCRATCHPAD 0
#define DO_SHM 0
#define DO_TIMER 1
#define DO_SHELL 1
#endif

View File

@ -1,115 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include "crc.h"
#include "uart.h"
#include "config.h"
#include "sram.h"
#include "debug.h"
#include "info.h"
extern FILE uart_stdout;
uint16_t crc_xmodem_update(uint16_t crc, uint8_t data)
{
int i;
crc = crc ^ ((uint16_t) data << 8);
for (i = 0; i < 8; i++) {
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
return crc;
}
uint16_t do_crc(uint8_t * data, uint16_t size)
{
uint16_t crc = 0;
uint16_t i;
for (i = 0; i < size; i++) {
crc = crc_xmodem_update(crc, data[i]);
}
return crc;
}
uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size)
{
uint16_t i;
for (i = 0; i < size; i++)
crc = crc_xmodem_update(crc, data[i]);
return crc;
}
uint16_t crc_check_bulk_memory(uint32_t bottom_addr, uint32_t top_addr,
uint32_t bank_size)
{
uint16_t crc = 0;
uint32_t addr = 0;
uint8_t req_bank = 0;
sram_bulk_read_start(bottom_addr);
debug_P(DEBUG_CRC,
PSTR
("crc_check_bulk_memory: bottom_addr=0x%08lx top_addr=0x%08lx\n"),
bottom_addr, top_addr);
for (addr = bottom_addr; addr < top_addr; addr++) {
if (addr && ((addr % bank_size) == 0)) {
debug_P(DEBUG_CRC,
PSTR
("crc_check_bulk_memory: bank=0x%02x addr=0x%08lx crc=0x%04x\n"),
req_bank, addr, crc);
req_bank++;
crc = 0;
}
crc = crc_xmodem_update(crc, sram_bulk_read());
sram_bulk_read_next();
}
if (addr % 0x8000 == 0)
debug_P(DEBUG_CRC,
PSTR
("crc_check_bulk_memory: bank=0x%02x addr=0x%08lx crc=0x%04x\n"),
req_bank, addr, crc);
sram_bulk_read_end();
return crc;
}
uint16_t crc_check_memory_range(uint32_t start_addr, uint32_t size,
uint8_t * buffer)
{
uint16_t crc = 0;
uint32_t addr;
for (addr = start_addr; addr < start_addr + size;
addr += TRANSFER_BUFFER_SIZE) {
sram_bulk_copy_into_buffer(addr, buffer, TRANSFER_BUFFER_SIZE);
crc = do_crc_update(crc, buffer, TRANSFER_BUFFER_SIZE);
}
return crc;
}

View File

@ -1,37 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __CRC_H__
#define __CRC_H__
#include <stdlib.h>
#include <stdint.h>
uint16_t crc_xmodem_update(uint16_t crc, uint8_t data);
uint16_t do_crc(uint8_t * data, uint16_t size);
uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size);
uint16_t crc_check_memory_range(uint32_t start_addr, uint32_t size,
uint8_t * buffer);
uint16_t crc_check_bulk_memory(uint32_t bottom_addr, uint32_t bank_size,
uint32_t top_addr);
#endif

View File

@ -1,70 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <avr/pgmspace.h>
#include "debug.h"
#include "uart.h"
#include "config.h"
extern FILE uart_stdout;
extern int debug_level; /* the higher, the more messages... */
#if defined(NO_DEBUG) && defined(__GNUC__)
#else
void debug(int level, char *format, ...)
{
#ifdef NO_DEBUG
#else
va_list args;
if (!(debug_level & level))
return;
va_start(args, format);
vprintf(format, args);
va_end(args);
#endif
}
#endif
#ifndef NO_INFO
uint8_t buffer_debug[FORMAT_BUFFER_LEN];
#endif
#if defined(NO_DEBUG) && defined(__GNUC__)
#else
void debug_P(int level, PGM_P format, ...)
{
#ifdef NO_DEBUG
#else
va_list args;
if (!(debug_level & level))
return;
strlcpy_P((char *) buffer_debug, format, FORMAT_BUFFER_LEN);
va_start(args, format);
vprintf((char *) buffer_debug, args);
va_end(args);
#endif
}
#endif

View File

@ -1,58 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __DEBUG_H__
#define __DEBUG_H__
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <avr/pgmspace.h>
#if defined(NO_DEBUG) && defined(__GNUC__)
/*
* gcc's cpp has extensions; it allows for macros with a variable number of arguments. We use this extension here to preprocess pmesg away.
*/
#define debug(level, format, args...) ((void)0)
#else
void debug(int level, char *format, ...);
/*
* print a message, if it is considered significant enough. Adapted from [K&R2], p. 174
*/
#endif
#if defined(NO_DEBUG) && defined(__GNUC__)
/*
* gcc's cpp has extensions; it allows for macros with a variable number of arguments. We use this extension here to preprocess pmesg away.
*/
#define debug_P(level, format, args...) ((void)0)
#else
void debug_P(int level, PGM_P format, ...);
/*
* print a message, if it is considered significant enough. Adapted from [K&R2], p. 174
*/
#endif
#endif /* DEBUG_H */

View File

@ -1,83 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include "debug.h"
#include "info.h"
#include "uart.h"
#include "sram.h"
#include "dump.h"
extern FILE uart_stdout;
void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet)
{
uint16_t i, j;
uint16_t sum = 0;
uint8_t clear = 0;
for (i = 0; i < len; i += 16) {
sum = 0;
for (j = 0; j < 16; j++) {
sum += packet[i + j];
}
if (!sum) {
clear = 1;
continue;
}
if (clear) {
info_P(PSTR("*\n"));
clear = 0;
}
info_P(PSTR("%08lx:"), addr + i);
for (j = 0; j < 16; j++) {
info_P(PSTR(" %02x"), packet[i + j]);
}
info_P(PSTR(" |"));
for (j = 0; j < 16; j++) {
if (packet[i + j] >= 33 && packet[i + j] <= 126)
info_P(PSTR("%c"), packet[i + j]);
else
info_P(PSTR("."));
}
info_P(PSTR("|\n"));
}
}
void dump_memory(uint32_t bottom_addr, uint32_t top_addr)
{
uint32_t addr;
uint8_t byte;
sram_bulk_read_start(bottom_addr);
for (addr = bottom_addr; addr < top_addr; addr++) {
if (addr % 0x10 == 0)
info_P(PSTR("\n%08lx:"), addr);
byte = sram_bulk_read();
sram_bulk_read_next();
info_P(PSTR(" %02x"), byte);
}
info_P(PSTR("\n"));
sram_bulk_read_end();
}

View File

@ -1,33 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __DUMP_H__
#define __DUMP_H__
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
void dump_memory(uint32_t bottom_addr, uint32_t top_addr);
void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet);
#endif

View File

@ -1,197 +0,0 @@
#if defined(__GNUC__) && (__GNUC__ > 2)
#define FASTLZ_EXPECT_CONDITIONAL(c) (__builtin_expect((c), 1))
#define FASTLZ_UNEXPECT_CONDITIONAL(c) (__builtin_expect((c), 0))
#else
#define FASTLZ_EXPECT_CONDITIONAL(c) (c)
#define FASTLZ_UNEXPECT_CONDITIONAL(c) (c)
#endif
/*
* Use inlined functions for supported systems.
*/
#if defined(__GNUC__) || defined(__DMC__) || defined(__POCC__) || defined(__WATCOMC__) || defined(__SUNPRO_C)
#define FASTLZ_INLINE inline
#elif defined(__BORLANDC__) || defined(_MSC_VER) || defined(__LCC__)
#define FASTLZ_INLINE __inline
#else
#define FASTLZ_INLINE
#endif
typedef unsigned char flzuint8;
typedef unsigned short flzuint16;
typedef unsigned int flzuint32;
/* prototypes */
int fastlz_decompress(const void* input, int length, void* output);
#define MAX_DISTANCE 256
#include <avr/pgmspace.h> /* required by usbdrv.h */
#include <util/delay.h> /* for _delay_ms() */
#include <avr/interrupt.h> /* for sei() */
#include "sram.h"
#include "debug.h"
#include "info.h"
#include "ringbuffer.h"
//#define log2(NUM) printf("%i op=%i(%x) ip=%i(%x) ref=%i(%x) dist=%i buf->end=%i len=%i ctrl=%i ofs=%i(%i) limit=%i\n",NUM, output_index,output[output_index], input_index,input[input_index],ref_index,input[ref_index],output_index - ref_index,ref_buffer_ptr->end, len, ctrl, ofs, ofs>>6,input_index < ip_limit);
#define log2(NUM) info_P(PSTR("%i op=%i ip=%i ref=%i dist=%i buf->end=%i len=%i ctrl=%i ofs=%i(%i) limit=%i\n"),NUM, output_index, input_index,ref_index,output_index - ref_index,ref_buffer_ptr->end, len, ctrl, ofs, ofs>>6,input_index < ip_limit);
#define OUTPUT_INC(B) do { \
__b = B;\
sram_bulk_write(__b);\
sram_bulk_write_next();\
bufferWrite(ref_buffer_ptr, __b);\
output_index++;\
} while (0)
#define OUTPUT_INC_FROM_REFINC() do { \
__dist = (output_index-ref_index); \
__c = buffer_get(ref_buffer_ptr, __dist); \
sram_bulk_write(__c);\
sram_bulk_write_next();\
output_index++;\
bufferWrite(ref_buffer_ptr, __c);\
ref_index++;\
} while (0)
#define FROM_REF(OUT) do { \
flzuint16 __dist = (output_index-ref_index+1); \
OUT = buffer_get(ref_buffer_ptr, __dist); \
} while (0)
#define OUTBYTE(OUT) do { \
sram_bulk_write(OUT);\
sram_bulk_write_next();\
output_index++;\
} while(0)
#define INBYTE(IN) do { \
cli();\
IN = pgm_read_byte((PGM_VOID_P)input_index++); \
sei();\
} while(0)
#define INPUT_INC(IN) do { \
cli();\
if (input_index<32768) { \
IN = pgm_read_byte((PGM_VOID_P)input_index++); \
} else { \
IN = pgm_read_byte((PGM_VOID_P)input_index-32768); \
input_index++; \
}\
sei();\
} while (0)
ring_buffer_typedef(unsigned char, byte_buffer);
int fastlz_decompress2(unsigned char* input1, unsigned char* input2, int length)
{
flzuint32 input_index = 0;
flzuint32 ip_limit = length;
flzuint32 output_index = 0;
flzuint32 ref_index = 0;
//flzuint32 ctrl = (input[input_index++]) & 31;
flzuint32 ctrl;
INPUT_INC(ctrl);
ctrl = ctrl & 31;
int loop = 1;
byte_buffer ref_buffer;
buffer_init(ref_buffer, MAX_DISTANCE, unsigned char);
byte_buffer* ref_buffer_ptr;
ref_buffer_ptr = &ref_buffer;
do
{
flzuint8 __b;
flzuint16 __dist;
flzuint8 __c;
flzuint8 tmp;
ref_index = output_index;
flzuint32 len = ctrl >> 5;
flzuint32 ofs = (ctrl & 31) << 6;
//log2(1)
if(ctrl >= 32)
{
len--;
ref_index -= ofs;
if (len == 7-1){
INPUT_INC(tmp);
len += tmp;
//len += input[input_index++];
}
INPUT_INC(tmp);
ref_index -= tmp;
//ref_index -= input[input_index++];
//log2(1)
if(FASTLZ_EXPECT_CONDITIONAL( input_index < ip_limit))
INPUT_INC(ctrl);
//ctrl = input[input_index++];
else
loop = 0;
//log2(1)
if(ref_index == output_index)
{
//log2(2)
//flzuint8 b = output[ref_index-1];
flzuint8 b;
FROM_REF(b);
OUTPUT_INC(b);
OUTPUT_INC(b);
OUTPUT_INC(b);
for(; len; --len)
OUTPUT_INC(b);
}
else
{
//log2(3)
ref_index--;
OUTPUT_INC_FROM_REFINC();
OUTPUT_INC_FROM_REFINC();
OUTPUT_INC_FROM_REFINC();
for(; len; --len)
OUTPUT_INC_FROM_REFINC();
}
}
else
{
ctrl++;
//log2(4)
INPUT_INC(tmp);
OUTPUT_INC(tmp);
//OUTPUT_INC(input[input_index++]);
for(--ctrl; ctrl; ctrl--){
//log2(5)
INPUT_INC(tmp);
OUTPUT_INC(tmp);
//OUTPUT_INC(input[input_index++]);
}
loop = FASTLZ_EXPECT_CONDITIONAL(input_index < ip_limit);
if (loop){
INPUT_INC(ctrl);
//ctrl = input[input_index++];
}
//log2(6)
}
}
while(FASTLZ_EXPECT_CONDITIONAL(loop));
buffer_destroy(ref_buffer_ptr);
return 0;
}

View File

@ -1,14 +0,0 @@
#ifndef FASTLZ_H
#define FASTLZ_H
#define FASTLZ_VERSION 0x000100
#define FASTLZ_VERSION_MAJOR 0
#define FASTLZ_VERSION_MINOR 0
#define FASTLZ_VERSION_REVISION 0
#define FASTLZ_VERSION_STRING "0.1.0"
int fastlz_decompress2(const void* input1, const void* input2, int length);
#endif /* FASTLZ_H */

View File

@ -1,50 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include "fifo.h"
void fifo_init(fifo_t * f, uint8_t * buffer, const uint8_t size)
{
f->count = 0;
f->pread = f->pwrite = buffer;
f->read2end = f->write2end = f->size = size;
}
uint8_t fifo_put(fifo_t * f, const uint8_t data)
{
return _inline_fifo_put(f, data);
}
uint8_t fifo_get_wait(fifo_t * f)
{
while (!f->count);
return _inline_fifo_get(f);
}
int fifo_get_nowait(fifo_t * f)
{
if (!f->count)
return -1;
return (int) _inline_fifo_get(f);
}

View File

@ -1,88 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __FIFO_H__
#define __FIFO_H__
#include <avr/io.h>
#include <avr/interrupt.h>
typedef struct {
uint8_t volatile count; // # Zeichen im Puffer
uint8_t size; // Puffer-Größe
uint8_t *pread; // Lesezeiger
uint8_t *pwrite; // Schreibzeiger
uint8_t read2end, write2end; // # Zeichen bis zum Überlauf Lese-/Schreibzeiger
} fifo_t;
extern void fifo_init(fifo_t *, uint8_t * buf, const uint8_t size);
extern uint8_t fifo_put(fifo_t *, const uint8_t data);
extern uint8_t fifo_get_wait(fifo_t *);
extern int fifo_get_nowait(fifo_t *);
static inline uint8_t _inline_fifo_put(fifo_t * f, const uint8_t data)
{
if (f->count >= f->size)
return 0;
uint8_t *pwrite = f->pwrite;
*(pwrite++) = data;
uint8_t write2end = f->write2end;
if (--write2end == 0) {
write2end = f->size;
pwrite -= write2end;
}
f->write2end = write2end;
f->pwrite = pwrite;
uint8_t sreg = SREG;
cli();
f->count++;
SREG = sreg;
return 1;
}
static inline uint8_t _inline_fifo_get(fifo_t * f)
{
uint8_t *pread = f->pread;
uint8_t data = *(pread++);
uint8_t read2end = f->read2end;
if (--read2end == 0) {
read2end = f->size;
pread -= read2end;
}
f->pread = pread;
f->read2end = read2end;
uint8_t sreg = SREG;
cli();
f->count--;
SREG = sreg;
return data;
}
#endif /* _FIFO_H_ */

View File

@ -1,75 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <avr/pgmspace.h>
#include "info.h"
#include "uart.h"
#include "config.h"
extern FILE uart_stdout;
#if defined(NO_INFO) && defined(__GNUC__)
#define info(format, args...) ((void)0)
#else
void info(char *format, ...)
{
#ifdef NO_INFO
#else
va_list args;
va_start(args, format);
vprintf(format, args);
va_end(args);
#endif
}
#endif
#ifndef NO_INFO
uint8_t buffer_info[FORMAT_BUFFER_LEN];
#endif
#if defined(NO_INFO) && defined(__GNUC__)
#define info(format, args...) ((void)0)
#else
void info_P(PGM_P format, ...)
{
#ifdef NO_INFO
#else
strlcpy_P((char *) buffer_info, format, FORMAT_BUFFER_LEN);
va_list args;
va_start(args, format);
vprintf((char *) buffer_info, args);
va_end(args);
#endif
}
#endif

View File

@ -1,57 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __INFO_H__
#define __INFO_H__
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <avr/pgmspace.h>
#if defined(NO_INFO) && defined(__GNUC__)
/*
* gcc's cpp has extensions; it allows for macros with a variable number of arguments. We use this extension here to preprocess pmesg away.
*/
#define info(format, args...) ((void)0)
#else
void info(char *format, ...);
/*
* print a message, if it is considered significant enough. Adapted from [K&R2], p. 174
*/
#endif
#if defined(NO_INFO) && defined(__GNUC__)
/*
* gcc's cpp has extensions; it allows for macros with a variable number of arguments. We use this extension here to preprocess pmesg away.
*/
#define info_P(format, args...) ((void)0)
#else
void info_P(PGM_P format, ...);
/*
* print a message, if it is considered significant enough. Adapted from [K&R2], p. 174
*/
#endif
#endif

View File

@ -1,75 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdint.h>
#include <stdio.h>
#include <avr/interrupt.h> /* for sei() */
#include <avr/wdt.h>
#include "usbdrv.h"
#include "oddebug.h" /* This is also an example for using debug macros */
#include "debug.h"
#include "info.h"
#include "sram.h"
#include "system.h"
extern system_t my_system;
void (*jump_to_app) (void) = 0x0000;
void irq_init()
{
cli();
PCMSK3 |= (1 << PCINT27);
PCICR |= (1 << PCIE3);
sei();
my_system.reset_irq = RESET_IRQ_ON;
}
void irq_stop()
{
cli();
PCMSK3 &= ~(1 << PCINT27);
sei();
my_system.reset_irq = RESET_IRQ_OFF;
}
void leave_application(void)
{
cli();
usbDeviceDisconnect();
my_system.avr_reset_count++;
wdt_enable(WDTO_15MS);
while (1);
}
ISR(PCINT3_vect)
{
if (snes_reset_test()) {
info_P(PSTR("Catch SNES reset button\n"));
info_P(PSTR("Set watchdog...\n"));
leave_application();
}
}

View File

@ -1,28 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __IRQ_H__
#define __IRQ_H__
void irq_init();
void irq_stop();
void leave_application(void);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +0,0 @@
/*
File: qd16boot_ver01.smc
Time: Sat, 20 Aug 2016 18:12:14
*/
#ifndef __FIFO_H__
#define __FIFO_H__
#define LOADER_NAME "qd16boot_ver01.smc"
#define LOADER_COMPRESS "RLE"
#define ROM_RLE_SIZE 31091
#define ROM_BUFFER_CNT 1
#define ROM_BUFFER_SIZE01 31091
#endif

View File

@ -1,329 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdlib.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <string.h>
#include "usbdrv.h"
#include "oddebug.h"
#include "config.h"
#include "requests.h"
#include "uart.h"
#include "sram.h"
#include "debug.h"
#include "info.h"
#include "dump.h"
#include "crc.h"
#include "usb_bulk.h"
#include "timer.h"
#include "watchdog.h"
#include "rle.h"
#include "loader.h"
#include "command.h"
#include "shared_memory.h"
#include "irq.h"
#include "pwm.h"
#include "testing.h"
#include "shell.h"
#include "system.h"
#ifndef NO_DEBUG
extern FILE uart_stdout;
#endif
extern system_t my_system;
uint8_t debug_level = (DEBUG | DEBUG_USB | DEBUG_CRC);
usb_transaction_t usb_trans;
usbMsgLen_t usbFunctionSetup(uchar data[8])
{
usbRequest_t *rq = (void *) data;
uint8_t ret_len = 0;
if (rq->bRequest == USB_BULK_UPLOAD_INIT) {
usb_trans.req_bank = 0;
usb_trans.rx_remaining = 0;
debug_P(DEBUG_USB, PSTR("USB_BULK_UPLOAD_INIT: %i %i\n"),
rq->wValue.word, rq->wIndex.word);
usb_trans.req_bank_size = (uint32_t) (1L << rq->wValue.word);
usb_trans.req_bank_cnt = rq->wIndex.word;
usb_trans.req_addr_end =
(uint32_t) usb_trans.req_bank_size * usb_trans.req_bank_cnt;
usb_trans.req_percent = 0;
usb_trans.req_percent_last = 0;
usb_trans.sync_errors = 0;
debug_P(DEBUG_USB,
PSTR
("USB_BULK_UPLOAD_INIT: bank_size=0x%08lx bank_cnt=0x%x end_addr=0x%08lx\n"),
usb_trans.req_bank_size, usb_trans.req_bank_cnt,
usb_trans.req_addr_end);
shared_memory_write(SHARED_MEM_TX_CMD_UPLOAD_START, 0);
shared_memory_write(SHARED_MEM_TX_CMD_BANK_COUNT,
usb_trans.req_bank_cnt);
#if DO_TIMER
if (usb_trans.req_addr == 0x000000) {
#ifndef NO_DEBUG
timer_start();
#endif
}
#endif
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_BULK_UPLOAD_ADDR) {
usb_trans.req_state = REQ_STATUS_BULK_UPLOAD;
usb_trans.req_addr = rq->wValue.word;
usb_trans.req_addr = usb_trans.req_addr << 16;
usb_trans.req_addr = usb_trans.req_addr | rq->wIndex.word;
usb_trans.rx_remaining = rq->wLength.word;
if (usb_trans.req_addr
&& usb_trans.req_addr % usb_trans.req_bank_size == 0) {
#if DO_TIMER
#ifndef NO_DEBUG
#ifdef FLT_DEBUG
debug_P(DEBUG_USB,
PSTR
("USB_BULK_UPLOAD_ADDR: req_bank=0x%02x addr=0x%08lx time=%.4f\n"),
usb_trans.req_bank, usb_trans.req_addr, timer_stop());
#else
debug_P(DEBUG_USB,
PSTR
("USB_BULK_UPLOAD_ADDR: req_bank=0x%02x addr=0x%08lx time=%i\n"),
usb_trans.req_bank, usb_trans.req_addr, timer_stop_int());
#endif
timer_start();
#endif
#endif
usb_trans.req_bank++;
} else {
sram_bulk_write_start(usb_trans.req_addr);
}
ret_len = USB_MAX_TRANS;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_BULK_UPLOAD_NEXT) {
usb_trans.req_state = REQ_STATUS_BULK_UPLOAD;
usb_trans.req_addr = rq->wValue.word;
usb_trans.req_addr = usb_trans.req_addr << 16;
usb_trans.req_addr = usb_trans.req_addr | rq->wIndex.word;
usb_trans.rx_remaining = rq->wLength.word;
#if DO_SHM
usb_trans.req_percent =
(uint32_t) (100 * usb_trans.req_addr) / usb_trans.req_addr_end;
if (usb_trans.req_percent != usb_trans.req_percent_last) {
shared_memory_write(SHARED_MEM_TX_CMD_UPLOAD_PROGESS,
usb_trans.req_percent);
}
usb_trans.req_percent_last = usb_trans.req_percent;
shared_memory_scratchpad_region_save_helper(usb_trans.req_addr);
#endif
if (usb_trans.req_addr
&& (usb_trans.req_addr % usb_trans.req_bank_size) == 0) {
#if DO_TIMER
#ifndef NO_DEBUG
#ifdef FLT_DEBUG
debug_P(DEBUG_USB,
PSTR
("USB_BULK_UPLOAD_NEXT: req_bank=0x%02x addr=0x%08lx time=%.4f\n"),
usb_trans.req_bank, usb_trans.req_addr, timer_stop());
#else
debug_P(DEBUG_USB,
PSTR
("USB_BULK_UPLOAD_NEXT: req_bank=0x%02x addr=0x%08lx time=%i\n"),
usb_trans.req_bank, usb_trans.req_addr, timer_stop_int());
#endif
timer_start();
#endif
#endif
usb_trans.req_bank++;
#if DO_SHM
shared_memory_write(SHARED_MEM_TX_CMD_BANK_CURRENT,
usb_trans.req_bank);
#endif
}
ret_len = USB_MAX_TRANS;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_BULK_UPLOAD_END) {
debug_P(DEBUG_USB, PSTR("USB_BULK_UPLOAD_END:\n"));
usb_trans.req_state = REQ_STATUS_IDLE;
sram_bulk_write_end();
#if DO_SHM
shared_memory_write(SHARED_MEM_TX_CMD_UPLOAD_END, 0);
#endif
ret_len = 0;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_CRC) {
usb_trans.req_addr = rq->wValue.word;
usb_trans.req_addr = usb_trans.req_addr << 16;
usb_trans.req_addr = usb_trans.req_addr | rq->wIndex.word;
debug_P(DEBUG_USB, PSTR("USB_CRC: addr=0x%08lx \n"),
usb_trans.req_addr);
#if DO_CRC_CHECK
crc_check_bulk_memory(0x000000, usb_trans.req_addr,
usb_trans.req_bank_size);
#endif
ret_len = 0;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_MODE_SNES) {
usb_trans.req_state = REQ_STATUS_SNES;
debug_P(DEBUG_USB, PSTR("USB_MODE_SNES:\n"));
ret_len = 0;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_MODE_AVR) {
usb_trans.req_state = REQ_STATUS_AVR;
debug_P(DEBUG_USB, PSTR("USB_MODE_AVR:\n"));
ret_len = 0;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_AVR_RESET) {
debug_P(DEBUG_USB, PSTR("USB_AVR_RESET:\n"));
soft_reset();
ret_len = 0;
/*
* -------------------------------------------------------------------------
*/
} else if (rq->bRequest == USB_SET_LAODER) {
debug_P(DEBUG_USB, PSTR("USB_SET_LAODER:\n"));
usb_trans.loader_enabled = rq->wValue.word;
ret_len = 0;
}
usbMsgPtr = usb_trans.rx_buffer;
return ret_len;
}
/*
* -------------------------------------------------------------------------
*/
void globals_init()
{
memset(&usb_trans, 0, sizeof(usb_transaction_t));
usb_trans.req_addr = 0;
usb_trans.req_addr_end = 0;
usb_trans.req_state = REQ_STATUS_IDLE;
usb_trans.rx_remaining = 0;
usb_trans.tx_remaining = 0;
usb_trans.sync_errors = 0;
usb_trans.loader_enabled = 1;
}
int main(void)
{
#ifndef NO_DEBUG
uart_init();
stdout = &uart_stdout;
banner();
#endif
shared_memory_init();
system_init();
sram_init();
pwm_init();
irq_init();
boot_startup_rom(50);
globals_init();
pwm_stop();
usbInit();
usb_connect();
sei();
while (1) {
system_set_bus_avr();
system_set_wr_disable();
while (usb_trans.req_state != REQ_STATUS_SNES) {
usbPoll();
#if DO_SHELL
#ifndef NO_DEBUG
shell_run();
#endif
#endif
}
#if DO_SHM
shared_memory_write(SHARED_MEM_TX_CMD_TERMINATE, 0);
#endif
#if DO_SHM_SCRATCHPAD
shared_memory_scratchpad_region_tx_restore();
shared_memory_scratchpad_region_rx_restore();
#endif
#if DO_CRC_CHECK
info_P(PSTR("-->CRC Check\n"));
crc_check_bulk_memory(0x000000,
usb_trans.req_bank_size * usb_trans.req_bank_cnt,
usb_trans.req_bank_size);
#endif
system_set_rom_mode(&usb_trans);
system_set_wr_disable();
system_set_bus_snes();
system_send_snes_reset();
irq_stop();
while ((usb_trans.req_state != REQ_STATUS_AVR)) {
usbPoll();
#if DO_SHELL
#ifndef NO_DEBUG
shell_run();
#endif
#endif
}
info_P(PSTR("-->Switch TO AVR\n"));
shared_memory_init();
irq_init();
if (usb_trans.loader_enabled) {
boot_startup_rom(50);
} else {
system_set_bus_avr();
system_send_snes_reset();
}
globals_init();
}
return 0;
}

View File

@ -1,30 +0,0 @@
Loader Version 1
DEBUG:
Bootloader: 4096
CODE: 24984
RAM: 742
LOADER: 31091
NO_DEBUG:
Bootloader: 4096
CODE: 7532
RAM: 344
LOADER: 31091
Loader Version 2
DEBUG:
Bootloader: 4096
CODE: 24984
RAM: 742
LOADER: 58046
NO_DEBUG:
Bootloader: 4096
CODE: 7532
RAM: 344
LOADER: 58046

View File

@ -1,113 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdint.h>
#include <string.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "pwm.h"
#include "debug.h"
#include "info.h"
#include "sram.h"
#define PWM_SINE_MAX 64
#define PWM_OVERFLOW_MAX 1024
uint8_t pwm_sine_table[] = {
0x7f, 0x8b, 0x97, 0xa4, 0xaf, 0xbb, 0xc5, 0xcf, 0xd9, 0xe1, 0xe8, 0xef,
0xf4, 0xf8, 0xfb, 0xfd,
0xfd, 0xfd, 0xfb, 0xf8, 0xf3, 0xee, 0xe7, 0xe0, 0xd7, 0xce, 0xc4, 0xb9,
0xae, 0xa2, 0x96, 0x89,
0x7e, 0x71, 0x65, 0x59, 0x4d, 0x42, 0x37, 0x2d, 0x24, 0x1c, 0x15, 0x0f,
0x09, 0x05, 0x03, 0x01,
0x01, 0x01, 0x03, 0x07, 0x0b, 0x11, 0x17, 0x1f, 0x28, 0x31, 0x3b, 0x46,
0x52, 0x5e, 0x6a, 0x76
};
volatile uint8_t pwm_setting;
volatile uint16_t pwm_overflow;
volatile uint8_t pwm_idx;
volatile uint16_t pwm_overflow_max;
ISR(TIMER2_COMPA_vect)
{
static uint8_t pwm_cnt = 0;
OCR2A += (uint16_t) T_PWM;
if (pwm_setting > pwm_cnt)
led_pwm_on();
else
led_pwm_off();
if (pwm_cnt == (uint8_t) (PWM_STEPS - 1))
pwm_cnt = 0;
else
pwm_cnt++;
if (pwm_overflow_max == pwm_overflow++) {
pwm_setting = pwm_sine_table[pwm_idx++];
pwm_overflow = 0;
if (PWM_SINE_MAX == pwm_idx)
pwm_idx = 0;
}
}
void pwm_speed(uint16_t val)
{
pwm_overflow_max = val;
}
void pwm_speed_slow(uint16_t val)
{
pwm_overflow_max = PWM_OVERFLOW_MAX * 2;
}
void pwm_speed_fast(uint16_t val)
{
pwm_overflow_max = PWM_OVERFLOW_MAX / 2;
}
void pwm_speed_normal(uint16_t val)
{
pwm_overflow_max = PWM_OVERFLOW_MAX;
}
void pwm_set(uint8_t val)
{
pwm_setting = val;
}
void pwm_stop(void)
{
while (pwm_setting != 0xfd);
TIMSK2 = 0;
}
void pwm_init(void)
{
pwm_overflow_max = PWM_OVERFLOW_MAX;
pwm_setting = 0x7f;
pwm_overflow = 0;
// cli();
TCCR2B = 1;
TIMSK2 |= (1 << OCIE2A);
sei();
}

View File

@ -1,37 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __PWM_H__
#define __PWM_H__
#define F_PWM 100 // PWM-Frequenz in Hz
#define PWM_STEPS 256 // PWM-Schritte pro Zyklus(1..256)
#define T_PWM (F_CPU/(F_PWM*PWM_STEPS)) // Systemtakte pro PWM-Takt
#if (T_PWM<(93+5))
#error T_PWM zu klein, F_CPU muss vergrösst werden oder F_PWM oder PWM_STEPS verkleinert werden
#endif
void pwm_init(void);
void pwm_stop(void);
#endif

View File

@ -1,60 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __REQUESTS_H__
#define __REQUESTS_H__
#define USB_UPLOAD_INIT 0
#define USB_UPLOAD_ADDR 1
#define USB_DOWNLOAD_INIT 2
#define USB_DOWNLOAD_ADDR 3
#define USB_CRC 4
#define USB_CRC_ADDR 5
#define USB_BULK_UPLOAD_INIT 6
#define USB_BULK_UPLOAD_ADDR 7
#define USB_BULK_UPLOAD_NEXT 8
#define USB_BULK_UPLOAD_END 9
#define USB_MODE_SNES 10
#define USB_MODE_AVR 11
#define USB_AVR_RESET 12
#define USB_SET_LAODER 13
typedef struct usb_transaction_t {
uint32_t req_addr;
uint32_t req_addr_end;
uint8_t req_bank;
uint32_t req_bank_size;
uint16_t req_bank_cnt;
uint8_t req_percent;
uint8_t req_percent_last;
uint8_t req_state;
uint8_t rx_remaining;
uint8_t tx_remaining;
uint16_t sync_errors;
uint8_t tx_buffer[32];
uint8_t rx_buffer[8];
uint8_t loader_enabled;
} usb_transaction_t;
#endif /* __REQUESTS_H_INCLUDED__ */

View File

@ -1,42 +0,0 @@
#ifndef _ringbuffer_h
#define _ringbuffer_h
int __mod(int a, int b)
{
int r = a % b;
return r < 0 ? r + b : r;
}
#define ring_buffer_typedef(T, NAME) \
typedef struct { \
int size; \
int start; \
int end; \
T* elems; \
} NAME
#define buffer_init(BUF, S, T) \
BUF.size = S+1; \
BUF.start = 0; \
BUF.end = 0; \
BUF.elems = (T*)calloc(BUF.size, sizeof(T))
#define buffer_destroy(BUF) free(BUF->elems)
#define nex_start_index(BUF) ((BUF->start + 1) % BUF->size)
#define is_buffer_empty(BUF) (BUF->end == BUF->start)
#define buffer_get(BUF, INDEX) (BUF->elems[__mod(BUF->end - INDEX, BUF->size)])
#define bufferWrite(BUF, ELEM) \
BUF->elems[BUF->end] = ELEM; \
BUF->end = (BUF->end + 1) % BUF->size; \
if (is_buffer_empty(BUF)) { \
BUF->start = nex_start_index(BUF); \
}
#define bufferRead(BUF, ELEM) \
ELEM = BUF->elems[BUF->start]; \
BUF->start = nex_start_index(BUF);
#endif

View File

@ -1,102 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/io.h>
#include <stdlib.h>
#include <stdio.h>
#include <avr/pgmspace.h> /* required by usbdrv.h */
#include <util/delay.h> /* for _delay_ms() */
#include <avr/interrupt.h> /* for sei() */
#include "sram.h"
#include "debug.h"
#include "info.h"
#define RUNCHAR 0x90
uint32_t rle_decode(PGM_VOID_P in_addr, int32_t in_len, uint32_t out_addr)
{
uint8_t in_byte, in_repeat, last_byte;
info_P(PSTR("RLE decode len=%li addr=0x%08lx\n"), in_len, out_addr);
last_byte = 0;
sram_bulk_write_start(out_addr);
#define INBYTE(b) \
do { \
if ( --in_len < 0 ) { \
return 1; \
} \
cli();\
b = pgm_read_byte((PGM_VOID_P)in_addr++); \
sei();\
} while(0)
#define OUTBYTE(b) \
do { \
sram_bulk_write(b);\
sram_bulk_write_next();\
out_addr++;\
} while(0)
INBYTE(in_byte);
if (in_byte == RUNCHAR) {
INBYTE(in_repeat);
if (in_repeat != 0) {
info_P(PSTR("Orphaned RLE code at start\n"));
return 1;
}
OUTBYTE(RUNCHAR);
} else {
OUTBYTE(in_byte);
}
while (in_len > 0) {
INBYTE(in_byte);
if (in_len % 1024 == 0)
info_P(PSTR("."));
if (in_byte == RUNCHAR) {
INBYTE(in_repeat);
if (in_repeat == 0) {
/*
* Just an escaped RUNCHAR value
*/
OUTBYTE(RUNCHAR);
} else {
/*
* Pick up value and output a sequence of it
*/
in_byte = last_byte; // ;out_data[-1];
while (--in_repeat > 0)
OUTBYTE(in_byte);
}
} else {
/*
* Normal byte
*/
OUTBYTE(in_byte);
}
last_byte = in_byte;
}
sram_bulk_write_end();
info_P(PSTR("\nDone addr=0x%08lx\n"), out_addr);
return out_addr;
}

View File

@ -1,28 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __RLE_H__
#define __RLE_H__
#include <avr/pgmspace.h>
uint32_t rle_decode(PGM_VOID_P in_addr, uint32_t in_len, uint32_t out_addr);
#endif

View File

@ -1,391 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <util/delay.h>
#include "shared_memory.h"
#include "config.h"
#include "sram.h"
#include "debug.h"
#include "dump.h"
#include "info.h"
#include "crc.h"
uint8_t irq_addr_lo;
uint8_t irq_addr_hi;
uint8_t scratchpad_state;
uint8_t scratchpad_cmd;
uint8_t scratchpad_payload;
uint8_t scratchpad_region_rx[SHARED_MEM_RX_LOC_SIZE];
uint8_t scratchpad_region_tx[SHARED_MEM_TX_LOC_SIZE];
uint8_t scratchpad_locked_rx = 1;
uint8_t scratchpad_locked_tx = 1;
void shared_memory_init(void)
{
scratchpad_locked_rx = 1;
scratchpad_locked_tx = 1;
}
uint8_t shared_memory_scratchpad_region_save_helper(uint32_t addr)
{
#if DO_SHM_SCRATCHPAD
if (addr > (SHARED_MEM_TX_LOC_STATE + (SHARED_MEM_TX_LOC_SIZE))
&& scratchpad_locked_tx) {
debug_P(DEBUG_SHM,
PSTR
("shared_memory_scratchpad_region_save_helper: open tx addr=0x%06lx\n"),
addr);
shared_memory_scratchpad_region_tx_save();
return 0;
}
if (addr > (SHARED_MEM_RX_LOC_STATE + (SHARED_MEM_RX_LOC_SIZE))
&& scratchpad_locked_rx) {
debug_P(DEBUG_SHM,
PSTR
("shared_memory_scratchpad_region_save_helper: open rx addr=0x%06lx\n"),
addr);
shared_memory_scratchpad_region_rx_save();
return 0;
}
#endif
return 1;
}
void shared_memory_scratchpad_region_tx_save()
{
sram_bulk_addr_save();
#if SHARED_SCRATCHPAD_CRC
uint16_t crc;
crc = crc_check_bulk_memory((uint32_t) SHARED_MEM_TX_LOC_STATE,
(uint32_t) (SHARED_MEM_TX_LOC_STATE +
SHARED_MEM_TX_LOC_SIZE), 0x8000);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_save: crc=%x\n"), crc);
#endif
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_save: unlock\n"));
sram_bulk_copy_into_buffer((uint32_t) SHARED_MEM_TX_LOC_STATE,
scratchpad_region_tx,
(uint32_t) SHARED_MEM_TX_LOC_SIZE);
scratchpad_locked_tx = 0;
#if SHARED_SCRATCHPAD_CRC
do_crc_update(0, scratchpad_region_tx, SHARED_MEM_TX_LOC_SIZE);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_save: crc=%x\n"), crc);
#endif
#if SHARED_SCRATCHPAD_DUMP
dump_packet(SHARED_MEM_TX_LOC_STATE, SHARED_MEM_TX_LOC_SIZE,
scratchpad_region_tx);
dump_memory(SHARED_MEM_TX_LOC_STATE,
SHARED_MEM_TX_LOC_STATE + SHARED_MEM_TX_LOC_SIZE);
#endif
sram_bulk_addr_restore();
}
void shared_memory_scratchpad_region_rx_save()
{
sram_bulk_addr_save();
#if SHARED_SCRATCHPAD_CRC
uint16_t crc;
crc = crc_check_bulk_memory((uint32_t) SHARED_MEM_RX_LOC_STATE,
(uint32_t) (SHARED_MEM_RX_LOC_STATE +
SHARED_MEM_RX_LOC_SIZE), 0x8000);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_save: crc=%x\n"), crc);
#endif
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_save: unlock\n"));
sram_bulk_copy_into_buffer((uint32_t) SHARED_MEM_RX_LOC_STATE,
scratchpad_region_rx,
(uint32_t) SHARED_MEM_RX_LOC_SIZE);
scratchpad_locked_rx = 0;
#if SHARED_SCRATCHPAD_CRC
do_crc_update(0, scratchpad_region_rx, SHARED_MEM_RX_LOC_SIZE);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_save: crc=%x\n"), crc);
#endif
#if SHARED_SCRATCHPAD_DUMP
dump_packet(SHARED_MEM_RX_LOC_STATE, SHARED_MEM_RX_LOC_SIZE,
scratchpad_region_rx);
dump_memory(SHARED_MEM_RX_LOC_STATE,
SHARED_MEM_RX_LOC_STATE + SHARED_MEM_RX_LOC_SIZE);
#endif
sram_bulk_addr_restore();
}
void shared_memory_scratchpad_region_tx_restore()
{
if (scratchpad_locked_tx)
return;
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_restore: lock\n"));
#if SHARED_SCRATCHPAD_DUMP
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_restore: memory\n"));
dump_memory(SHARED_MEM_TX_LOC_STATE,
SHARED_MEM_TX_LOC_STATE + SHARED_MEM_TX_LOC_SIZE);
#endif
sram_bulk_copy_from_buffer((uint32_t) SHARED_MEM_TX_LOC_STATE,
scratchpad_region_tx,
(uint32_t) SHARED_MEM_TX_LOC_SIZE);
scratchpad_locked_tx = 1;
#if SHARED_SCRATCHPAD_DUMP
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_restore: buffer\n"));
dump_packet(SHARED_MEM_TX_LOC_STATE, SHARED_MEM_TX_LOC_SIZE,
scratchpad_region_tx);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_restore: memory\n"));
dump_memory(SHARED_MEM_TX_LOC_STATE,
SHARED_MEM_TX_LOC_STATE + SHARED_MEM_TX_LOC_SIZE);
#endif
#if SHARED_SCRATCHPAD_CRC
uint16_t crc;
crc = crc_check_bulk_memory((uint32_t) SHARED_MEM_TX_LOC_STATE,
(uint32_t) (SHARED_MEM_TX_LOC_STATE +
SHARED_MEM_TX_LOC_SIZE), 0x8000);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_tx_restore: crc=%x\n"), crc);
#endif
}
void shared_memory_scratchpad_region_rx_restore()
{
if (scratchpad_locked_rx)
return;
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_restore: lock\n"));
#if SHARED_SCRATCHPAD_DUMP
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_restore: memory\n"));
dump_memory(SHARED_MEM_RX_LOC_STATE - 0x10,
SHARED_MEM_RX_LOC_STATE + SHARED_MEM_RX_LOC_SIZE);
#endif
sram_bulk_copy_from_buffer((uint32_t) SHARED_MEM_RX_LOC_STATE,
scratchpad_region_rx,
(uint32_t) SHARED_MEM_RX_LOC_SIZE);
scratchpad_locked_rx = 1;
#if SHARED_SCRATCHPAD_DUMP
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_restore: buffer\n"));
dump_packet(SHARED_MEM_RX_LOC_STATE, SHARED_MEM_RX_LOC_SIZE,
scratchpad_region_rx);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_restore: memory\n"));
dump_memory(SHARED_MEM_RX_LOC_STATE - 0x10,
SHARED_MEM_RX_LOC_STATE + SHARED_MEM_RX_LOC_SIZE);
#endif
#if SHARED_SCRATCHPAD_CRC
uint16_t crc;
crc = crc_check_bulk_memory((uint32_t) SHARED_MEM_RX_LOC_STATE,
(uint32_t) (SHARED_MEM_RX_LOC_STATE +
SHARED_MEM_RX_LOC_SIZE), 0x8000);
debug_P(DEBUG_SHM,
PSTR("shared_memory_scratchpad_region_rx_restore: crc=%x\n"), crc);
#endif
}
void shared_memory_scratchpad_tx_save()
{
scratchpad_state = sram_read(SHARED_MEM_TX_LOC_STATE);
scratchpad_cmd = sram_read(SHARED_MEM_TX_LOC_CMD);
scratchpad_payload = sram_read(SHARED_MEM_TX_LOC_PAYLOAD);
}
void shared_memory_scratchpad_tx_restore()
{
sram_write(SHARED_MEM_TX_LOC_STATE, scratchpad_state);
sram_write(SHARED_MEM_TX_LOC_CMD, scratchpad_cmd);
sram_write(SHARED_MEM_TX_LOC_PAYLOAD, scratchpad_payload);
}
void shared_memory_irq_hook()
{
irq_addr_lo = sram_read(SHARED_IRQ_LOC_LO);
irq_addr_hi = sram_read(SHARED_IRQ_LOC_HI);
sram_write(SHARED_IRQ_HANDLER_LO, 0);
sram_write(SHARED_IRQ_HANDLER_HI, 0);
}
void shared_memory_irq_restore()
{
sram_write(SHARED_IRQ_LOC_LO, irq_addr_lo);
sram_write(SHARED_IRQ_LOC_HI, irq_addr_hi);
}
void shared_memory_write(uint8_t cmd, uint8_t value)
{
#if DO_SHM
#if DO_SHM_SCRATCHPAD
if (scratchpad_locked_tx) {
debug_P(DEBUG_SHM, PSTR("shared_memory_write: locked_tx\n"));
return;
}
#endif
debug_P(DEBUG_SHM,
PSTR("shared_memory_write: 0x%04x=0x%02x 0x%04x=0x%02x \n"),
SHARED_MEM_TX_LOC_CMD, cmd, SHARED_MEM_TX_LOC_PAYLOAD, value);
sram_bulk_addr_save();
#if (DO_SHM_SCRATCHPAD==0)
shared_memory_scratchpad_tx_save();
#endif
#if SHARED_MEM_SWITCH_IRQ
shared_memory_irq_hook();
#endif
sram_write(SHARED_MEM_TX_LOC_STATE, SHARED_MEM_TX_SNES_ACK);
sram_write(SHARED_MEM_TX_LOC_CMD, cmd);
sram_write(SHARED_MEM_TX_LOC_PAYLOAD, value);
snes_hirom();
snes_wr_disable();
snes_bus_active();
#if SHARED_MEM_SWITCH_IRQ
snes_irq_on();
snes_irq_lo();
_delay_us(20);
snes_irq_hi();
snes_irq_off();
#else
_delay_ms(SHARED_MEM_SWITCH_DELAY);
#endif
avr_bus_active();
snes_irq_lo();
snes_irq_off();
snes_lorom();
snes_wr_disable();
#if (DO_SHM_SCRATCHPAD==0)
shared_memory_scratchpad_tx_restore();
#endif
#if SHARED_MEM_SWITCH_IRQ
shared_memory_irq_restore();
#endif
sram_bulk_addr_restore();
#endif
}
void shared_memory_yield()
{
snes_hirom();
snes_wr_disable();
snes_bus_active();
_delay_ms(SHARED_MEM_SWITCH_DELAY);
avr_bus_active();
snes_lorom();
snes_wr_disable();
}
int shared_memory_read(uint8_t * cmd, uint8_t * len, uint8_t * buffer)
{
// uint8_t state;
#if DO_SHM
#if DO_SHM_SCRATCHPAD
if (scratchpad_locked_rx) {
debug_P(DEBUG_SHM, PSTR("shared_memory_write: locked_tx\n"));
return 1;
}
#endif
sram_bulk_addr_save();
state = sram_read(SHARED_MEM_RX_LOC_STATE);
if (state != SHARED_MEM_RX_AVR_ACK) {
sram_bulk_addr_restore();
return 1;
}
*cmd = sram_read(SHARED_MEM_RX_LOC_CMD);
*len = sram_read(SHARED_MEM_RX_LOC_LEN);
debug_P(DEBUG_SHM,
PSTR("shared_memory_read: 0x%04x=0x%02x 0x%04x=0x%02x \n"),
SHARED_MEM_RX_LOC_CMD, *cmd, SHARED_MEM_RX_LOC_LEN, *len);
sram_bulk_copy_into_buffer(SHARED_MEM_RX_LOC_PAYLOAD, buffer, *len);
sram_write(SHARED_MEM_RX_LOC_STATE, SHARED_MEM_RX_AVR_RTS);
snes_hirom();
snes_wr_disable();
snes_bus_active();
#if SHARED_MEM_SWITCH_IRQ
snes_irq_on();
snes_irq_lo();
_delay_us(20);
snes_irq_hi();
snes_irq_off();
#else
_delay_ms(SHARED_MEM_SWITCH_DELAY);
#endif
avr_bus_active();
snes_lorom();
snes_wr_disable();
sram_bulk_addr_restore();
#endif
return 0;
}

View File

@ -1,78 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __SHARED_MEMORY_H__
#define __SHARED_MEMORY_H__
#define SHARED_MEM_SWITCH_IRQ 0
#define SHARED_MEM_SWITCH_DELAY 20
#define SHARED_MEM_TX_SNES_ACK 0xa5
#define SHARED_MEM_TX_SNES_RTS 0x5a
#define SHARED_MEM_TX_CMD_BANK_COUNT 0x00
#define SHARED_MEM_TX_CMD_BANK_CURRENT 0x01
#define SHARED_MEM_TX_CMD_UPLOAD_START 0x03
#define SHARED_MEM_TX_CMD_UPLOAD_END 0x04
#define SHARED_MEM_TX_CMD_UPLOAD_PROGESS 0x05
#define SHARED_MEM_TX_CMD_TERMINATE 0x06
#define SHARED_MEM_TX_LOC_STATE 0x000000
#define SHARED_MEM_TX_LOC_SIZE 0x000040
#define SHARED_MEM_TX_LOC_CMD 0x000001
#define SHARED_MEM_TX_LOC_PAYLOAD 0x000002
#define SHARED_MEM_RX_AVR_ACK 0xa5
#define SHARED_MEM_RX_AVR_RTS 0x5a
#define SHARED_MEM_RX_CMD_PRINFT 0x00
#define SHARED_MEM_RX_CMD_FILESEL 0x01
#define SHARED_MEM_RX_LOC_STATE 0x001000
#define SHARED_MEM_RX_LOC_SIZE 0x000040
#define SHARED_MEM_RX_LOC_CMD 0x001001
#define SHARED_MEM_RX_LOC_LEN 0x001002
#define SHARED_MEM_RX_LOC_PAYLOAD 0x001003
#define SHARED_IRQ_LOC_LO 0x00fffe
#define SHARED_IRQ_LOC_HI 0x00ffff
/*
* Use COP IRQ LOC for hooked IRQ handler
*/
#define SHARED_IRQ_HANDLER_LO 0x0ffe4
#define SHARED_IRQ_HANDLER_HI 0x0ffe5
#define SHARED_SCRATCHPAD_DUMP 0
#define SHARED_SCRATCHPAD_CRC 0
void shared_memory_init(void);
uint8_t shared_memory_scratchpad_region_save_helper(uint32_t addr);
void shared_memory_scratchpad_region_tx_save();
void shared_memory_scratchpad_region_tx_restore();
void shared_memory_scratchpad_region_rx_save();
void shared_memory_scratchpad_region_rx_restore();
void shared_memory_write(uint8_t cmd, uint8_t value);
int shared_memory_read(uint8_t * cmd, uint8_t * len, uint8_t * buffer);
#endif

View File

@ -1,495 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdint.h>
#include <string.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include "pwm.h"
#include "debug.h"
#include "info.h"
#include "sram.h"
#include "util.h"
#include "uart.h"
#include "dump.h"
#include "irq.h"
#include "config.h"
#include "crc.h"
#include "command.h"
#include "shared_memory.h"
#include "system.h"
extern system_t my_system;
const char STR_ROM[] PROGMEM = "Rom";
const char STR_RAM[] PROGMEM = "Sram";
const char STR_BAT[] PROGMEM = "Battery";
const char STR_SUPERFX[] PROGMEM = "SuperFX";
const char STR_SA[] PROGMEM = "SA-1";
uint8_t command_buf[RECEIVE_BUF_LEN];
uint8_t recv_buf[RECEIVE_BUF_LEN];
volatile uint8_t recv_counter = 0;
volatile uint8_t cr = 0;
uint8_t *token_ptr;
#if DO_SHELL
uint8_t *get_token(void)
{
uint8_t *p = token_ptr;
while (*p == ' ')
p++;
if (*p == '\0')
return NULL;
token_ptr = p;
do {
token_ptr++;
if (*token_ptr == ' ' || *token_ptr == '\n' || *token_ptr == '\r') {
*token_ptr++ = '\0';
break;
}
} while (*token_ptr != ' ' && *token_ptr != '\n' && *token_ptr != '\r');
return p;
}
uint8_t get_dec(uint32_t * decval)
{
const uint8_t *t;
t = get_token();
if (t != NULL) {
int x = util_sscandec(t);
if (x < 0)
return 0;
*decval = x;
return 1;
}
return 0;
}
uint8_t parse_hex(const uint8_t * s, uint32_t * hexval)
{
uint32_t x = util_sscanhex(s);
*hexval = (uint32_t) x;
return 1;
}
uint8_t get_hex(uint32_t * hexval)
{
const uint8_t *t;
t = get_token();
if (t != NULL)
return parse_hex(t, hexval);
return 0;
}
uint8_t get_hex_arg2(uint32_t * hexval1, uint32_t * hexval2)
{
return get_hex(hexval1) && get_hex(hexval2);
}
uint8_t get_hex_arg3(uint32_t * hexval1, uint32_t * hexval2, uint32_t * hexval3)
{
return get_hex(hexval1) && get_hex(hexval2) && get_hex(hexval3);
}
#if 0
static uint8_t get_int32(uint32_t * val)
{
if (!get_hex(val)) {
info_P(PSTR("Invalid argument!\n"));
return 0;
} else {
return 1;
}
}
static uint8_t get_int8(uint8_t * val)
{
uint32_t ret;
if (!get_hex(&ret) || ret > 0xff) {
info_P(PSTR("Invalid argument!\n"));
return 0;
} else {
*val = (uint8_t) ret;
return 1;
}
}
#endif
static int get_bool(void)
{
const uint8_t *t;
t = get_token();
if (t != NULL) {
int result = util_sscanbool(t);
if (result >= 0)
return result;
}
info_P(PSTR("Invalid argument (should be 0 or 1)!\n"));
return -1;
}
void prompt(void)
{
uart_putc('\r');
uart_putc('\n');
uart_putc('>');
}
ISR(USART0_RX_vect)
{
UCSR0B &= (255 - (1 << RXCIE0)); // Interrupts disable for RxD
sei();
if (recv_counter == (sizeof(recv_buf) - 1)) {
cr = 1;
recv_buf[recv_counter] = '\0';
recv_counter = 0;
prompt();
}
recv_buf[recv_counter] = UDR0;
uart_putc(recv_buf[recv_counter]);
if (recv_buf[recv_counter] == 0x0d) {
/*
* recv_buf[recv_counter] = 0;
*/
cr = 1;
recv_buf[++recv_counter] = '\0';
recv_counter = 0;
prompt();
} else {
// we accept backspace or delete
if ((recv_buf[recv_counter] == 0x08 || recv_buf[recv_counter] == 0x7f)
&& recv_counter > 0) {
recv_counter--;
} else {
recv_counter++;
}
}
UCSR0B |= (1 << RXCIE0);
}
enum cmds {
CMD_DUMP,
CMD_DUMPVEC,
CMD_DUMPHEADER,
#if DO_CRC_CHECK
CMD_CRC,
#endif
CMD_EXIT,
CMD_RESET,
CMD_RESETSNIFF,
CMD_IRQ,
CMD_AVR,
CMD_SNES,
CMD_LOROM,
CMD_HIROM,
CMD_WR,
CMD_SHMWR,
CMD_SHMSAVE,
CMD_SHMRESTORE,
CMD_LOADER,
CMD_RECONNECT,
CMD_STATUS,
CMD_SYS,
CMD_HELP
};
const uint8_t cmdlist[][CMD_HELP] PROGMEM = {
{"DUMP"},
{"DUMPVEC"},
{"DUMPHEADER"},
#if DO_CRC_CHECK
{"CRC"},
#endif
{"EXIT"},
{"RESET"},
{"RESETSNIFF"},
{"IRQ"},
{"AVR"},
{"SNES"},
{"LOROM"},
{"HIROM"},
{"WR"},
{"SHMWR"},
{"SHMSAVE"},
{"SHMRESTORE"},
{"LOADER"},
{"RECONNECT"},
{"STATUS"},
{"SYS"},
{"HELP"},
};
void shell_help(void)
{
uint8_t i;
info_P(PSTR("\n"));
for (i = CMD_DUMP; i < CMD_HELP; i++) {
info_P((PGM_P) cmdlist[i]);
info_P(PSTR("\n"));
}
}
void shell_run(void)
{
uint8_t *t;
uint32_t arg1;
uint32_t arg2;
uint16_t crc;
uint16_t offset;
uint8_t c;
if (!cr)
return;
cr = 0;
strcpy((char *) command_buf, (char *) recv_buf);
token_ptr = command_buf;
t = get_token();
if (t == NULL)
shell_help();
util_strupper(t);
if (strcmp_P((const char *) t, (PGM_P) cmdlist[CMD_DUMP]) == 0) {
if (get_hex_arg2(&arg1, &arg2))
dump_memory(arg1, arg2);
else
info_P(PSTR("DUMP <start addr> <end addr>\n"));
#if DO_CRC_CHECK
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_CRC]) == 0) {
if (get_hex_arg2(&arg1, &arg2)) {
crc = crc_check_bulk_memory(arg1, arg2, 0x8000);
info_P(PSTR("0x%06lx - 0x%06lx crc=0x%04x\n"), arg1, arg2, crc);
} else
info_P(PSTR("CRC <start addr> <end addr>\n"));
#endif
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_EXIT]) == 0) {
leave_application();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_RESET]) == 0) {
system_send_snes_reset();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_IRQ]) == 0) {
info_P(PSTR("Send IRQ\n"));
snes_irq_on();
snes_irq_lo();
_delay_us(20);
snes_irq_hi();
snes_irq_off();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_AVR]) == 0) {
system_set_bus_avr();
snes_irq_lo();
system_snes_irq_off();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_SNES]) == 0) {
snes_irq_lo();
system_snes_irq_off();
system_set_wr_disable();
system_set_bus_snes();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_LOROM]) == 0) {
system_set_rom_lorom();
system_set_wr_disable();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_HIROM]) == 0) {
system_set_rom_hirom();
system_set_wr_disable();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_WR]) == 0) {
arg1 = get_bool();
if (arg1 == 1) {
info_P(PSTR("Set WR enable"));
snes_wr_enable();
} else if (arg1 == 0) {
info_P(PSTR("Set WR disable"));
snes_wr_disable();
}
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_RESETSNIFF]) == 0) {
arg1 = get_bool();
if (arg1 == 1) {
info_P(PSTR("Start Reset sniffer"));
irq_init();
} else if (arg1 == 0) {
info_P(PSTR("Stop Reset sniffer"));
irq_stop();
}
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_DUMPVEC]) == 0) {
uint16_t offset;
if (my_system.rom_mode == LOROM)
offset = 0x8000;
else
offset = 0x0000;
info_P(PSTR("ABORT 0x%04x 0x%04x\n"), (0xFFE8 - offset),
sram_read16_be(0xFFE8 - offset));
info_P(PSTR("BRK 0x%04x 0x%04x\n"), (0xFFE6 - offset),
sram_read16_be(0xFFE6 - offset));
info_P(PSTR("COP 0x%04x 0x%04x\n"), (0xFFE4 - offset),
sram_read16_be(0xFFE4 - offset));
info_P(PSTR("IRQ 0x%04x 0x%04x\n"), (0xFFEE - offset),
sram_read16_be(0xFFEE - offset));
info_P(PSTR("NMI 0x%04x 0x%04x\n"), (0xFFEA - offset),
sram_read16_be(0xFFEA - offset));
info_P(PSTR("RES 0x%04x 0x%04x\n"), (0xFFFC - offset),
sram_read16_be(0xFFFC - offset));
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_DUMPHEADER]) == 0) {
if (my_system.rom_mode == LOROM)
offset = 0x8000;
else
offset = 0x0000;
/*
* # $ffc0..$ffd4 => Name of the ROM, typically in ASCII, using spaces to pad the name to 21 bytes. # $ffd5 => ROM layout,
* typically $20 for LoROM, or $21 for HiROM. Add $10 for FastROM. # $ffd6 => Cartridge type, typically $00 for ROM only, or $02
* for ROM with save-RAM. # $ffd7 => ROM size byte. # $ffd8 => RAM size byte. # $ffd9 => Country code, which selects the video in
* the emulator. Values $00, $01, $0d use NTSC. Values in range $02..$0c use PAL. Other values are invalid. # $ffda => Licensee
* code. If this value is $33, then the ROM has an extended header with ID at $ffb2..$ffb5. # $ffdb => Version number, typically
* $00. # $ffdc..$ffdd => Checksum complement, which is the bitwise-xor of the checksum and $ffff. # $ffde..$ffdf => SNES checksum,
* an unsigned 16-bit checksum of bytes. # $ffe0..$ffe3 => Unknown.
*/
info_P(PSTR("NAME 0x%04x "), (0xffc0 - offset));
for (arg1 = (0xffc0 - offset); arg1 < (0xffc0 - offset + 21); arg1++) {
c = sram_read(arg1);
if (c > 0x1f && c < 0x7f)
printf("%c", c);
}
printf("\n");
c = sram_read(0xffd5 - offset);
info_P(PSTR("LAYOUT 0x%04x "), (0xffd5 - offset));
switch (c) {
case 0x20:
info_P(PSTR("LoROM, not fast\n"));
break;
case 0x21:
info_P(PSTR("HiRom, not fast\n"));
break;
case 0x30:
info_P(PSTR("LoROM, fast\n"));
break;
case 0x31:
info_P(PSTR("HiRom, fast\n"));
break;
default:
info_P(PSTR("Unkown 0x%02x\n"), c);
break;
}
c = sram_read(0xffd6 - offset);
info_P(PSTR("TYPE 0x%04xc"), (0xffd6 - offset), c);
switch (c) {
case 0x00:
info_P(PSTR("Rom\n"));
break;
case 0x01:
info_P(PSTR("Rom + Sram\n"));
break;
case 0x02:
info_P(PSTR("Rom + Sram + Battery\n"));
break;
case 0x13:
info_P(PSTR("SuperFX\n"));
break;
case 0x14:
info_P(PSTR("SuperFX\n"));
break;
case 0x15:
info_P(PSTR("SuperFX + Sram\n"));
break;
case 0x1a:
info_P(PSTR("SuperFX + Sram\n"));
break;
case 0x34:
info_P(PSTR("SA-1"));
break;
case 0x35:
info_P(PSTR("SA-1"));
break;
default:
info_P(PSTR("Unkown 0x%02x\n"), c);
break;
}
arg1 = (2 << (sram_read(0xffd7 - offset) - 1));
info_P(PSTR("ROM 0x%04x %li MBit ( %li KiB)\n"),
(0xffd7 - offset), (arg1 / 128), arg1);
arg1 = (2 << (sram_read(0xffd8 - offset) - 1));
info_P(PSTR("RAM 0x%04x %li KiB\n"), (0xffd8 - offset), arg1);
info_P(PSTR("CCODE 0x%04x "), (0xffd9 - offset));
c = sram_read(0xffd9 - offset);
if (c == 0x00 || c == 0x01 || 0x0d)
info_P(PSTR("NTSC\n"));
else if (c >= 0x02 || c <= 0x0c)
info_P(PSTR("PAL\n"));
else
info_P(PSTR("Unkown 0x%02x\n"), c);
info_P(PSTR("LIC 0x%04x 0x%02x\n"), (0xffda - offset),
sram_read(0xffda - offset));
info_P(PSTR("VER 0x%04x 0x%02x\n"), (0xffdb - offset),
sram_read(0xffdb - offset));
info_P(PSTR("SUM1 0x%04x 0x%04x\n"), (0xffdc - offset),
sram_read16_be(0xffdc - offset));
info_P(PSTR("SUM2 0x%04x 0x%04x\n"), (0xffde - offset),
sram_read16_be(0xffde - offset));
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_SHMWR]) == 0) {
if (get_hex_arg2(&arg1, &arg2))
shared_memory_write((uint8_t) arg1, (uint8_t) arg1);
else
info_P(PSTR("SHMWR <command> <value>\n"));
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_SHMSAVE]) == 0) {
shared_memory_scratchpad_region_tx_save();
shared_memory_scratchpad_region_rx_save();
info_P(PSTR("Save scratchpad\n"));
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_SHMRESTORE]) == 0) {
shared_memory_scratchpad_region_tx_restore();
shared_memory_scratchpad_region_rx_restore();
info_P(PSTR("Restore scratchpad\n"));
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_LOADER]) == 0) {
boot_startup_rom(500);
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_RECONNECT]) == 0) {
usb_connect();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_STATUS]) == 0) {
transaction_status();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_SYS]) == 0) {
system_status();
} else if (strcmp_P((char *) t, (PGM_P) cmdlist[CMD_HELP]) == 0) {
shell_help();
}
prompt();
}
#endif

View File

@ -1,26 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __SHELL_H__
#define __SHELL_H__
void shell_run(void);
#endif

View File

@ -1,346 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <avr/io.h>
#include <util/delay.h> /* for _delay_ms() */
#include "config.h"
#include "sram.h"
#include "uart.h"
#include "debug.h"
#include "info.h"
uint32_t addr_current = 0;
uint32_t addr_stash = 0;
void sram_init(void)
{
/*-------------------------------------------------*/
DDRA = 0x00;
PORTA = 0x00;
/*-------------------------------------------------*/
DDRC |= ((1 << AVR_ADDR_LATCH_PIN)
| (1 << AVR_ADDR_SCK_PIN)
| (1 << AVR_ADDR_SER_PIN)
| (1 << AVR_ADDR_LOAD_PIN)
| (1 << AVR_ADDR_UP_PIN));
DDRC &= ~((1 << SNES_WR_PIN)
| (1 << AVR_BTLDR_EN_PIN));
PORTC &= ~((1 << AVR_ADDR_LATCH_PIN)
| (1 << AVR_ADDR_SCK_PIN)
| (1 << SNES_WR_PIN));
PORTC |= ((1 << AVR_ADDR_UP_PIN)
| (1 << AVR_ADDR_LOAD_PIN));
// | (1 << SNES_WR_PIN));
/*-------------------------------------------------*/
DDRB |= ((1 << AVR_RD_PIN)
| (1 << AVR_WR_PIN)
| (1 << AVR_CS_PIN)
| (1 << SNES_IRQ_PIN));
PORTB |= ((1 << AVR_RD_PIN)
| (1 << AVR_WR_PIN)
| (1 << AVR_CS_PIN)
| (1 << SNES_IRQ_PIN));
/*-------------------------------------------------*/
DDRD |= ((1 << AVR_SNES_SW_PIN)
| (1 << HI_LOROM_SW_PIN)
| (1 << SNES_WR_EN_PIN));
PORTD |= (1 << HI_LOROM_SW_PIN);
PORTD &= ~((1 << AVR_SNES_SW_PIN)
| (1 << SNES_WR_EN_PIN));
/*-------------------------------------------------*/
}
void sreg_set(uint32_t addr)
{
uint8_t i = 24;
debug_P(DEBUG_SREG, PSTR("sreg_set: addr=0x%08lx"), addr);
while (i--) {
if ((addr & (1L << i))) {
debug_P(DEBUG_SREG, PSTR("1"));
AVR_ADDR_SER_PORT |= (1 << AVR_ADDR_SER_PIN);
} else {
AVR_ADDR_SER_PORT &= ~(1 << AVR_ADDR_SER_PIN);
debug_P(DEBUG_SREG, PSTR("0"));
}
AVR_ADDR_SCK_PORT |= (1 << AVR_ADDR_SCK_PIN);
AVR_ADDR_SCK_PORT &= ~(1 << AVR_ADDR_SCK_PIN);
}
debug_P(DEBUG_SREG, PSTR("\n"));
AVR_ADDR_LATCH_PORT |= (1 << AVR_ADDR_LATCH_PIN);
AVR_ADDR_LATCH_PORT &= ~(1 << AVR_ADDR_LATCH_PIN);
counter_load();
}
void sram_bulk_addr_save()
{
addr_stash = addr_current;
debug_P(DEBUG_SRAM, PSTR("sram_bulk_addr_save: addr=0x%08lx\n\r"),
addr_stash);
}
inline void sram_bulk_addr_restore()
{
debug_P(DEBUG_SRAM, PSTR("sram_bulk_addr_restore: addr=0x%08lx\n\r"),
addr_stash);
sram_bulk_write_start(addr_stash);
}
void sram_bulk_read_start(uint32_t addr)
{
debug_P(DEBUG_SRAM, PSTR("sram_bulk_read_start: addr=0x%08lx\n\r"), addr);
addr_current = addr;
avr_data_in();
AVR_CS_PORT &= ~(1 << AVR_CS_PIN);
AVR_WR_PORT |= (1 << AVR_WR_PIN);
AVR_RD_PORT |= (1 << AVR_RD_PIN);
sreg_set(addr);
AVR_RD_PORT &= ~(1 << AVR_RD_PIN);
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
}
inline void sram_bulk_read_next(void)
{
addr_current++;
AVR_RD_PORT |= (1 << AVR_RD_PIN);
counter_up();
AVR_RD_PORT &= ~(1 << AVR_RD_PIN);
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
}
inline uint8_t sram_bulk_read(void)
{
return AVR_DATA_PIN;
}
void sram_bulk_read_end(void)
{
debug_P(DEBUG_SRAM, PSTR("sram_bulk_read_end:\n"));
AVR_RD_PORT |= (1 << AVR_RD_PIN);
AVR_CS_PORT |= (1 << AVR_CS_PIN);
avr_data_in();
}
uint8_t sram_read(uint32_t addr)
{
uint8_t byte;
debug_P(DEBUG_SRAM_RAW, PSTR("sram_read: addr=0x%08lx\n\r"), addr);
avr_data_in();
AVR_CS_PORT &= ~(1 << AVR_CS_PIN);
AVR_WR_PORT |= (1 << AVR_WR_PIN);
AVR_RD_PORT |= (1 << AVR_RD_PIN);
sreg_set(addr);
AVR_RD_PORT &= ~(1 << AVR_RD_PIN);
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
byte = AVR_DATA_PIN;
AVR_RD_PORT |= (1 << AVR_RD_PIN);
AVR_CS_PORT |= (1 << AVR_CS_PIN);
avr_data_in();
return byte;
}
uint16_t sram_read16_be(uint32_t addr)
{
uint8_t hi = sram_read(addr);
uint8_t lo = sram_read(addr + 1);
return (hi << 8 | lo);
}
void sram_bulk_write_start(uint32_t addr)
{
debug_P(DEBUG_SRAM, PSTR("sram_bulk_write_start: addr=0x%08lx\n\r"), addr);
addr_current = addr;
avr_data_out();
AVR_CS_PORT &= ~(1 << AVR_CS_PIN);
AVR_WR_PORT |= (1 << AVR_WR_PIN);
AVR_RD_PORT |= (1 << AVR_RD_PIN);
sreg_set(addr);
}
inline void sram_bulk_write_next(void)
{
addr_current++;
counter_up();
}
inline void sram_bulk_write(uint8_t data)
{
AVR_WR_PORT &= ~(1 << AVR_WR_PIN);
AVR_DATA_PORT = data;
AVR_WR_PORT |= (1 << AVR_WR_PIN);
}
void sram_bulk_write_end(void)
{
debug_P(DEBUG_SRAM, PSTR("sram_bulk_write_end:"));
AVR_WR_PORT |= (1 << AVR_WR_PIN);
AVR_CS_PORT |= (1 << AVR_CS_PIN);
avr_data_in();
}
void sram_write(uint32_t addr, uint8_t data)
{
debug_P(DEBUG_SRAM_RAW, PSTR("sram_write: addr=0x%08lx data=%x\n\r"), addr,
data);
avr_data_out();
AVR_CS_PORT &= ~(1 << AVR_CS_PIN);
AVR_WR_PORT |= (1 << AVR_WR_PIN);
AVR_RD_PORT |= (1 << AVR_RD_PIN);
sreg_set(addr);
AVR_WR_PORT &= ~(1 << AVR_WR_PIN);
AVR_DATA_PORT = data;
AVR_WR_PORT |= (1 << AVR_WR_PIN);
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
asm volatile ("nop");
AVR_CS_PORT |= (1 << AVR_CS_PIN);
avr_data_in();
}
void sram_bulk_copy_from_buffer(uint32_t addr, uint8_t * src, uint32_t len)
{
uint32_t i;
uint8_t *ptr = src;
debug_P(DEBUG_SRAM,
PSTR
("sram_bulk_copy_from_buffer: addr=0x%08lx src=0x%p len=%li\n\r"),
addr, src, len);
sram_bulk_write_start(addr);
for (i = addr; i < (addr + len); i++) {
sram_bulk_write(*ptr);
// hack
if ((i + 1) < (addr + len))
sram_bulk_write_next();
ptr++;
}
sram_bulk_write_end();
}
void sram_bulk_copy_into_buffer(uint32_t addr, uint8_t * dst, uint32_t len)
{
uint32_t i;
// uint8_t *ptr = dst;
debug_P(DEBUG_SRAM,
PSTR
("sram_bulk_copy_into_buffer: addr=0x%08lx dst=0x%p len=%li\n\r"),
addr, dst, len);
sram_bulk_read_start(addr);
for (i = addr; i < (addr + len); i++) {
dst[i] = sram_bulk_read();
sram_bulk_read_next();
}
sram_bulk_read_end();
}
void sram_bulk_set(uint32_t addr, uint32_t len, uint8_t value)
{
uint32_t i;
debug_P(DEBUG_SRAM, PSTR("sram_bulk_set: addr=0x%08lx len=%li\n\r"), addr,
len);
sram_bulk_write_start(addr);
for (i = addr; i < (addr + len); i++) {
if (0 == i % 0xfff)
debug_P(DEBUG_SRAM, PSTR("sram_bulk_set: addr=0x%08lx\n\r"), i);
sram_bulk_write(value);
sram_bulk_write_next();
}
sram_bulk_write_end();
}

View File

@ -1,234 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __SRAM_H__
#define __SRAM_H__
#include <stdlib.h>
#include <stdint.h>
#include <avr/io.h>
/*
* ---------------------------- PORT A ----------------------------
*/
#define AVR_DATA_PORT PORTA
#define AVR_DATA_DIR DDRA
#define AVR_DATA_PIN PINA
#define avr_data_in() ((AVR_DATA_DIR = 0x00),\
(AVR_DATA_PORT = 0x00))
#define avr_data_out() (AVR_DATA_DIR = 0xff)
/*
* ---------------------------- PORT B ----------------------------
*/
#define AVR_PORT PORTB
#define AVR_DIR DDRB
#define AVR_RD_PORT PORTB
#define AVR_RD_DIR DDRB
#define AVR_RD_PIN PB2
#define avr_rd_hi() (AVR_RD_PORT |= (1 << AVR_RD_PIN))
#define avr_rd_lo() (AVR_RD_PORT &= ~(1 << AVR_RD_PIN))
#define AVR_WR_PORT PORTB
#define AVR_WR_DIR DDRB
#define AVR_WR_PIN PB1
#define avr_wr_hi() (AVR_WR_PORT |= (1 << AVR_WR_PIN))
#define avr_wr_lo() (AVR_WR_PORT &= ~(1 << AVR_WR_PIN))
#define AVR_CS_PORT PORTB
#define AVR_CS_DIR DDRB
#define AVR_CS_PIN PB0
#define avr_cs_hi() (AVR_CS_PORT |= (1 << AVR_CS_PIN))
#define avr_cs_lo() (AVR_CS_PORT &= ~(1 << AVR_CS_PIN))
#define SNES_IRQ_PORT PORTB
#define SNES_IRQ_DIR DDRB
#define SNES_IRQ_PIN PB3
#define snes_irq_on() (SNES_IRQ_DIR |= (1 << SNES_IRQ_PIN))
#define snes_irq_hi() (SNES_IRQ_PORT |= (1 << SNES_IRQ_PIN))
#define snes_irq_off() (SNES_IRQ_DIR &= ~(1 << SNES_IRQ_PIN))
#define snes_irq_lo() (SNES_IRQ_PORT &= ~(1 << SNES_IRQ_PIN))
/*
* ---------------------------- PORT C ----------------------------
*/
#define AVR_ADDR_PORT PORTC
#define AVR_ADDR_DIR DDRC
#define AVR_ADDR_LATCH_PORT PORTC
#define AVR_ADDR_LATCH_DIR DDRC
#define AVR_ADDR_LATCH_PIN PC6
#define avr_addr_latch_hi() (AVR_ADDR_LATCH_PORT |= (1 << AVR_ADDR_LATCH_PIN))
#define avr_addr_latch_lo() (AVR_ADDR_LATCH_PORT &= ~(1 << AVR_ADDR_LATCH_PIN))
#define AVR_ADDR_SCK_PORT PORTC
#define AVR_ADDR_SCK_DIR DDRC
#define AVR_ADDR_SCK_PIN PC5
#define avr_addr_sck_hi() (AVR_ADDR_SCK_PORT |= (1 << AVR_ADDR_SCK_PIN))
#define avr_addr_sck_lo() (AVR_ADDR_SCK_PORT &= ~(1 << AVR_ADDR_SCK_PIN))
#define AVR_ADDR_SER_PORT PORTC
#define AVR_ADDR_SER_DIR DDRC
#define AVR_ADDR_SER_PIN PC4
#define avr_addr_ser_hi() (AVR_ADDR_SER_PORT |= (1 << AVR_ADDR_SER_PIN))
#define avr_addr_ser_lo() (AVR_ADDR_SER_PORT &= ~(1 << AVR_ADDR_SER_PIN))
#define AVR_ADDR_LOAD_PORT PORTC
#define AVR_ADDR_LOAD_DIR DDRC
#define AVR_ADDR_LOAD_PIN PC2
#define counter_load() ((AVR_ADDR_LOAD_PORT &= ~(1 << AVR_ADDR_LOAD_PIN)),\
(AVR_ADDR_LOAD_PORT |= (1 << AVR_ADDR_LOAD_PIN)))
#define AVR_BTLDR_EN_PORT PORTC
#define AVR_BTLDR_EN_DIR DDRC
#define AVR_BTLDR_EN_PIN PC1
#define btldr_down() ((AVR_BTLDR_EN_PORT &= ~(1 << AVR_BTLDR_EN_PIN)),\
(AVR_BTLDR_EN_PORT |= (1 << AVR_BTLDR_EN_PIN)))
#define AVR_ADDR_UP_PORT PORTC
#define AVR_ADDR_UP_DIR DDRC
#define AVR_ADDR_UP_PIN PC0
#define counter_up() ((AVR_ADDR_UP_PORT &= ~(1 << AVR_ADDR_UP_PIN)),\
(AVR_ADDR_UP_PORT |= (1 << AVR_ADDR_UP_PIN)))
#define SNES_WR_PORT PORTC
#define SNES_WR_DIR DDRC
#define SNES_WR_PIN PC3
#define LED_PORT PORTC
#define LED_DIR DDRC
#define LED_PIN PC7
#define led_on() ((LED_PORT &=~ (1 << LED_PIN)),\
(LED_DIR &=~ (1 << LED_PIN)))
#define led_off() ((LED_PORT &=~ (1 << LED_PIN)),\
(LED_DIR |= (1 << LED_PIN)))
#define led_pwm_on() (LED_DIR &=~ (1 << LED_PIN))
#define led_pwm_off() (LED_DIR |= (1 << LED_PIN))
/*
* ---------------------------- PORT D ----------------------------
*/
#define AVR_SNES_PORT PORTD
#define AVR_SNES_DIR DDRD
#define AVR_SNES_SW_PORT PORTD
#define AVR_SNES_SW_DIR DDRD
#define AVR_SNES_SW_PIN PD5
#define avr_bus_active() ((AVR_SNES_SW_PORT &= ~(1 << AVR_SNES_SW_PIN)),\
(HI_LOROM_SW_PORT |= (1 << HI_LOROM_SW_PIN)),\
(AVR_CS_DIR |= (1 << AVR_CS_PIN)))
#define snes_bus_active() ((AVR_SNES_SW_PORT |= (1 << AVR_SNES_SW_PIN)),\
(AVR_CS_DIR &= ~(1 << AVR_CS_PIN)),\
(AVR_CS_PORT |= (1 << AVR_CS_PIN)))
#define HI_LOROM_SW_PORT PORTD
#define HI_LOROM_SW_DIR DDRD
#define HI_LOROM_SW_PIN PD6
#define snes_hirom() (HI_LOROM_SW_PORT &= ~(1 << HI_LOROM_SW_PIN))
#define snes_lorom() (HI_LOROM_SW_PORT |= (1 << HI_LOROM_SW_PIN))
#define SNES_WR_EN_PORT PORTD
#define SNES_WR_EN_DIR DDRD
#define SNES_WR_EN_PIN PD7
#define snes_wr_disable() (SNES_WR_EN_PORT &= ~(1 << SNES_WR_EN_PIN))
#define snes_wr_enable() (SNES_WR_EN_PORT |= (1 << SNES_WR_EN_PIN))
#define SNES_RESET_PORT PORTD
#define SNES_RESET_DIR DDRD
#define SNES_RESET_PIN PD3
#define SNES_RESET_INP PIND
#define snes_reset_on() (SNES_RESET_DIR |= (1 << SNES_RESET_PIN))
#define snes_reset_hi() (SNES_RESET_PORT |= (1 << SNES_RESET_PIN))
#define snes_reset_off() (SNES_RESET_DIR &= ~(1 << SNES_RESET_PIN))
#define snes_reset_lo() (SNES_RESET_PORT &= ~(1 << SNES_RESET_PIN))
#define snes_reset_test() ((SNES_RESET_INP & (1 << SNES_RESET_PIN)) == 0)
#define MMC_PORT PORTB
#define MMC_DIR DDRB
#define MMC_MISO_PIN PB6
#define MMC_MOSI_PIN PB5
#define MMC_SCK_PIN PB7
#define MMC_CS_PIN PB4
void sram_init(void);
void sreg_set(uint32_t addr);
uint8_t sram_read(uint32_t addr);
void sram_write(uint32_t addr, uint8_t data);
void sram_bulk_read_start(uint32_t addr);
inline void sram_bulk_read_next(void);
inline void sram_bulk_read_end(void);
uint8_t sram_bulk_read(void);
uint16_t sram_read16_be(uint32_t addr);
void sram_bulk_write_start(uint32_t addr);
inline void sram_bulk_write_next(void);
inline void sram_bulk_write_end(void);
void sram_bulk_write(uint8_t data);
void sram_bulk_copy_from_buffer(uint32_t addr, uint8_t * src, uint32_t len);
void sram_bulk_copy_into_buffer(uint32_t addr, uint8_t * dst, uint32_t len);
void sram_bulk_set(uint32_t addr, uint32_t len, uint8_t value);
inline void sram_bulk_addr_save();
inline void sram_bulk_addr_restore();
#endif

View File

@ -1,192 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <util/delay.h> /* for _delay_ms() */
#include <avr/interrupt.h>
#include "config.h"
#include "sram.h"
#include "system.h"
#include "uart.h"
#include "debug.h"
#include "info.h"
#include "requests.h"
#include "irq.h"
system_t my_system;
void system_init(void)
{
snes_reset_hi();
snes_reset_off();
my_system.reset_line = RESET_OFF;
snes_irq_hi();
snes_irq_off();
my_system.irq_line = IRQ_OFF;
snes_wr_disable();
my_system.wr_line = WR_DISABLE;
avr_bus_active();
my_system.bus_mode = MODE_AVR;
snes_lorom();
my_system.rom_mode = LOROM;
my_system.snes_reset_count = 0;
my_system.avr_reset_count = 0;
my_system.reset_irq = RESET_IRQ_OFF;
}
void system_send_snes_reset()
{
info_P(PSTR("Reset SNES\n"));
cli();
snes_reset_on();
snes_reset_lo();
_delay_ms(2);
snes_reset_hi();
snes_reset_off();
sei();
my_system.snes_reset_count++;
}
void system_send_snes_irq()
{
snes_irq_on();
snes_irq_lo();
_delay_us(20);
snes_irq_hi();
snes_irq_off();
}
void system_snes_irq_off()
{
snes_irq_off();
my_system.irq_line = IRQ_OFF;
}
void system_snes_irq_on()
{
snes_irq_on();
my_system.irq_line = IRQ_ON;
}
void system_set_bus_avr()
{
avr_bus_active();
info_P(PSTR("Activate AVR bus\n"));
my_system.bus_mode = MODE_AVR;
}
void system_set_wr_disable()
{
snes_wr_disable();
my_system.wr_line = WR_DISABLE;
info_P(PSTR("Disable SNES WR\n"));
}
void system_set_wr_enable()
{
snes_wr_enable();
my_system.wr_line = WR_ENABLE;
info_P(PSTR("Enable SNES WR\n"));
}
void system_set_bus_snes()
{
snes_bus_active();
my_system.bus_mode = MODE_SNES;
info_P(PSTR("Activate SNES bus\n"));
}
void system_set_rom_mode(usb_transaction_t * usb_trans)
{
if (usb_trans->req_bank_size == 0x8000) {
snes_lorom();
my_system.rom_mode = LOROM;
info_P(PSTR("Set SNES lorom \n"));
} else {
snes_hirom();
my_system.rom_mode = HIROM;
info_P(PSTR("Set SNES hirom \n"));
}
}
void system_set_rom_lorom()
{
snes_lorom();
my_system.rom_mode = LOROM;
info_P(PSTR("Set SNES lorom \n"));
}
void system_set_rom_hirom()
{
snes_hirom();
my_system.rom_mode = HIROM;
info_P(PSTR("Set SNES hirom \n"));
}
char *system_status_helper(uint8_t val)
{
if (val)
return "ON";
else
return "OFF";
}
char *system_status_bus(uint8_t val)
{
if (val)
return "SNES";
else
return "AVR";
}
char *system_status_rom(uint8_t val)
{
if (val)
return "HIROM";
else
return "LOROM";
}
void system_status()
{
info_P(PSTR("\nBus Mode %s\n"), system_status_bus(my_system.bus_mode));
info_P(PSTR("Rom Mode %s\n"), system_status_rom(my_system.rom_mode));
info_P(PSTR("Reset Line %s\n"),
system_status_helper(my_system.reset_line));
info_P(PSTR("IRQ Line %s\n"), system_status_helper(my_system.irq_line));
info_P(PSTR("WR Line %s\n"), system_status_helper(my_system.wr_line));
info_P(PSTR("Reset IRQ %s\n"), system_status_helper(my_system.reset_irq));
info_P(PSTR("SNES Reset 0x%02x\n"), my_system.snes_reset_count);
info_P(PSTR("AVR Reset 0x%02x\n"), my_system.avr_reset_count);
}

View File

@ -1,57 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __SYSTEM_H__
#define __SYSTEM_H__
#include "requests.h"
typedef struct system_t {
enum bus_mode_e { MODE_AVR, MODE_SNES } bus_mode;
enum rom_mode_e { LOROM, HIROM } rom_mode;
enum reset_line_e { RESET_OFF, RESET_ON } reset_line;
enum irq_line_e { IRQ_ON, IRQ_OFF } irq_line;
enum wr_line_e { WR_DISABLE, WR_ENABLE } wr_line;
enum reset_irq_e { RESET_IRQ_OFF, RESET_IRQ_ON } reset_irq;
uint8_t snes_reset_count;
uint8_t avr_reset_count;
} system_t;
void system_init(void);
void system_init(void);
void system_send_snes_reset(void);
void system_send_snes_irq(void);
void system_set_bus_avr(void);
void system_set_bus_snes(void);
void system_set_rom_mode(usb_transaction_t * usb_trans);
void system_set_rom_hirom(void);
void system_set_rom_lorom(void);
void system_snes_irq_off(void);
void system_set_wr_disable(void);
void system_set_wr_enable(void);
void system_status();
#endif

View File

@ -1,428 +0,0 @@
!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/
!_TAG_PROGRAM_AUTHOR Darren Hiebert /dhiebert@users.sourceforge.net/
!_TAG_PROGRAM_NAME Exuberant Ctags //
!_TAG_PROGRAM_URL http://ctags.sourceforge.net /official site/
!_TAG_PROGRAM_VERSION 5.7 //
AVR_ADDR_DIR sram.h 103;" d
AVR_ADDR_DOWN_DIR sram.h 133;" d
AVR_ADDR_DOWN_PIN sram.h 134;" d
AVR_ADDR_DOWN_PORT sram.h 132;" d
AVR_ADDR_LATCH_DIR sram.h 105;" d
AVR_ADDR_LATCH_PIN sram.h 106;" d
AVR_ADDR_LATCH_PORT sram.h 104;" d
AVR_ADDR_LOAD_DIR sram.h 126;" d
AVR_ADDR_LOAD_PIN sram.h 127;" d
AVR_ADDR_LOAD_PORT sram.h 125;" d
AVR_ADDR_PORT sram.h 102;" d
AVR_ADDR_SCK_DIR sram.h 112;" d
AVR_ADDR_SCK_PIN sram.h 113;" d
AVR_ADDR_SCK_PORT sram.h 111;" d
AVR_ADDR_SER_DIR sram.h 119;" d
AVR_ADDR_SER_PIN sram.h 120;" d
AVR_ADDR_SER_PORT sram.h 118;" d
AVR_ADDR_UP_DIR sram.h 140;" d
AVR_ADDR_UP_PIN sram.h 141;" d
AVR_ADDR_UP_PORT sram.h 139;" d
AVR_CS_DIR sram.h 71;" d
AVR_CS_PIN sram.h 72;" d
AVR_CS_PORT sram.h 70;" d
AVR_DATA_DIR sram.h 35;" d
AVR_DATA_PIN sram.h 36;" d
AVR_DATA_PORT sram.h 34;" d
AVR_DIR sram.h 55;" d
AVR_PORT sram.h 54;" d
AVR_RD_DIR sram.h 57;" d
AVR_RD_PIN sram.h 58;" d
AVR_RD_PORT sram.h 56;" d
AVR_SNES_DIR sram.h 153;" d
AVR_SNES_PORT sram.h 152;" d
AVR_SNES_SW_DIR sram.h 155;" d
AVR_SNES_SW_PIN sram.h 156;" d
AVR_SNES_SW_PORT sram.h 154;" d
AVR_WR_DIR sram.h 64;" d
AVR_WR_PIN sram.h 65;" d
AVR_WR_PORT sram.h 63;" d
CR uart.h 25;" d
DEBOUNCE timer.c 44;" d file:
DEBUG config.h 25;" d
DEBUG_CRC config.h 31;" d
DEBUG_SHM config.h 32;" d
DEBUG_SRAM config.h 28;" d
DEBUG_SRAM_RAW config.h 29;" d
DEBUG_SREG config.h 30;" d
DEBUG_USB config.h 26;" d
DEBUG_USB_TRANS config.h 27;" d
FILE_MKDIR config.h 48;" d
FILE_RM config.h 49;" d
FILE_WRITE config.h 47;" d
Fat fat.h /^ extern struct Fat{ \/\/ fat daten (1.cluster, root-dir, dir usw.)$/;" s
File fat.h /^ extern struct File{ \/\/ datei infos$/;" s
HI_LOROM_SW_DIR sram.h 166;" d
HI_LOROM_SW_PIN sram.h 167;" d
HI_LOROM_SW_PORT sram.h 165;" d
INBYTE rle.c 44;" d file:
ISR timer.c /^ISR (SIG_OUTPUT_COMPARE1A)$/;" f
ISR uart.c /^ISR(USART0_RX_vect)$/;" f
LED_DIR sram.h 44;" d
LED_PIN sram.h 45;" d
LED_PORT sram.h 43;" d
MAX_CLUSTERS_IN_ROW fat.h 11;" d
MMC_CLK mmc.h 21;" d
MMC_CS mmc.h 18;" d
MMC_DI mmc.h 20;" d
MMC_DO mmc.h 19;" d
MMC_READ mmc.h 15;" d
MMC_READ mmc.h 24;" d
MMC_REG mmc.h 16;" d
MMC_REG mmc.h 25;" d
MMC_WRITE mmc.h 14;" d
MMC_WRITE mmc.h 23;" d
OCR1A timer.c 34;" d file:
OUTBYTE rle.c 54;" d file:
OVER_WRITE fat.h 10;" d
PROGMEM loader.c /^const char _rom[ROM_BUFFER_SIZE] PROGMEM = {$/;" v
REQ_STATUS_AVR config.h 40;" d
REQ_STATUS_BULK_NEXT config.h 37;" d
REQ_STATUS_BULK_UPLOAD config.h 36;" d
REQ_STATUS_CRC config.h 38;" d
REQ_STATUS_IDLE config.h 34;" d
REQ_STATUS_SNES config.h 39;" d
REQ_STATUS_UPLOAD config.h 35;" d
ROM_BUFFER_SIZE loader.h 5;" d
ROM_HUFFMAN_SIZE loader.h 6;" d
ROM_RLE_SIZE loader.h 7;" d
RUNCHAR rle.c 33;" d file:
SHARED_IRQ_HANDLER_HI shared_memory.h 59;" d
SHARED_IRQ_HANDLER_LO shared_memory.h 58;" d
SHARED_IRQ_LOC_HI shared_memory.h 55;" d
SHARED_IRQ_LOC_LO shared_memory.h 54;" d
SHARED_MEM_RX_AVR_ACK shared_memory.h 43;" d
SHARED_MEM_RX_AVR_RTS shared_memory.h 44;" d
SHARED_MEM_RX_CMD_FILESEL shared_memory.h 47;" d
SHARED_MEM_RX_CMD_PRINFT shared_memory.h 46;" d
SHARED_MEM_RX_LOC_CMD shared_memory.h 50;" d
SHARED_MEM_RX_LOC_LEN shared_memory.h 51;" d
SHARED_MEM_RX_LOC_PAYLOAD shared_memory.h 52;" d
SHARED_MEM_RX_LOC_STATE shared_memory.h 49;" d
SHARED_MEM_SWITCH_DELAY shared_memory.h 26;" d
SHARED_MEM_SWITCH_IRQ shared_memory.h 25;" d
SHARED_MEM_TX_CMD_BANK_COUNT shared_memory.h 31;" d
SHARED_MEM_TX_CMD_BANK_CURRENT shared_memory.h 32;" d
SHARED_MEM_TX_CMD_TERMINATE shared_memory.h 37;" d
SHARED_MEM_TX_CMD_UPLOAD_END shared_memory.h 35;" d
SHARED_MEM_TX_CMD_UPLOAD_PROGESS shared_memory.h 36;" d
SHARED_MEM_TX_CMD_UPLOAD_START shared_memory.h 34;" d
SHARED_MEM_TX_LOC_CMD shared_memory.h 40;" d
SHARED_MEM_TX_LOC_PAYLOAD shared_memory.h 41;" d
SHARED_MEM_TX_LOC_STATE shared_memory.h 39;" d
SHARED_MEM_TX_SNES_ACK shared_memory.h 28;" d
SHARED_MEM_TX_SNES_RTS shared_memory.h 29;" d
SMALL_FILE_SYSTEM config.h 50;" d
SMALL_FILE_SYSTEM fat.h 8;" d
SNES_IRQ_DIR sram.h 78;" d
SNES_IRQ_PIN sram.h 79;" d
SNES_IRQ_PORT sram.h 77;" d
SNES_RESET_DIR sram.h 89;" d
SNES_RESET_PIN sram.h 90;" d
SNES_RESET_PORT sram.h 88;" d
SNES_WR_DIR sram.h 147;" d
SNES_WR_EN_DIR sram.h 173;" d
SNES_WR_EN_PIN sram.h 174;" d
SNES_WR_EN_PORT sram.h 172;" d
SNES_WR_PIN sram.h 148;" d
SNES_WR_PORT sram.h 146;" d
SPI_Mode mmc.h 12;" d
TRANSFER_BUFFER_SIZE config.h 45;" d
USB_AVR_RESET requests.h 40;" d
USB_BULK_UPLOAD_ADDR requests.h 35;" d
USB_BULK_UPLOAD_END requests.h 37;" d
USB_BULK_UPLOAD_INIT requests.h 34;" d
USB_BULK_UPLOAD_NEXT requests.h 36;" d
USB_CFG_CHECK_CRC usbconfig.h 72;" d
USB_CFG_CHECK_DATA_TOGGLING usbconfig.h 211;" d
USB_CFG_CLOCK_KHZ usbconfig.h 65;" d
USB_CFG_DESCR_PROPS_CONFIGURATION usbconfig.h 346;" d
USB_CFG_DESCR_PROPS_DEVICE usbconfig.h 345;" d
USB_CFG_DESCR_PROPS_HID usbconfig.h 352;" d
USB_CFG_DESCR_PROPS_HID_REPORT usbconfig.h 353;" d
USB_CFG_DESCR_PROPS_STRINGS usbconfig.h 347;" d
USB_CFG_DESCR_PROPS_STRING_0 usbconfig.h 348;" d
USB_CFG_DESCR_PROPS_STRING_PRODUCT usbconfig.h 350;" d
USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER usbconfig.h 351;" d
USB_CFG_DESCR_PROPS_STRING_VENDOR usbconfig.h 349;" d
USB_CFG_DESCR_PROPS_UNKNOWN usbconfig.h 354;" d
USB_CFG_DEVICE_CLASS usbconfig.h 266;" d
USB_CFG_DEVICE_ID usbconfig.h 231;" d
USB_CFG_DEVICE_NAME usbconfig.h 251;" d
USB_CFG_DEVICE_NAME_LEN usbconfig.h 252;" d
USB_CFG_DEVICE_SUBCLASS usbconfig.h 267;" d
USB_CFG_DEVICE_VERSION usbconfig.h 238;" d
USB_CFG_DMINUS_BIT usbconfig.h 52;" d
USB_CFG_DPLUS_BIT usbconfig.h 56;" d
USB_CFG_EP3_NUMBER usbconfig.h 106;" d
USB_CFG_HAVE_FLOWCONTROL usbconfig.h 161;" d
USB_CFG_HAVE_INTRIN_ENDPOINT usbconfig.h 95;" d
USB_CFG_HAVE_INTRIN_ENDPOINT3 usbconfig.h 100;" d
USB_CFG_HAVE_MEASURE_FRAME_LENGTH usbconfig.h 219;" d
USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH usbconfig.h 279;" d
USB_CFG_IMPLEMENT_FN_READ usbconfig.h 149;" d
USB_CFG_IMPLEMENT_FN_WRITE usbconfig.h 144;" d
USB_CFG_IMPLEMENT_FN_WRITEOUT usbconfig.h 155;" d
USB_CFG_IMPLEMENT_HALT usbconfig.h 116;" d
USB_CFG_INTERFACE_CLASS usbconfig.h 271;" d
USB_CFG_INTERFACE_PROTOCOL usbconfig.h 273;" d
USB_CFG_INTERFACE_SUBCLASS usbconfig.h 272;" d
USB_CFG_INTR_POLL_INTERVAL usbconfig.h 130;" d
USB_CFG_IOPORTNAME usbconfig.h 48;" d
USB_CFG_IS_SELF_POWERED usbconfig.h 135;" d
USB_CFG_LONG_TRANSFERS usbconfig.h 166;" d
USB_CFG_MAX_BUS_POWER usbconfig.h 139;" d
USB_CFG_SUPPRESS_INTR_CODE usbconfig.h 122;" d
USB_CFG_VENDOR_ID usbconfig.h 226;" d
USB_CFG_VENDOR_NAME usbconfig.h 241;" d
USB_CFG_VENDOR_NAME_LEN usbconfig.h 242;" d
USB_COUNT_SOF usbconfig.h 187;" d
USB_CRC requests.h 31;" d
USB_CRC_ADDR requests.h 32;" d
USB_CRC_CHECK config.h 43;" d
USB_DOWNLOAD_ADDR requests.h 29;" d
USB_DOWNLOAD_INIT requests.h 28;" d
USB_MAX_TRANS config.h 42;" d
USB_MODE_AVR requests.h 39;" d
USB_MODE_SNES requests.h 38;" d
USB_UPLOAD_ADDR requests.h 26;" d
USB_UPLOAD_INIT requests.h 25;" d
WGM12 timer.c 38;" d file:
WRITE fat.h 9;" d
XTAL timer.c 42;" d file:
_FAT_H fat.h 4;" d
_FILE_H file.h 6;" d
_HARDWARE_H hardware.h 7;" d
_MMC_H mmc.h 9;" d
__COMMAND_H__ command.h 23;" d
__CONFIH_H__ config.h 22;" d
__CRC_H__ crc.h 23;" d
__DEBUG_H__ debug.h 24;" d
__DUMP_H__ dump.h 23;" d
__FIFO_H__ fifo.h 21;" d
__FIFO_H__ loader.h 3;" d
__INFO_H__ info.h 24;" d
__REQUESTS_H__ requests.h 23;" d
__RLE_H__ rle.h 22;" d
__SHARED_MEMORY_H__ shared_memory.h 22;" d
__SRAM_H__ sram.h 24;" d
__TESTING_H__ testing.h 23;" d
__TIMER_H__ timer.h 22;" d
__UART_H__ uart.h 23;" d
__USB_BULK_H__ usb_bulk.h 23;" d
__WATCHDOG_H__ watchdog.h 27;" d
__usbconfig_h_included__ usbconfig.h 34;" d
_inline_fifo_get fifo.h /^static inline uint8_t _inline_fifo_get(fifo_t * f)$/;" f
_inline_fifo_put fifo.h /^static inline uint8_t _inline_fifo_put(fifo_t * f, const uint8_t data)$/;" f
adc_int uart.c /^ uint8_t adc_int:1;$/;" m struct:__anon2 file:
addr main.c /^uint32_t addr;$/;" v
addr_current sram.c /^uint32_t addr_current = 0;$/;" v
addr_stash sram.c /^uint32_t addr_stash = 0;$/;" v
attrib fat.h /^ unsigned char attrib; \/\/ 11,1 datei Attribut: 8=value name, 32=datei, 16=Verzeichniss, 15=linux kleingeschrieben eintrag$/;" m struct:File
avr_addr_latch_hi sram.h 108;" d
avr_addr_latch_lo sram.h 109;" d
avr_addr_sck_hi sram.h 115;" d
avr_addr_sck_lo sram.h 116;" d
avr_addr_ser_hi sram.h 122;" d
avr_addr_ser_lo sram.h 123;" d
avr_bus_active sram.h 158;" d
avr_cs_hi sram.h 74;" d
avr_cs_lo sram.h 75;" d
avr_data_in sram.h 38;" d
avr_data_out sram.h 41;" d
avr_rd_hi sram.h 60;" d
avr_rd_lo sram.h 61;" d
avr_wr_hi sram.h 67;" d
avr_wr_lo sram.h 68;" d
boot_startup_rom main.c /^void boot_startup_rom()$/;" f
bufferDirty fat.h /^ unsigned char bufferDirty; \/\/ puffer wurde beschrieben, sector muss geschrieben werden bevor er neu geladen wird$/;" m struct:Fat
cntOfBytes fat.h /^ unsigned int cntOfBytes; \/\/ -nicht direkt aus dem dateisystem- zäht geschriebene bytes eines sektors$/;" m struct:File
count fifo.h /^ uint8_t volatile count; \/\/ # Zeichen im Puffer$/;" m struct:__anon1
counter_down sram.h 136;" d
counter_load sram.h 129;" d
counter_up sram.h 143;" d
crc main.c /^uint16_t crc = 0;$/;" v
crc_check_bulk_memory crc.c /^uint16_t crc_check_bulk_memory(uint32_t bottom_addr, uint32_t top_addr, uint32_t bank_size)$/;" f
crc_check_memory_range crc.c /^uint16_t crc_check_memory_range(uint32_t start_addr, uint32_t size,uint8_t *buffer)$/;" f
crc_xmodem_update crc.c /^uint16_t crc_xmodem_update(uint16_t crc, uint8_t data)$/;" f
currentSectorNr fat.h /^ unsigned long int currentSectorNr;\/\/ aktuell geladener Sektor (in sector) \/\/beschleunigt wenn z.b 2* 512 byte puffer vorhanden, oder bei fat operationen im gleichen sektor$/;" m struct:Fat
dataDirSec fat.h /^ unsigned long int dataDirSec; \/\/ Sektor nr data area $/;" m struct:Fat
data_buffer main.c /^uint8_t data_buffer[4];$/;" v
debug debug.c /^void debug(int level, char* format, ...) {$/;" f
debug debug.h 34;" d
debug_level main.c /^uint8_t debug_level = (DEBUG | DEBUG_USB | DEBUG_CRC);$/;" v
dir fat.h /^ unsigned long int dir; \/\/ Direktory zeiger rootDir=='0' sonst(1.Cluster des dir; start auf root)$/;" m struct:Fat
do_crc crc.c /^uint16_t do_crc(uint8_t * data, uint16_t size)$/;" f
do_crc_update crc.c /^uint16_t do_crc_update(uint16_t crc, uint8_t * data, uint16_t size)$/;" f
dump_memory dump.c /^void dump_memory(uint32_t bottom_addr, uint32_t top_addr)$/;" f
dump_packet dump.c /^void dump_packet(uint32_t addr, uint32_t len, uint8_t * packet)$/;" f
endSectors fat.h /^ unsigned long int endSectors; $/;" m struct:Fat
fat fat.c /^struct Fat fat; \/\/ wichtige daten\/variablen der fat$/;" v typeref:struct:Fat
fatSec fat.h /^ unsigned long int fatSec; \/\/ Sektor nr fat area$/;" m struct:Fat
fatType fat.h /^ unsigned char fatType; \/\/ fat16 oder fat32 (16 oder 32)$/;" m struct:Fat
fat_cd fat.c /^unsigned char fat_cd(char name[]){$/;" f
fat_clustToSec fat.c /^unsigned long int fat_clustToSec(unsigned long int clust){$/;" f
fat_delClusterChain fat.c /^void fat_delClusterChain(unsigned long int startCluster){$/;" f
fat_getFatChainClustersInRow fat.c /^void fat_getFatChainClustersInRow(unsigned long int offsetCluster){$/;" f
fat_getFreeClustersInRow fat.c /^void fat_getFreeClustersInRow(unsigned long int offsetCluster){$/;" f
fat_getFreeRowOfCluster fat.c /^unsigned char fat_getFreeRowOfCluster(unsigned long secStart){$/;" f
fat_getFreeRowOfDir fat.c /^void fat_getFreeRowOfDir(unsigned long int dir){$/;" f
fat_getNextCluster fat.c /^unsigned long int fat_getNextCluster(unsigned long int oneCluster){ $/;" f
fat_initfat fat.c /^unsigned char fat_initfat(void){ $/;" f
fat_loadFatData fat.c /^unsigned char fat_loadFatData(unsigned long int sec){$/;" f
fat_loadFileDataFromCluster fat.c /^unsigned char fat_loadFileDataFromCluster(unsigned long int sec , char name[]){$/;" f
fat_loadFileDataFromDir fat.c /^unsigned char fat_loadFileDataFromDir(char name[]){ $/;" f
fat_loadRowOfSector fat.c /^unsigned char fat_loadRowOfSector(unsigned int row){$/;" f
fat_loadSector fat.c /^unsigned char fat_loadSector(unsigned long int sec){$/;" f
fat_makeFileEntry fat.c /^void fat_makeFileEntry(char name[],unsigned char attrib,unsigned long int length){$/;" f
fat_makeRowDataEntry fat.c /^void fat_makeRowDataEntry(unsigned int row,char name[],unsigned char attrib,unsigned long int cluster,unsigned long int length){$/;" f
fat_secToClust fat.c /^unsigned long int fat_secToClust(unsigned long int sec){$/;" f
fat_setCluster fat.c /^void fat_setCluster(unsigned long int cluster, unsigned long int content){ $/;" f
fat_setClusterChain fat.c /^void fat_setClusterChain(unsigned long int startCluster,unsigned int endCluster){$/;" f
fat_str fat.c /^char * fat_str(char *str){$/;" f
fat_writeSector fat.c /^unsigned char fat_writeSector(unsigned long int sec){ $/;" f
ffcd file.c /^unsigned char ffcd(char name[]){ $/;" f
ffcdLower file.c /^unsigned char ffcdLower(void){$/;" f
ffclose file.c /^unsigned char ffclose(void){$/;" f
ffls file.c /^void ffls(void){$/;" f
ffmkdir file.c /^void ffmkdir(char name[]){$/;" f
ffopen file.c /^unsigned char ffopen(char name[]){ $/;" f
ffread file.c /^inline unsigned char ffread(void){ $/;" f
ffrm file.c /^unsigned char ffrm(char name[]){ $/;" f
ffseek file.c /^void ffseek(unsigned long int offset){ $/;" f
ffwrite file.c /^inline void ffwrite(unsigned char c){$/;" f
ffwrites file.c /^inline void ffwrites(const char *s ){$/;" f
fifo_get_nowait fifo.c /^int fifo_get_nowait(fifo_t * f)$/;" f
fifo_get_wait fifo.c /^uint8_t fifo_get_wait(fifo_t * f)$/;" f
fifo_init fifo.c /^void fifo_init(fifo_t * f, uint8_t * buffer, const uint8_t size)$/;" f
fifo_put fifo.c /^uint8_t fifo_put(fifo_t * f, const uint8_t data)$/;" f
fifo_t fifo.h /^} fifo_t;$/;" t typeref:struct:__anon1
file fat.c /^struct File file; \/\/ wichtige dateibezogene daten\/variablen$/;" v typeref:struct:File
fileUpdate file.c /^void fileUpdate(void){$/;" f
firstCluster fat.h /^ unsigned long int firstCluster; \/\/ 20,2 \/26,2 datei 1.cluster hi,low(möglicherweise der einzige) (4-byte)$/;" m struct:File
info info.c /^void info(char* format, ...) {$/;" f
info info.c 34;" d file:
info info.h 34;" d
intflags uart.c /^} intflags;$/;" v typeref:struct:__anon2
irq_addr_hi shared_memory.c /^uint8_t irq_addr_hi;$/;" v
irq_addr_lo shared_memory.c /^uint8_t irq_addr_lo;$/;" v
lastCluster fat.h /^ unsigned long int lastCluster; \/\/ -nicht direkt aus dem dateisystem- letzter cluster der ersten kette$/;" m struct:File
led_off sram.h 49;" d
led_on sram.h 47;" d
length fat.h /^ unsigned long int length; \/\/ 28,4 datei Länge (4-byte)$/;" m struct:File
lsRowsOfClust file.c /^void lsRowsOfClust (unsigned long int start_sec){$/;" f
main main.c /^int main(void)$/;" f
mmc_disable mmc.h 38;" d
mmc_enable mmc.h 40;" d
mmc_init mmc.c /^uint8_t mmc_init()$/;" f
mmc_read_block mmc.c /^void mmc_read_block(uint8_t * cmd, uint8_t * Buffer, uint16_t Bytes)$/;" f
mmc_read_byte mmc.c /^uint8_t mmc_read_byte(void)$/;" f
mmc_read_cid mmc.c /^uint8_t mmc_read_cid(uint8_t * Buffer)$/;" f
mmc_read_csd mmc.c /^uint8_t mmc_read_csd(uint8_t * Buffer)$/;" f
mmc_read_sector mmc.c /^uint8_t mmc_read_sector(uint32_t addr, uint8_t * Buffer)$/;" f
mmc_write_byte mmc.c /^void mmc_write_byte(uint8_t Byte)$/;" f
mmc_write_command mmc.c /^uint8_t mmc_write_command(uint8_t * cmd)$/;" f
mmc_write_sector mmc.c /^uint8_t mmc_write_sector(uint32_t addr, uint8_t * Buffer)$/;" f
name fat.h /^ unsigned char name[13]; \/\/ 0,10 datei Name.ext (8.3 = max 11)(MUSS unsigned char weil E5)$/;" m struct:File
nop mmc.h 42;" d
pread fifo.h /^ uint8_t *pread; \/\/ Lesezeiger$/;" m struct:__anon1
prescaler timer.c /^uint16_t prescaler;$/;" v
pwrite fifo.h /^ uint8_t *pwrite; \/\/ Schreibzeiger$/;" m struct:__anon1
read2end fifo.h /^ uint8_t read2end, write2end; \/\/ # Zeichen bis zum Überlauf Lese-\/Schreibzeiger$/;" m struct:__anon1
read_buffer main.c /^uint8_t read_buffer[TRANSFER_BUFFER_SIZE];$/;" v
req_addr main.c /^uint32_t req_addr = 0;$/;" v
req_addr_end main.c /^uint32_t req_addr_end = 0;$/;" v
req_bank main.c /^uint8_t req_bank;$/;" v
req_bank_cnt main.c /^uint16_t req_bank_cnt;$/;" v
req_bank_size main.c /^uint32_t req_bank_size;$/;" v
req_percent main.c /^uint8_t req_percent;$/;" v
req_percent_last main.c /^uint8_t req_percent_last;$/;" v
req_size main.c /^uint32_t req_size;$/;" v
req_state main.c /^uint8_t req_state = REQ_STATUS_IDLE;$/;" v
rle_decode rle.c /^uint8_t rle_decode(PGM_VOID_P in_addr, int32_t in_len, uint32_t out_addr)$/;" f
rootDir fat.h /^ unsigned long int rootDir; \/\/ Sektor(f16)\/Cluster(f32) nr root directory$/;" m struct:Fat
row fat.h /^ unsigned char row; \/\/ reihe im sektor in der die datei infos stehen (reihe 0-15)$/;" m struct:File
rx_int uart.c /^ uint8_t rx_int:1;$/;" m struct:__anon2 file:
rx_remaining main.c /^uint8_t rx_remaining = 0;$/;" v
rxbuff uart.c /^volatile char rxbuff;$/;" v
scratchpad_cmd shared_memory.c /^uint8_t scratchpad_cmd;$/;" v
scratchpad_payload shared_memory.c /^uint8_t scratchpad_payload;$/;" v
scratchpad_state shared_memory.c /^uint8_t scratchpad_state;$/;" v
secPerClust fat.h /^ unsigned char secPerClust; \/\/ anzahl der sektoren pro cluster$/;" m struct:Fat
second timer.c /^uint16_t volatile second; \/\/ count seconds$/;" v
sector fat.h /^ unsigned char sector[512]; \/\/ der puffer für sektoren !$/;" m struct:Fat
seek fat.h /^ unsigned long int seek; \/\/ schreib position in der datei$/;" m struct:File
send_irq command.c /^void send_irq()$/;" f
send_reset command.c /^void send_reset()$/;" f
set_rom_mode command.c /^void set_rom_mode()$/;" f
shared_memory_irq_hook shared_memory.c /^void shared_memory_irq_hook()$/;" f
shared_memory_irq_restore shared_memory.c /^void shared_memory_irq_restore()$/;" f
shared_memory_read shared_memory.c /^int shared_memory_read(uint8_t *cmd, uint8_t *len,uint8_t *buffer)$/;" f
shared_memory_scratchpad_tx_restore shared_memory.c /^void shared_memory_scratchpad_tx_restore()$/;" f
shared_memory_scratchpad_tx_save shared_memory.c /^void shared_memory_scratchpad_tx_save()$/;" f
shared_memory_write shared_memory.c /^void shared_memory_write(uint8_t cmd, uint8_t value)$/;" f
shared_memory_yield shared_memory.c /^void shared_memory_yield()$/;" f
size fifo.h /^ uint8_t size; \/\/ Puffer-Größe$/;" m struct:__anon1
snes_bus_active sram.h 162;" d
snes_hirom sram.h 169;" d
snes_irq_hi sram.h 83;" d
snes_irq_lo sram.h 86;" d
snes_irq_off sram.h 85;" d
snes_irq_on sram.h 82;" d
snes_lorom sram.h 170;" d
snes_reset_hi sram.h 94;" d
snes_reset_lo sram.h 97;" d
snes_reset_off sram.h 96;" d
snes_reset_on sram.h 93;" d
snes_wr_disable sram.h 176;" d
snes_wr_enable sram.h 178;" d
soft_reset watchdog.h 32;" d
sram_bulk_addr_restore sram.c /^inline void sram_bulk_addr_restore()$/;" f
sram_bulk_addr_save sram.c /^inline void sram_bulk_addr_save()$/;" f
sram_bulk_copy sram.c /^void sram_bulk_copy_from_buffer(uint32_t addr, uint8_t * src, uint32_t len)$/;" f
sram_bulk_read sram.c /^inline uint8_t sram_bulk_read(void)$/;" f
sram_bulk_copy_into_buffer sram.c /^void sram_bulk_copy_into_buffer(uint32_t addr, uint8_t * dst, uint32_t len)$/;" f
sram_bulk_read_end sram.c /^void sram_bulk_read_end(void)$/;" f
sram_bulk_read_next sram.c /^inline void sram_bulk_read_next(void)$/;" f
sram_bulk_read_start sram.c /^void sram_bulk_read_start(uint32_t addr)$/;" f
sram_bulk_set sram.c /^void sram_bulk_set(uint32_t addr, uint32_t len,uint8_t value){$/;" f
sram_bulk_write sram.c /^inline void sram_bulk_write( uint8_t data)$/;" f
sram_bulk_write_end sram.c /^void sram_bulk_write_end(void)$/;" f
sram_bulk_write_next sram.c /^inline void sram_bulk_write_next(void)$/;" f
sram_bulk_write_start sram.c /^void sram_bulk_write_start(uint32_t addr)$/;" f
sram_read sram.c /^uint8_t sram_read(uint32_t addr)$/;" f
sram_write sram.c /^void sram_write(uint32_t addr, uint8_t data)$/;" f
sreg_set sram.c /^void sreg_set(uint32_t addr)$/;" f
startSectors fat.h /^ unsigned long int startSectors; \/\/ der erste sektor in einer reihe (freie oder verkettete)$/;" m struct:Fat
sync_errors main.c /^uint16_t sync_errors = 0;$/;" v
system_init sram.c /^void system_init(void)$/;" f
test_bulk_read_write testing.c /^void test_bulk_read_write()$/;" f
test_crc testing.c /^void test_crc()$/;" f
test_non_zero_memory testing.c /^void test_non_zero_memory(uint32_t bottom_addr, uint32_t top_addr)$/;" f
test_read_write testing.c /^void test_read_write()$/;" f
test_sdcard testing.c /^void test_sdcard(void){$/;" f
timer_start timer.c /^void timer_start( void )$/;" f
timer_stop_int timer.c /^uint16_t timer_stop_int(void)$/;" f
tmr_int uart.c /^ uint8_t tmr_int:1;$/;" m struct:__anon2 file:
tx_buffer main.c /^uint8_t tx_buffer[32];$/;" v
tx_remaining main.c /^uint8_t tx_remaining = 0;$/;" v
uart_init uart.c /^void uart_init(void)$/;" f
uart_putc uart.c /^void uart_putc(uint8_t c)$/;" f
uart_puts uart.c /^void uart_puts(const char *s)$/;" f
uart_puts_P uart.c /^void uart_puts_P(PGM_P s)$/;" f
uart_stdout uart.c /^FILE uart_stdout = FDEV_SETUP_STREAM(uart_stream, NULL, _FDEV_SETUP_WRITE);$/;" v
uart_stream uart.c /^static int uart_stream(char c, FILE * stream)$/;" f file:
uint timer.c 47;" d file:
uint8_t timer.c 46;" d file:
usbFunctionRead usb_bulk.c /^uint8_t usbFunctionRead(uint8_t * data, uint8_t len)$/;" f
usbFunctionSetup main.c /^usbMsgLen_t usbFunctionSetup(uchar data[8])$/;" f
usbFunctionWrite usb_bulk.c /^uint8_t usbFunctionWrite(uint8_t * data, uint8_t len)$/;" f
usb_connect main.c /^void usb_connect()$/;" f
wdt_init watchdog.c /^void wdt_init(void)$/;" f
write2end fifo.h /^ uint8_t read2end, write2end; \/\/ # Zeichen bis zum Überlauf Lese-\/Schreibzeiger$/;" m struct:__anon1

View File

@ -1,137 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdlib.h>
#include <stdint.h>
#include <util/delay.h>
#include "shared_memory.h"
#include "config.h"
#include "sram.h"
#include "debug.h"
#include "crc.h"
#include "info.h"
#include "dump.h"
void test_read_write()
{
uint8_t i;
uint32_t addr;
avr_bus_active();
addr = 0x000000;
i = 1;
while (addr++ <= 0x0000ff) {
sram_write(addr, i++);
}
addr = 0x000000;
while (addr++ <= 0x0000ff) {
info_P(PSTR("read addr=0x%08lx %x\n"), addr, sram_read(addr));
}
}
void test_bulk_read_write()
{
uint8_t i;
uint32_t addr;
avr_bus_active();
addr = 0x000000;
i = 0;
sram_bulk_write_start(addr);
while (addr++ <= 0x8000) {
sram_bulk_write(i++);
sram_bulk_write_next();
}
sram_bulk_write_end();
addr = 0x000000;
sram_bulk_read_start(addr);
while (addr <= 0x8000) {
info_P(PSTR("addr=0x%08lx %x\n"), addr, sram_bulk_read());
sram_bulk_read_next();
addr++;
}
sram_bulk_read_end();
}
void test_non_zero_memory(uint32_t bottom_addr, uint32_t top_addr)
{
uint32_t addr = 0;
uint8_t c;
sram_bulk_read_start(bottom_addr);
for (addr = bottom_addr; addr < top_addr; addr++) {
c = sram_bulk_read();
if (c != 0xff)
info_P(PSTR("addr=0x%08lx c=0x%x\n"), addr, c);
sram_bulk_read_next();
}
sram_bulk_read_end();
}
void test_memory_pattern(uint32_t bottom_addr, uint32_t top_addr,
uint32_t bank_size)
{
uint32_t addr = 0;
uint8_t pattern = 0x55;
info_P(PSTR("test_memory_pattern: bottom_addr=0x%08lx top_addr=0x%08lx\n"),
bottom_addr, top_addr);
sram_bulk_write_start(bottom_addr);
for (addr = bottom_addr; addr < top_addr; addr++) {
if (addr % bank_size == 0) {
pattern++;
info_P(PSTR
("test_memory_pattern: write addr=0x%08lx pattern=0x%08lx\n"),
addr, pattern);
}
sram_bulk_write(pattern);
}
sram_bulk_write_end();
for (addr = bottom_addr; addr < top_addr; addr += bank_size) {
info_P(PSTR
("test_memory_pattern: dump bottom_addr=0x%08lx top_addr=0x%08lx\n"),
addr, addr + bank_size);
dump_memory(addr, addr + bank_size);
info_P(PSTR
("----------------------------------------------------------------\n"));
}
crc_check_bulk_memory((uint32_t) bottom_addr, top_addr, bank_size);
}
void test_crc()
{
info_P(PSTR("test_crc: clear\n"));
avr_bus_active();
sram_bulk_set(0x000000, 0x10000, 0xff);
info_P(PSTR("test_crc: crc\n"));
crc_check_bulk_memory(0x000000, 0x10000, 0x8000);
info_P(PSTR("test_crc: check\n"));
test_non_zero_memory(0x000000, 0x10000);
}

View File

@ -1,31 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __TESTING_H__
#define __TESTING_H__
void test_read_write();
void test_bulk_read_write();
void test_non_zero_memory(uint32_t bottom_addr, uint32_t top_addr);
void test_crc();
#endif

View File

@ -1,89 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdint.h>
#include <stdio.h>
#include <avr/io.h>
#include <avr/interrupt.h> /* for sei() */
#include "debug.h"
#include "info.h"
#include "sram.h"
extern uint8_t snes_reset_line;
#ifndef OCR1A
#define OCR1A OCR1 // 2313 support
#endif
#ifndef WGM12
#define WGM12 CTC1 // 2313 support
#endif
// #define XTAL 11059201L // nominal value
#define XTAL 20000000UL
#define DEBOUNCE 500L // debounce clock (256Hz = 4msec)
#define uint8_t unsigned char
#define uint unsigned int
uint16_t prescaler;
uint16_t volatile second; // count seconds
ISR(TIMER1_COMPA_vect)
{
#if XTAL % DEBOUNCE // bei rest
OCR1A = 20000000UL / DEBOUNCE - 1; // compare DEBOUNCE - 1 times
#endif
if (--prescaler == 0) {
prescaler = (uint16_t) DEBOUNCE;
second++; // exact one second over
#if XTAL % DEBOUNCE // handle remainder
OCR1A = XTAL / DEBOUNCE + XTAL % DEBOUNCE - 1; // compare once per second
#endif
}
}
void timer_start(void)
{
TCCR1B = (1 << WGM12) | (1 << CS10); // divide by 1
// clear on compare
OCR1A = XTAL / DEBOUNCE - 1UL; // Output Compare Register
TCNT1 = 0; // Timmer startet mit 0
second = 0;
prescaler = (uint16_t) DEBOUNCE; // software teiler
TIMSK1 = 1 << OCIE1A; // beim Vergleichswertes Compare Match
// Interrupt (SIG_OUTPUT_COMPARE1A)
sei();
}
uint16_t timer_stop_int(void)
{
uint16_t t = ((DEBOUNCE - prescaler) / DEBOUNCE) + second;
return t;
}

View File

@ -1,29 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __TIMER_H__
#define __TIMER_H__
int16_t timer_start(void);
double timer_stop(void);
int16_t timer_stop_int(void);
#endif

View File

@ -1,91 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include "uart.h"
#include "fifo.h"
volatile struct {
uint8_t tmr_int:1;
uint8_t adc_int:1;
uint8_t rx_int:1;
} intflags;
volatile char rxbuff;
static int uart_stream(char c, FILE * stream);
FILE uart_stdout = FDEV_SETUP_STREAM(uart_stream, NULL, _FDEV_SETUP_WRITE);
void uart_init(void)
{
UCSR0A = _BV(U2X0); /* improves baud rate error @ F_CPU = 1 MHz */
UCSR0B = _BV(TXEN0) | _BV(RXEN0) | _BV(RXCIE0); /* tx/rx enable, rx complete * intr */
UBRR0L = (F_CPU / (8 * 115200UL)) - 1;
}
/*
* ISR(USART0_RX_vect) { uint8_t c; c = UDR0; if (bit_is_clear(UCSR0A, FE0)) { rxbuff = c; intflags.rx_int = 1; } }
*/
void uart_putc(uint8_t c)
{
loop_until_bit_is_set(UCSR0A, UDRE0);
UDR0 = c;
}
void uart_puts(const char *s)
{
do {
uart_putc(*s);
}
while (*s++);
}
void uart_puts_P(PGM_P s)
{
while (1) {
unsigned char c = pgm_read_byte(s);
s++;
if ('\0' == c)
break;
uart_putc(c);
}
}
static int uart_stream(char c, FILE * stream)
{
if (c == '\n')
uart_putc('\r');
loop_until_bit_is_set(UCSR0A, UDRE0);
UDR0 = c;
return 0;
}

View File

@ -1,36 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __UART_H__
#define __UART_H__
#define CR "\r\n"
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdio.h>
void uart_init(void);
void uart_putc(const uint8_t);
void uart_puts(const char *s);
void uart_puts_P(PGM_P s);
#endif

View File

@ -1,86 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/io.h>
#include <avr/pgmspace.h> /* required by usbdrv.h */
#include <avr/interrupt.h> /* for sei() */
#include <util/delay.h> /* for _delay_ms() */
#include <stdlib.h>
#include "usbdrv.h"
#include "oddebug.h" /* This is also an example for using debug macros */
#include "config.h"
#include "requests.h" /* The custom request numbers we use */
#include "uart.h"
#include "sram.h"
#include "debug.h"
#include "info.h"
#include "crc.h"
#include "usb_bulk.h"
extern usb_transaction_t usb_trans;
uint8_t usbFunctionWrite(uint8_t * data, uint8_t len)
{
uint8_t *ptr;
uint8_t i;
if (len > usb_trans.rx_remaining) {
info_P(PSTR
("ERROR:usbFunctionWrite more data than expected remain: %i len: %i\n"),
usb_trans.rx_remaining, len);
len = usb_trans.rx_remaining;
}
if (usb_trans.req_state == REQ_STATUS_BULK_UPLOAD) {
usb_trans.rx_remaining -= len;
debug_P(DEBUG_USB_TRANS,
PSTR
("usbFunctionWrite REQ_STATUS_BULK_UPLOAD addr: 0x%08lx len: %i rx_remaining=%i\n"),
usb_trans.req_addr, len, usb_trans.rx_remaining);
ptr = data;
i = len;
while (i--) {
sram_bulk_write(*ptr++);
sram_bulk_write_next();
}
}
return len;
}
uint8_t usbFunctionRead(uint8_t * data, uint8_t len)
{
uint8_t i;
if (len > usb_trans.tx_remaining)
len = usb_trans.tx_remaining;
usb_trans.tx_remaining -= len;
debug_P(DEBUG_USB_TRANS, PSTR("usbFunctionRead len=%i tx_remaining=%i \n"),
len, usb_trans.tx_remaining);
for (i = 0; i < len; i++) {
*data = usb_trans.tx_buffer[len];
data++;
}
return len;
}

View File

@ -1,29 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __USB_BULK_H__
#define __USB_BULK_H__
uint8_t usbFunctionWrite(uint8_t * data, uint8_t len);
uint8_t usbFunctionRead(uint8_t * data, uint8_t len);
#endif

View File

@ -1,352 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
/*
* Name: usbconfig.h Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers Author: Christian Starkjohann Creation Date:
* 2005-04-01 Tabsize: 4 Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH License: GNU GPL v2 (see License.txt), GNU GPL v3 or
* proprietary (CommercialLicense.txt) This Revision: $Id: usbconfig-prototype.h 740 2009-04-13 18:23:31Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
* General Description: This file is an example configuration (with inline documentation) for the USB driver. It configures V-USB for USB
* D+ connected to Port D bit 2 (which is also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may wire the lines to
* any other port, as long as D+ is also wired to INT0 (or any other hardware interrupt, as long as it is the highest level interrupt, see
* section at the end of this file).
*/
/*
* ---------------------------- Hardware Config ----------------------------
*/
#define USB_CFG_IOPORTNAME D
/*
* This is the port where the USB bus is connected. When you configure it to "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/*
* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected. This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/*
* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected. This may be any bit in the port. Please note that D+ must
* also be connected to interrupt pin INT0! [You can also use other interrupts, see section "Optional MCU Description" below, or you can
* connect D- to the interrupt, as it is required if you use the USB_COUNT_SOF feature. If you use D- for the interrupt, the USB interrupt
* will also be triggered at Start-Of-Frame markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/*
* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000, 16500 and 20000. The 12.8 MHz and 16.5 MHz versions of the
* code require no crystal, they tolerate +/- 1% deviation from the nominal frequency. All other rates require a precision of 2000 ppm and
* thus a crystal! Default if not specified: 12 MHz
*/
#define USB_CFG_CHECK_CRC 0
/*
* Define this to 1 if you want that the driver checks integrity of incoming data packets (CRC checks). CRC checks cost quite a bit of code
* size and are currently only available for 18 MHz crystal clock. You must choose USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/*
* ----------------------- Optional Hardware Config ------------------------
*/
// #define USB_CFG_PULLUP_IOPORTNAME D
/*
* If you connect the 1.5k pullup resistor from D- to a port pin instead of V+, you can connect and disconnect the device from firmware by
* calling the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h). This constant defines the port on which the pullup
* resistor is connected.
*/
// #define USB_CFG_PULLUP_BIT 6
/*
* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined above) where the 1.5k pullup resistor is connected. See
* description above for details.
*/
/*
* --------------------------- Functional Range ----------------------------
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/*
* Define this to 1 if you want to compile a version with two endpoints: The default control endpoint 0 and an interrupt-in endpoint (any
* other endpoint number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/*
* Define this to 1 if you want to compile a version with three endpoints: The default control endpoint 0, an interrupt-in endpoint 3 (or
* the number configured below) and a catch-all default interrupt-in endpoint as above. You must also define USB_CFG_HAVE_INTRIN_ENDPOINT
* to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/*
* If the so-called endpoint 3 is used, it can now be configured to any other endpoint number (except 0) with this macro. Default if
* undefined is 3.
*/
/*
* #define USB_INITIAL_DATATOKEN USBPID_DATA1
*/
/*
* The above macro defines the startup condition for data toggling on the interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1. Since
* the token is toggled BEFORE sending any data, the first packet is sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/*
* Define this to 1 if you also want to implement the ENDPOINT_HALT feature for endpoint 1 (interrupt endpoint). Although you may not need
* this feature, it is required by the standard. We have made it a config option because it bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 1
/*
* Define this to 1 if you want to declare interrupt-in endpoints, but don't want to send any data over them. If this macro is defined to
* 1, functions usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if you need the interrupt-in endpoints in order to
* comply to an interface (e.g. HID), but never want to send any data. This option saves a couple of bytes in flash memory and the transmit
* buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 20
/*
* If you compile a version with endpoint 1 (interrupt-in), this is the poll interval. The value is in milliseconds and must not be less
* than 10 ms for low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/*
* Define this to 1 if the device has its own power supply. Set it to 0 if the device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 300
/*
* Set this variable to the maximum USB bus power consumption of your device. The value is in milliamperes. [It will be divided by two
* since USB communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/*
* Set this to 1 if you want usbFunctionWrite() to be called for control-out transfers. Set it to 0 if you don't need it and want to save a
* couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/*
* Set this to 1 if you need to send control replies which are generated "on the fly" when usbFunctionRead() is called. If you only want to
* send data from a static buffer, set it to 0 and return the data from usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/*
* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints. You must implement the function usbFunctionWriteOut() which
* receives all interrupt/bulk data sent to any endpoint other than 0. The endpoint number can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/*
* Define this to 1 if you want flowcontrol over USB data. See the definition of the macros usbDisableAllRequests() and
* usbEnableAllRequests() in usbdrv.h.
*/
#define USB_CFG_LONG_TRANSFERS 0
/*
* Define this to 1 if you want to send/receive blocks of more than 254 bytes in a single control-in or control-out transfer. Note that the
* capability for long transfers increases the driver size.
*/
/*
* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED();
*/
/*
* This macro is a hook if you want to do unconventional things. If it is defined, it's inserted at the beginning of received message
* processing. If you eat the received message and don't want default processing to proceed, do a return after doing your things. One
* possible application (besides debugging) is to flash a status LED on each packet.
*/
/*
* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();}
*/
/*
* This macro is a hook if you need to know when an USB RESET occurs. It has one parameter which distinguishes between the start of RESET
* state and its end.
*/
/*
* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned();
*/
/*
* This macro (if defined) is executed when a USB SET_ADDRESS request was received.
*/
#define USB_COUNT_SOF 0
/*
* define this macro to 1 if you need the global variable "usbSofCount" which counts SOF packets. This feature requires that the hardware
* interrupt is connected to D- instead of D+.
*/
/*
* #ifdef __ASSEMBLER__ macro myAssemblerMacro in YL, TCNT0 sts timer0Snapshot, YL endm #endif #define USB_SOF_HOOK myAssemblerMacro This
* macro (if defined) is executed in the assembler module when a Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more than one assembler instruction can be used. The macro may use
* the register YL and modify SREG. If it lasts longer than a couple of cycles, USB messages immediately after an SOF pulse may be lost and
* must be retried by the host. What can you do with this hook? Since the SOF signal occurs exactly every 1 ms (unless the host is in sleep
* mode), you can use it to tune OSCCAL in designs running on the internal RC oscillator. Please note that Start Of Frame detection works
* only if D- is wired to the interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/*
* define this macro to 1 if you want to filter out duplicate data packets sent by the host. Duplicates occur only as a consequence of
* communication errors, when the host does not receive an ACK. Please note that you need to implement the filtering yourself in
* usbFunctionWriteOut() and usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable for each control- and
* out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/*
* define this macro to 1 if you want the function usbMeasureFrameLength() compiled in. This function can be used to calibrate the AVR's RC
* oscillator.
*/
/*
* -------------------------- Device Description ---------------------------
*/
#define USB_CFG_VENDOR_ID 0xc0, 0x16
/*
* USB vendor ID for the device, low byte first. If you have registered your own Vendor ID, define it here. Otherwise you use one of
* obdev's free shared VID/PID pairs. Be sure to read USBID-License.txt for rules!
*/
#define USB_CFG_DEVICE_ID 0xdd, 0x05
/*
* This is the ID of the product, low byte first. It is interpreted in the scope of the vendor ID. If you have registered your own VID with
* usb.org or if you have licensed a PID from somebody else, define it here. Otherwise you use obdev's free shared VID/PID pair. Be sure to
* read the rules in USBID-License.txt!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/*
* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'o', 'p', 't', 'i', 'x', 'x', '.', 'o', 'r', 'g'
#define USB_CFG_VENDOR_NAME_LEN 10
/*
* These two values define the vendor name returned by the USB device. The name must be given as a list of characters under single quotes.
* The characters are interpreted as Unicode (UTF-16) entities. If you don't want a vendor name string, undefine these macros. ALWAYS
* define a vendor name containing your Internet domain name if you use obdev's free shared VID/PID pair. See the file USBID-License.txt
* for details.
*/
#define USB_CFG_DEVICE_NAME 'Q', 'U', 'I', 'C', 'K', 'D', 'E', 'V', '1', '6'
#define USB_CFG_DEVICE_NAME_LEN 10
/*
* Same as above for the device name. If you don't want a device name, undefine the macros. See the file USBID-License.txt before you
* assign a name if you use a shared VID/PID.
*/
/*
* #define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e'
*/
/*
* #define USB_CFG_SERIAL_NUMBER_LEN 0
*/
/*
* Same as above for the serial number. If you don't want a serial number, undefine the macros. It may be useful to provide the serial
* number through other means than at compile time. See the section about descriptor properties below for how to fine tune control over USB
* descriptors such as the string descriptor for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/*
* See USB specification if you want to conform to an existing device class. Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/*
* See USB specification if you want to conform to an existing device class or protocol. The following classes must be set at interface
* level: HID class is 3, no subclass and protocol required (but may be useful!) CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 0
/*
* Define this to the length of the HID report descriptor, if you implement an HID device. Otherwise don't define it or define it to 0. If
* you use this define, you must add a PROGMEM character array named "usbHidReportDescriptor" to your code which contains the report
* descriptor. Don't forget to keep the array and this define in sync!
*/
/*
* #define USB_PUBLIC static
*/
/*
* Use the define above if you #include usbdrv.c instead of linking against it. This technique saves a couple of bytes in flash memory.
*/
/*
* ------------------- Fine Control over USB Descriptors -------------------
*/
/*
* If you don't want to use the driver's default USB descriptors, you can provide our own. These can be provided as (1) fixed length static
* data in flash memory, (2) fixed length static data in RAM or (3) dynamically at runtime in the function usbFunctionDescriptor(). See
* usbdrv.h for more information about this function. Descriptor handling is configured through the descriptor's properties. If no
* properties are defined or if they are 0, the default descriptor is used. Possible properties are: + USB_PROP_IS_DYNAMIC: The data for
* the descriptor should be fetched at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is used, the data is in FLASH by
* default. Add property USB_PROP_IS_RAM if you want RAM pointers. + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or
* found in static memory is in RAM, not in flash memory. + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash), the
* driver must know the descriptor's length. The descriptor itself is found at the address of a well known identifier (see below). List of
* static descriptor names (must be declared PROGMEM if in flash): char usbDescriptorDevice[]; char usbDescriptorConfiguration[]; char
* usbDescriptorHidReport[]; char usbDescriptorString0[]; int usbDescriptorStringVendor[]; int usbDescriptorStringDevice[]; int
* usbDescriptorStringSerialNumber[]; Other descriptors can't be provided statically, they must be provided dynamically at runtime.
* Descriptor properties are or-ed or added together, e.g.: #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18)) The
* following descriptors are defined: USB_CFG_DESCR_PROPS_DEVICE USB_CFG_DESCR_PROPS_CONFIGURATION USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0 USB_CFG_DESCR_PROPS_STRING_VENDOR USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER USB_CFG_DESCR_PROPS_HID USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_DESCR_PROPS_UNKNOWN (for all
* descriptors not handled by the driver) Note about string descriptors: String descriptors are not just strings, they are Unicode strings
* prefixed with a 2 byte header. Example: int serialNumberDescriptor[] = { USB_STRING_DESCRIPTOR_HEADER(6), 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/*
* ----------------------- Optional MCU Description ------------------------
*/
/*
* The following configurations have working defaults in usbdrv.h. You usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler which is not fully supported (such as IAR C) or if you use a
* differnt interrupt than INT0, you may have to define some of these.
*/
/*
* #define USB_INTR_CFG MCUCR
*/
/*
* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01))
*/
/*
* #define USB_INTR_CFG_CLR 0
*/
/*
* #define USB_INTR_ENABLE GIMSK
*/
/*
* #define USB_INTR_ENABLE_BIT INT0
*/
/*
* #define USB_INTR_PENDING GIFR
*/
/*
* #define USB_INTR_PENDING_BIT INTF0
*/
/*
* #define USB_INTR_VECTOR SIG_INTERRUPT0
*/
#endif /* __usbconfig_h_included__ */

View File

@ -1,166 +0,0 @@
V-USB Driver Software License Agreement
Version 2012-07-09
THIS LICENSE AGREEMENT GRANTS YOU CERTAIN RIGHTS IN A SOFTWARE. YOU CAN
ENTER INTO THIS AGREEMENT AND ACQUIRE THE RIGHTS OUTLINED BELOW BY PAYING
THE AMOUNT ACCORDING TO SECTION 4 ("PAYMENT") TO OBJECTIVE DEVELOPMENT.
1 DEFINITIONS
1.1 "OBJECTIVE DEVELOPMENT" shall mean OBJECTIVE DEVELOPMENT Software GmbH,
Grosse Schiffgasse 1A/7, 1020 Wien, AUSTRIA.
1.2 "You" shall mean the Licensee.
1.3 "V-USB" shall mean all files included in the package distributed under
the name "vusb" by OBJECTIVE DEVELOPMENT (http://www.obdev.at/vusb/)
unless otherwise noted. This includes the firmware-only USB device
implementation for Atmel AVR microcontrollers, some simple device examples
and host side software examples and libraries.
2 LICENSE GRANTS
2.1 Source Code. OBJECTIVE DEVELOPMENT shall furnish you with the source
code of V-USB.
2.2 Distribution and Use. OBJECTIVE DEVELOPMENT grants you the
non-exclusive right to use, copy and distribute V-USB with your hardware
product(s), restricted by the limitations in section 3 below.
2.3 Modifications. OBJECTIVE DEVELOPMENT grants you the right to modify
the source code and your copy of V-USB according to your needs.
2.4 USB IDs. OBJECTIVE DEVELOPMENT furnishes you with one or two USB
Product ID(s), sent to you in e-mail. These Product IDs are reserved
exclusively for you. OBJECTIVE DEVELOPMENT has obtained USB Product ID
ranges under the Vendor ID 5824 from Wouter van Ooijen (Van Ooijen
Technische Informatica, www.voti.nl) and under the Vendor ID 8352 from
Jason Kotzin (now flirc.tv, Inc.). Both owners of the Vendor IDs have
obtained these IDs from the USB Implementers Forum, Inc. (www.usb.org).
OBJECTIVE DEVELOPMENT disclaims all liability which might arise from the
assignment of USB IDs.
2.5 USB Certification. Although not part of this agreement, we want to make
it clear that you cannot become USB certified when you use V-USB or a USB
Product ID assigned by OBJECTIVE DEVELOPMENT. AVR microcontrollers don't
meet the electrical specifications required by the USB specification and
the USB Implementers Forum certifies only members who bought a Vendor ID of
their own.
3 LICENSE RESTRICTIONS
3.1 Number of Units. Only one of the following three definitions is
applicable. Which one is determined by the amount you pay to OBJECTIVE
DEVELOPMENT, see section 4 ("Payment") below.
Hobby License: You may use V-USB according to section 2 above in no more
than 5 hardware units. These units must not be sold for profit.
Entry Level License: You may use V-USB according to section 2 above in no
more than 150 hardware units.
Professional License: You may use V-USB according to section 2 above in
any number of hardware units, except for large scale production ("unlimited
fair use"). Quantities below 10,000 units are not considered large scale
production. If your reach quantities which are obviously large scale
production, you must pay a license fee of 0.10 EUR per unit for all units
above 10,000.
3.2 Rental. You may not rent, lease, or lend V-USB or otherwise encumber
any copy of V-USB, or any of the rights granted herein.
3.3 Transfer. You may not transfer your rights under this Agreement to
another party without OBJECTIVE DEVELOPMENT's prior written consent. If
such consent is obtained, you may permanently transfer this License to
another party. The recipient of such transfer must agree to all terms and
conditions of this Agreement.
3.4 Reservation of Rights. OBJECTIVE DEVELOPMENT retains all rights not
expressly granted.
3.5 Non-Exclusive Rights. Your license rights under this Agreement are
non-exclusive.
3.6 Third Party Rights. This Agreement cannot grant you rights controlled
by third parties. In particular, you are not allowed to use the USB logo or
other trademarks owned by the USB Implementers Forum, Inc. without their
consent. Since such consent depends on USB certification, it should be
noted that V-USB will not pass certification because it does not
implement checksum verification and the microcontroller ports do not meet
the electrical specifications.
4 PAYMENT
The payment amount depends on the variation of this agreement (according to
section 3.1) into which you want to enter. Concrete prices are listed on
OBJECTIVE DEVELOPMENT's web site, usually at
http://www.obdev.at/vusb/license.html. You agree to pay the amount listed
there to OBJECTIVE DEVELOPMENT or OBJECTIVE DEVELOPMENT's payment processor
or reseller.
5 COPYRIGHT AND OWNERSHIP
V-USB is protected by copyright laws and international copyright
treaties, as well as other intellectual property laws and treaties. V-USB
is licensed, not sold.
6 TERM AND TERMINATION
6.1 Term. This Agreement shall continue indefinitely. However, OBJECTIVE
DEVELOPMENT may terminate this Agreement and revoke the granted license and
USB-IDs if you fail to comply with any of its terms and conditions.
6.2 Survival of Terms. All provisions regarding secrecy, confidentiality
and limitation of liability shall survive termination of this agreement.
7 DISCLAIMER OF WARRANTY AND LIABILITY
LIMITED WARRANTY. V-USB IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, OBJECTIVE
DEVELOPMENT AND ITS SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO V-USB, AND THE PROVISION OF OR FAILURE
TO PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO
STATE/JURISDICTION.
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL OBJECTIVE DEVELOPMENT OR ITS SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE V-USB OR THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF OBJECTIVE
DEVELOPMENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
CASE, OBJECTIVE DEVELOPMENT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR V-USB.
8 MISCELLANEOUS TERMS
8.1 Marketing. OBJECTIVE DEVELOPMENT has the right to mention for marketing
purposes that you entered into this agreement.
8.2 Entire Agreement. This document represents the entire agreement between
OBJECTIVE DEVELOPMENT and you. It may only be modified in writing signed by
an authorized representative of both, OBJECTIVE DEVELOPMENT and you.
8.3 Severability. In case a provision of these terms and conditions should
be or become partly or entirely invalid, ineffective, or not executable,
the validity of all other provisions shall not be affected.
8.4 Applicable Law. This agreement is governed by the laws of the Republic
of Austria.
8.5 Responsible Courts. The responsible courts in Vienna/Austria will have
exclusive jurisdiction regarding all disputes in connection with this
agreement.

View File

@ -1,172 +0,0 @@
This is the Readme file to Objective Development's firmware-only USB driver
for Atmel AVR microcontrollers. For more information please visit
http://www.obdev.at/vusb/
This directory contains the USB firmware only. Copy it as-is to your own
project and add all .c and .S files to your project (these files are marked
with an asterisk in the list below). Then copy usbconfig-prototype.h as
usbconfig.h to your project and edit it according to your configuration.
TECHNICAL DOCUMENTATION
=======================
The technical documentation (API) for the firmware driver is contained in the
file "usbdrv.h". Please read all of it carefully! Configuration options are
documented in "usbconfig-prototype.h".
The driver consists of the following files:
Readme.txt ............. The file you are currently reading.
Changelog.txt .......... Release notes for all versions of the driver.
usbdrv.h ............... Driver interface definitions and technical docs.
* usbdrv.c ............... High level language part of the driver. Link this
module to your code!
* usbdrvasm.S ............ Assembler part of the driver. This module is mostly
a stub and includes one of the usbdrvasm*.S files
depending on processor clock. Link this module to
your code!
usbdrvasm*.inc ......... Assembler routines for particular clock frequencies.
Included by usbdrvasm.S, don't link it directly!
asmcommon.inc .......... Common assembler routines. Included by
usbdrvasm*.inc, don't link it directly!
usbconfig-prototype.h .. Prototype for your own usbdrv.h file.
* oddebug.c .............. Debug functions. Only used when DEBUG_LEVEL is
defined to a value greater than 0. Link this module
to your code!
oddebug.h .............. Interface definitions of the debug module.
usbportability.h ....... Header with compiler-dependent stuff.
usbdrvasm.asm .......... Compatibility stub for IAR-C-compiler. Use this
module instead of usbdrvasm.S when you assembler
with IAR's tools.
License.txt ............ Open Source license for this driver.
CommercialLicense.txt .. Optional commercial license for this driver.
USB-ID-FAQ.txt ......... General infos about USB Product- and Vendor-IDs.
USB-IDs-for-free.txt ... List and terms of use for free shared PIDs.
(*) ... These files should be linked to your project.
CPU CORE CLOCK FREQUENCY
========================
We supply assembler modules for clock frequencies of 12 MHz, 12.8 MHz, 15 MHz,
16 MHz, 16.5 MHz 18 MHz and 20 MHz. Other clock rates are not supported. The
actual clock rate must be configured in usbconfig.h.
12 MHz Clock
This is the traditional clock rate of V-USB because it's the lowest clock
rate where the timing constraints of the USB spec can be met.
15 MHz Clock
Similar to 12 MHz, but some NOPs inserted. On the other hand, the higher clock
rate allows for some loops which make the resulting code size somewhat smaller
than the 12 MHz version.
16 MHz Clock
This clock rate has been added for users of the Arduino board and other
ready-made boards which come with a fixed 16 MHz crystal. It's also an option
if you need the slightly higher clock rate for performance reasons. Since
16 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
is somewhat tricky and has to insert a leap cycle every third byte.
12.8 MHz and 16.5 MHz Clock
The assembler modules for these clock rates differ from the other modules
because they have been built for an RC oscillator with only 1% precision. The
receiver code inserts leap cycles to compensate for clock deviations. 1% is
also the precision which can be achieved by calibrating the internal RC
oscillator of the AVR. Please note that only AVRs with internal 64 MHz PLL
oscillator can reach 16.5 MHz with the RC oscillator. This includes the very
popular ATTiny25, ATTiny45, ATTiny85 series as well as the ATTiny26. Almost
all AVRs can reach 12.8 MHz, although this is outside the specified range.
See the EasyLogger example at http://www.obdev.at/vusb/easylogger.html for
code which calibrates the RC oscillator based on the USB frame clock.
18 MHz Clock
This module is closer to the USB specification because it performs an on the
fly CRC check for incoming packets. Packets with invalid checksum are
discarded as required by the spec. If you also implement checks for data
PID toggling on application level (see option USB_CFG_CHECK_DATA_TOGGLING
in usbconfig.h for more info), this ensures data integrity. Due to the CRC
tables and alignment requirements, this code is bigger than modules for other
clock rates. To activate this module, you must define USB_CFG_CHECK_CRC to 1
and USB_CFG_CLOCK_KHZ to 18000 in usbconfig.h.
20 MHz Clock
This module is for people who won't do it with less than the maximum. Since
20 MHz is not divisible by the USB low speed bit clock of 1.5 MHz, the code
uses similar tricks as the 16 MHz module to insert leap cycles.
USB IDENTIFIERS
===============
Every USB device needs a vendor- and a product-identifier (VID and PID). VIDs
are obtained from usb.org for a price of 1,500 USD. Once you have a VID, you
can assign PIDs at will.
Since an entry level cost of 1,500 USD is too high for most small companies
and hobbyists, we provide some VID/PID pairs for free. See the file
USB-IDs-for-free.txt for details.
Objective Development also has some license offerings which include product
IDs. See http://www.obdev.at/vusb/ for details.
DEVELOPMENT SYSTEM
==================
This driver has been developed and optimized for the GNU compiler version 3
and 4. We recommend that you use the GNU compiler suite because it is freely
available. V-USB has also been ported to the IAR compiler and assembler. It
has been tested with IAR 4.10B/W32 and 4.12A/W32 on an ATmega8 with the
"small" and "tiny" memory model. Not every release is tested with IAR CC and
the driver may therefore fail to compile with IAR. Please note that gcc is
more efficient for usbdrv.c because this module has been deliberately
optimized for gcc.
Gcc version 3 produces smaller code than version 4 due to new optimizing
capabilities which don't always improve things on 8 bit CPUs. The code size
generated by gcc 4 can be reduced with the compiler options
-fno-move-loop-invariants, -fno-tree-scev-cprop and
-fno-inline-small-functions in addition to -Os. On devices with more than
8k of flash memory, we also recommend the linker option --relax (written as
-Wl,--relax for gcc) to convert absolute calls into relative where possible.
For more information about optimizing options see:
http://www.tty1.net/blog/2008-04-29-avr-gcc-optimisations_en.html
These optimizations are good for gcc 4.x. Version 3.x of gcc does not support
most of these options and produces good code anyway.
USING V-USB FOR FREE
====================
The AVR firmware driver is published under the GNU General Public License
Version 2 (GPL2) and the GNU General Public License Version 3 (GPL3). It is
your choice whether you apply the terms of version 2 or version 3.
If you decide for the free GPL2 or GPL3, we STRONGLY ENCOURAGE you to do the
following things IN ADDITION to the obligations from the GPL:
(1) Publish your entire project on a web site and drop us a note with the URL.
Use the form at http://www.obdev.at/vusb/feedback.html for your submission.
If you don't have a web site, you can publish the project in obdev's
documentation wiki at
http://www.obdev.at/goto.php?t=vusb-wiki&p=hosted-projects.
(2) Adhere to minimum publication standards. Please include AT LEAST:
- a circuit diagram in PDF, PNG or GIF format
- full source code for the host software
- a Readme.txt file in ASCII format which describes the purpose of the
project and what can be found in which directories and which files
- a reference to http://www.obdev.at/vusb/
(3) If you improve the driver firmware itself, please give us a free license
to your modifications for our commercial license offerings.
COMMERCIAL LICENSES FOR V-USB
=============================
If you don't want to publish your source code under the terms of the GPL,
you can simply pay money for V-USB. As an additional benefit you get
USB PIDs for free, reserved exclusively to you. See the file
"CommercialLicense.txt" for details.

View File

@ -1,122 +0,0 @@
/* Name: oddebug.h
* Project: AVR library
* Author: Christian Starkjohann
* Creation Date: 2005-01-16
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#ifndef __oddebug_h_included__
#define __oddebug_h_included__
/*
General Description:
This module implements a function for debug logs on the serial line of the
AVR microcontroller. Debugging can be configured with the define
'DEBUG_LEVEL'. If this macro is not defined or defined to 0, all debugging
calls are no-ops. If it is 1, DBG1 logs will appear, but not DBG2. If it is
2, DBG1 and DBG2 logs will be printed.
A debug log consists of a label ('prefix') to indicate which debug log created
the output and a memory block to dump in hex ('data' and 'len').
*/
#ifndef F_CPU
# define F_CPU 12000000 /* 12 MHz */
#endif
/* make sure we have the UART defines: */
#include "usbportability.h"
#ifndef uchar
# define uchar unsigned char
#endif
#if DEBUG_LEVEL > 0 && !(defined TXEN || defined TXEN0) /* no UART in device */
# warning "Debugging disabled because device has no UART"
# undef DEBUG_LEVEL
#endif
#ifndef DEBUG_LEVEL
# define DEBUG_LEVEL 0
#endif
/* ------------------------------------------------------------------------- */
#if DEBUG_LEVEL > 0
# define DBG1(prefix, data, len) odDebug(prefix, data, len)
#else
# define DBG1(prefix, data, len)
#endif
#if DEBUG_LEVEL > 1
# define DBG2(prefix, data, len) odDebug(prefix, data, len)
#else
# define DBG2(prefix, data, len)
#endif
/* ------------------------------------------------------------------------- */
#if DEBUG_LEVEL > 0
extern void odDebug(uchar prefix, uchar *data, uchar len);
/* Try to find our control registers; ATMEL likes to rename these */
#if defined UBRR
# define ODDBG_UBRR UBRR
#elif defined UBRRL
# define ODDBG_UBRR UBRRL
#elif defined UBRR0
# define ODDBG_UBRR UBRR0
#elif defined UBRR0L
# define ODDBG_UBRR UBRR0L
#endif
#if defined UCR
# define ODDBG_UCR UCR
#elif defined UCSRB
# define ODDBG_UCR UCSRB
#elif defined UCSR0B
# define ODDBG_UCR UCSR0B
#endif
#if defined TXEN
# define ODDBG_TXEN TXEN
#else
# define ODDBG_TXEN TXEN0
#endif
#if defined USR
# define ODDBG_USR USR
#elif defined UCSRA
# define ODDBG_USR UCSRA
#elif defined UCSR0A
# define ODDBG_USR UCSR0A
#endif
#if defined UDRE
# define ODDBG_UDRE UDRE
#else
# define ODDBG_UDRE UDRE0
#endif
#if defined UDR
# define ODDBG_UDR UDR
#elif defined UDR0
# define ODDBG_UDR UDR0
#endif
static inline void odDebugInit(void)
{
ODDBG_UCR |= (1<<ODDBG_TXEN);
ODDBG_UBRR = F_CPU / (19200 * 16L) - 1;
}
#else
# define odDebugInit()
#endif
/* ------------------------------------------------------------------------- */
#endif /* __oddebug_h_included__ */

View File

@ -1,384 +0,0 @@
/* Name: usbconfig.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
+ To create your own usbconfig.h file, copy this file to your project's
+ firmware source directory) and rename it to "usbconfig.h".
+ Then edit it accordingly.
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
* 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
* require no crystal, they tolerate +/- 1% deviation from the nominal
* frequency. All other rates require a precision of 2000 ppm and thus a
* crystal!
* Since F_CPU should be defined to your actual clock rate anyway, you should
* not need to modify this setting.
*/
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
* data packets (CRC checks). CRC checks cost quite a bit of code size and are
* currently only available for 18 MHz crystal clock. You must choose
* USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/* ----------------------- Optional Hardware Config ------------------------ */
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
* want to send any data over them. If this macro is defined to 1, functions
* usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
* you need the interrupt-in endpoints in order to comply to an interface
* (e.g. HID), but never want to send any data. This option saves a couple
* of bytes in flash memory and the transmit buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 100
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 0
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
* where the driver's constants (descriptors) are located. Or in other words:
* Define this to 1 for boot loaders on the ATMega128.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
/* #ifdef __ASSEMBLER__
* macro myAssemblerMacro
* in YL, TCNT0
* sts timer0Snapshot, YL
* endm
* #endif
* #define USB_SOF_HOOK myAssemblerMacro
* This macro (if defined) is executed in the assembler module when a
* Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more
* than one assembler instruction can be used. The macro may use the register
* YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
* immediately after an SOF pulse may be lost and must be retried by the host.
* What can you do with this hook? Since the SOF signal occurs exactly every
* 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
* designs running on the internal RC oscillator.
* Please note that Start Of Frame detection works only if D- is wired to the
* interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
* sent by the host. Duplicates occur only as a consequence of communication
* errors, when the host does not receive an ACK. Please note that you need to
* implement the filtering yourself in usbFunctionWriteOut() and
* usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
* for each control- and out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
* faster, the other is smaller. This CRC routine is only used for transmitted
* messages where timing is not critical. The faster routine needs 31 cycles
* per byte while the smaller one needs 61 to 69 cycles. The faster routine
* may be worth the 32 bytes bigger code size if you transmit lots of data and
* run the AVR close to its limit.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you may use one of obdev's free
* shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_ID 0xdc, 0x05 /* = 0x05dc = 1500 */
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you may use one of obdev's free shared VID/PID pairs. See the file
* USB-IDs-for-free.txt for details!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'o', 'b', 'd', 'e', 'v', '.', 'a', 't'
#define USB_CFG_VENDOR_NAME_LEN 8
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'T', 'e', 'm', 'p', 'l', 'a', 't', 'e'
#define USB_CFG_DEVICE_NAME_LEN 8
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USB-IDs-for-free.txt before you assign a name if
* you use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 42 */
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
* used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
* you want RAM pointers.
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
* Note about string descriptors: String descriptors are not just strings, they
* are Unicode strings prefixed with a 2 byte header. Example:
* int serialNumberDescriptor[] = {
* USB_STRING_DESCRIPTOR_HEADER(6),
* 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#define usbMsgPtr_t unsigned short
/* If usbMsgPtr_t is not defined, it defaults to 'uchar *'. We define it to
* a scalar type here because gcc generates slightly shorter code for scalar
* arithmetics than for pointer arithmetics. Remove this define for backward
* type compatibility or define it to an 8 bit type if you use data in RAM only
* and all RAM is below 256 bytes (tiny memory model in IAR CC).
*/
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR INT0_vect */
#endif /* __usbconfig_h_included__ */

View File

@ -1,628 +0,0 @@
/* Name: usbdrv.c
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#include "usbdrv.h"
#include "oddebug.h"
/*
General Description:
This module implements the C-part of the USB driver. See usbdrv.h for a
documentation of the entire driver.
*/
/* ------------------------------------------------------------------------- */
/* raw USB registers / interface to assembler code: */
uchar usbRxBuf[2*USB_BUFSIZE]; /* raw RX buffer: PID, 8 bytes data, 2 bytes CRC */
uchar usbInputBufOffset; /* offset in usbRxBuf used for low level receiving */
uchar usbDeviceAddr; /* assigned during enumeration, defaults to 0 */
uchar usbNewDeviceAddr; /* device ID which should be set after status phase */
uchar usbConfiguration; /* currently selected configuration. Administered by driver, but not used */
volatile schar usbRxLen; /* = 0; number of bytes in usbRxBuf; 0 means free, -1 for flow control */
uchar usbCurrentTok; /* last token received or endpoint number for last OUT token if != 0 */
uchar usbRxToken; /* token for data we received; or endpont number for last OUT */
volatile uchar usbTxLen = USBPID_NAK; /* number of bytes to transmit with next IN token or handshake token */
uchar usbTxBuf[USB_BUFSIZE];/* data to transmit with next IN, free if usbTxLen contains handshake token */
#if USB_COUNT_SOF
volatile uchar usbSofCount; /* incremented by assembler module every SOF */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
usbTxStatus_t usbTxStatus1;
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxStatus_t usbTxStatus3;
# endif
#endif
#if USB_CFG_CHECK_DATA_TOGGLING
uchar usbCurrentDataToken;/* when we check data toggling to ignore duplicate packets */
#endif
/* USB status registers / not shared with asm code */
usbMsgPtr_t usbMsgPtr; /* data to transmit next -- ROM or RAM address */
static usbMsgLen_t usbMsgLen = USB_NO_MSG; /* remaining number of bytes */
static uchar usbMsgFlags; /* flag values see below */
#define USB_FLG_MSGPTR_IS_ROM (1<<6)
#define USB_FLG_USE_USER_RW (1<<7)
/*
optimizing hints:
- do not post/pre inc/dec integer values in operations
- assign value of USB_READ_FLASH() to register variables and don't use side effects in arg
- use narrow scope for variables which should be in X/Y/Z register
- assign char sized expressions to variables to force 8 bit arithmetics
*/
/* -------------------------- String Descriptors --------------------------- */
#if USB_CFG_DESCR_PROPS_STRINGS == 0
#if USB_CFG_DESCR_PROPS_STRING_0 == 0
#undef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 sizeof(usbDescriptorString0)
PROGMEM const char usbDescriptorString0[] = { /* language descriptor */
4, /* sizeof(usbDescriptorString0): length of descriptor in bytes */
3, /* descriptor type */
0x09, 0x04, /* language index (0x0409 = US-English) */
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_VENDOR == 0 && USB_CFG_VENDOR_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR sizeof(usbDescriptorStringVendor)
PROGMEM const int usbDescriptorStringVendor[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_VENDOR_NAME_LEN),
USB_CFG_VENDOR_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_PRODUCT == 0 && USB_CFG_DEVICE_NAME_LEN
#undef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT sizeof(usbDescriptorStringDevice)
PROGMEM const int usbDescriptorStringDevice[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_DEVICE_NAME_LEN),
USB_CFG_DEVICE_NAME
};
#endif
#if USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER == 0 && USB_CFG_SERIAL_NUMBER_LEN
#undef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER sizeof(usbDescriptorStringSerialNumber)
PROGMEM const int usbDescriptorStringSerialNumber[] = {
USB_STRING_DESCRIPTOR_HEADER(USB_CFG_SERIAL_NUMBER_LEN),
USB_CFG_SERIAL_NUMBER
};
#endif
#endif /* USB_CFG_DESCR_PROPS_STRINGS == 0 */
/* --------------------------- Device Descriptor --------------------------- */
#if USB_CFG_DESCR_PROPS_DEVICE == 0
#undef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE sizeof(usbDescriptorDevice)
PROGMEM const char usbDescriptorDevice[] = { /* USB device descriptor */
18, /* sizeof(usbDescriptorDevice): length of descriptor in bytes */
USBDESCR_DEVICE, /* descriptor type */
0x10, 0x01, /* USB version supported */
USB_CFG_DEVICE_CLASS,
USB_CFG_DEVICE_SUBCLASS,
0, /* protocol */
8, /* max packet size */
/* the following two casts affect the first byte of the constant only, but
* that's sufficient to avoid a warning with the default values.
*/
(char)USB_CFG_VENDOR_ID,/* 2 bytes */
(char)USB_CFG_DEVICE_ID,/* 2 bytes */
USB_CFG_DEVICE_VERSION, /* 2 bytes */
USB_CFG_DESCR_PROPS_STRING_VENDOR != 0 ? 1 : 0, /* manufacturer string index */
USB_CFG_DESCR_PROPS_STRING_PRODUCT != 0 ? 2 : 0, /* product string index */
USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER != 0 ? 3 : 0, /* serial number string index */
1, /* number of configurations */
};
#endif
/* ----------------------- Configuration Descriptor ------------------------ */
#if USB_CFG_DESCR_PROPS_HID_REPORT != 0 && USB_CFG_DESCR_PROPS_HID == 0
#undef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 9 /* length of HID descriptor in config descriptor below */
#endif
#if USB_CFG_DESCR_PROPS_CONFIGURATION == 0
#undef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION sizeof(usbDescriptorConfiguration)
PROGMEM const char usbDescriptorConfiguration[] = { /* USB configuration descriptor */
9, /* sizeof(usbDescriptorConfiguration): length of descriptor in bytes */
USBDESCR_CONFIG, /* descriptor type */
18 + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT + 7 * USB_CFG_HAVE_INTRIN_ENDPOINT3 +
(USB_CFG_DESCR_PROPS_HID & 0xff), 0,
/* total length of data returned (including inlined descriptors) */
1, /* number of interfaces in this configuration */
1, /* index of this configuration */
0, /* configuration name string index */
#if USB_CFG_IS_SELF_POWERED
(1 << 7) | USBATTR_SELFPOWER, /* attributes */
#else
(1 << 7), /* attributes */
#endif
USB_CFG_MAX_BUS_POWER/2, /* max USB current in 2mA units */
/* interface descriptor follows inline: */
9, /* sizeof(usbDescrInterface): length of descriptor in bytes */
USBDESCR_INTERFACE, /* descriptor type */
0, /* index of this interface */
0, /* alternate setting for this interface */
USB_CFG_HAVE_INTRIN_ENDPOINT + USB_CFG_HAVE_INTRIN_ENDPOINT3, /* endpoints excl 0: number of endpoint descriptors to follow */
USB_CFG_INTERFACE_CLASS,
USB_CFG_INTERFACE_SUBCLASS,
USB_CFG_INTERFACE_PROTOCOL,
0, /* string index for interface */
#if (USB_CFG_DESCR_PROPS_HID & 0xff) /* HID descriptor */
9, /* sizeof(usbDescrHID): length of descriptor in bytes */
USBDESCR_HID, /* descriptor type: HID */
0x01, 0x01, /* BCD representation of HID version */
0x00, /* target country code */
0x01, /* number of HID Report (or other HID class) Descriptor infos to follow */
0x22, /* descriptor type: report */
USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH, 0, /* total length of report descriptor */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT /* endpoint descriptor for endpoint 1 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)0x81, /* IN endpoint number 1 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3 /* endpoint descriptor for endpoint 3 */
7, /* sizeof(usbDescrEndpoint) */
USBDESCR_ENDPOINT, /* descriptor type = endpoint */
(char)(0x80 | USB_CFG_EP3_NUMBER), /* IN endpoint number 3 */
0x03, /* attrib: Interrupt endpoint */
8, 0, /* maximum packet size */
USB_CFG_INTR_POLL_INTERVAL, /* in ms */
#endif
};
#endif
/* ------------------------------------------------------------------------- */
static inline void usbResetDataToggling(void)
{
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
USB_SET_DATATOKEN1(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_SET_DATATOKEN3(USB_INITIAL_DATATOKEN); /* reset data toggling for interrupt endpoint */
# endif
#endif
}
static inline void usbResetStall(void)
{
#if USB_CFG_IMPLEMENT_HALT && USB_CFG_HAVE_INTRIN_ENDPOINT
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */
#if !USB_CFG_SUPPRESS_INTR_CODE
#if USB_CFG_HAVE_INTRIN_ENDPOINT
static void usbGenericSetInterrupt(uchar *data, uchar len, usbTxStatus_t *txStatus)
{
uchar *p;
char i;
#if USB_CFG_IMPLEMENT_HALT
if(usbTxLen1 == USBPID_STALL)
return;
#endif
if(txStatus->len & 0x10){ /* packet buffer was empty */
txStatus->buffer[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* toggle token */
}else{
txStatus->len = USBPID_NAK; /* avoid sending outdated (overwritten) interrupt data */
}
p = txStatus->buffer + 1;
i = len;
do{ /* if len == 0, we still copy 1 byte, but that's no problem */
*p++ = *data++;
}while(--i > 0); /* loop control at the end is 2 bytes shorter than at beginning */
usbCrc16Append(&txStatus->buffer[1], len);
txStatus->len = len + 4; /* len must be given including sync byte */
DBG2(0x21 + (((int)txStatus >> 3) & 3), txStatus->buffer, len + 3);
}
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus1);
}
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len)
{
usbGenericSetInterrupt(data, len, &usbTxStatus3);
}
#endif
#endif /* USB_CFG_SUPPRESS_INTR_CODE */
/* ------------------ utilities for code following below ------------------- */
/* Use defines for the switch statement so that we can choose between an
* if()else if() and a switch/case based implementation. switch() is more
* efficient for a LARGE set of sequential choices, if() is better in all other
* cases.
*/
#if USB_CFG_USE_SWITCH_STATEMENT
# define SWITCH_START(cmd) switch(cmd){{
# define SWITCH_CASE(value) }break; case (value):{
# define SWITCH_CASE2(v1,v2) }break; case (v1): case(v2):{
# define SWITCH_CASE3(v1,v2,v3) }break; case (v1): case(v2): case(v3):{
# define SWITCH_DEFAULT }break; default:{
# define SWITCH_END }}
#else
# define SWITCH_START(cmd) {uchar _cmd = cmd; if(0){
# define SWITCH_CASE(value) }else if(_cmd == (value)){
# define SWITCH_CASE2(v1,v2) }else if(_cmd == (v1) || _cmd == (v2)){
# define SWITCH_CASE3(v1,v2,v3) }else if(_cmd == (v1) || _cmd == (v2) || (_cmd == v3)){
# define SWITCH_DEFAULT }else{
# define SWITCH_END }}
#endif
#ifndef USB_RX_USER_HOOK
#define USB_RX_USER_HOOK(data, len)
#endif
#ifndef USB_SET_ADDRESS_HOOK
#define USB_SET_ADDRESS_HOOK()
#endif
/* ------------------------------------------------------------------------- */
/* We use if() instead of #if in the macro below because #if can't be used
* in macros and the compiler optimizes constant conditions anyway.
* This may cause problems with undefined symbols if compiled without
* optimizing!
*/
#define GET_DESCRIPTOR(cfgProp, staticName) \
if(cfgProp){ \
if((cfgProp) & USB_PROP_IS_RAM) \
flags = 0; \
if((cfgProp) & USB_PROP_IS_DYNAMIC){ \
len = usbFunctionDescriptor(rq); \
}else{ \
len = USB_PROP_LENGTH(cfgProp); \
usbMsgPtr = (usbMsgPtr_t)(staticName); \
} \
}
/* usbDriverDescriptor() is similar to usbFunctionDescriptor(), but used
* internally for all types of descriptors.
*/
static inline usbMsgLen_t usbDriverDescriptor(usbRequest_t *rq)
{
usbMsgLen_t len = 0;
uchar flags = USB_FLG_MSGPTR_IS_ROM;
SWITCH_START(rq->wValue.bytes[1])
SWITCH_CASE(USBDESCR_DEVICE) /* 1 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_DEVICE, usbDescriptorDevice)
SWITCH_CASE(USBDESCR_CONFIG) /* 2 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_CONFIGURATION, usbDescriptorConfiguration)
SWITCH_CASE(USBDESCR_STRING) /* 3 */
#if USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC
if(USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_RAM)
flags = 0;
len = usbFunctionDescriptor(rq);
#else /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
SWITCH_START(rq->wValue.bytes[0])
SWITCH_CASE(0)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_0, usbDescriptorString0)
SWITCH_CASE(1)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_VENDOR, usbDescriptorStringVendor)
SWITCH_CASE(2)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_PRODUCT, usbDescriptorStringDevice)
SWITCH_CASE(3)
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER, usbDescriptorStringSerialNumber)
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
#endif /* USB_CFG_DESCR_PROPS_STRINGS & USB_PROP_IS_DYNAMIC */
#if USB_CFG_DESCR_PROPS_HID_REPORT /* only support HID descriptors if enabled */
SWITCH_CASE(USBDESCR_HID) /* 0x21 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID, usbDescriptorConfiguration + 18)
SWITCH_CASE(USBDESCR_HID_REPORT)/* 0x22 */
GET_DESCRIPTOR(USB_CFG_DESCR_PROPS_HID_REPORT, usbDescriptorHidReport)
#endif
SWITCH_DEFAULT
if(USB_CFG_DESCR_PROPS_UNKNOWN & USB_PROP_IS_DYNAMIC){
len = usbFunctionDescriptor(rq);
}
SWITCH_END
usbMsgFlags = flags;
return len;
}
/* ------------------------------------------------------------------------- */
/* usbDriverSetup() is similar to usbFunctionSetup(), but it's used for
* standard requests instead of class and custom requests.
*/
static inline usbMsgLen_t usbDriverSetup(usbRequest_t *rq)
{
usbMsgLen_t len = 0;
uchar *dataPtr = usbTxBuf + 9; /* there are 2 bytes free space at the end of the buffer */
uchar value = rq->wValue.bytes[0];
#if USB_CFG_IMPLEMENT_HALT
uchar index = rq->wIndex.bytes[0];
#endif
dataPtr[0] = 0; /* default reply common to USBRQ_GET_STATUS and USBRQ_GET_INTERFACE */
SWITCH_START(rq->bRequest)
SWITCH_CASE(USBRQ_GET_STATUS) /* 0 */
uchar recipient = rq->bmRequestType & USBRQ_RCPT_MASK; /* assign arith ops to variables to enforce byte size */
if(USB_CFG_IS_SELF_POWERED && recipient == USBRQ_RCPT_DEVICE)
dataPtr[0] = USB_CFG_IS_SELF_POWERED;
#if USB_CFG_IMPLEMENT_HALT
if(recipient == USBRQ_RCPT_ENDPOINT && index == 0x81) /* request status for endpoint 1 */
dataPtr[0] = usbTxLen1 == USBPID_STALL;
#endif
dataPtr[1] = 0;
len = 2;
#if USB_CFG_IMPLEMENT_HALT
SWITCH_CASE2(USBRQ_CLEAR_FEATURE, USBRQ_SET_FEATURE) /* 1, 3 */
if(value == 0 && index == 0x81){ /* feature 0 == HALT for endpoint == 1 */
usbTxLen1 = rq->bRequest == USBRQ_CLEAR_FEATURE ? USBPID_NAK : USBPID_STALL;
usbResetDataToggling();
}
#endif
SWITCH_CASE(USBRQ_SET_ADDRESS) /* 5 */
usbNewDeviceAddr = value;
USB_SET_ADDRESS_HOOK();
SWITCH_CASE(USBRQ_GET_DESCRIPTOR) /* 6 */
len = usbDriverDescriptor(rq);
goto skipMsgPtrAssignment;
SWITCH_CASE(USBRQ_GET_CONFIGURATION) /* 8 */
dataPtr = &usbConfiguration; /* send current configuration value */
len = 1;
SWITCH_CASE(USBRQ_SET_CONFIGURATION) /* 9 */
usbConfiguration = value;
usbResetStall();
SWITCH_CASE(USBRQ_GET_INTERFACE) /* 10 */
len = 1;
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
SWITCH_CASE(USBRQ_SET_INTERFACE) /* 11 */
usbResetDataToggling();
usbResetStall();
#endif
SWITCH_DEFAULT /* 7=SET_DESCRIPTOR, 12=SYNC_FRAME */
/* Should we add an optional hook here? */
SWITCH_END
usbMsgPtr = (usbMsgPtr_t)dataPtr;
skipMsgPtrAssignment:
return len;
}
/* ------------------------------------------------------------------------- */
/* usbProcessRx() is called for every message received by the interrupt
* routine. It distinguishes between SETUP and DATA packets and processes
* them accordingly.
*/
static inline void usbProcessRx(uchar *data, uchar len)
{
usbRequest_t *rq = (void *)data;
/* usbRxToken can be:
* 0x2d 00101101 (USBPID_SETUP for setup data)
* 0xe1 11100001 (USBPID_OUT: data phase of setup transfer)
* 0...0x0f for OUT on endpoint X
*/
DBG2(0x10 + (usbRxToken & 0xf), data, len + 2); /* SETUP=1d, SETUP-DATA=11, OUTx=1x */
USB_RX_USER_HOOK(data, len)
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
if(usbRxToken < 0x10){ /* OUT to endpoint != 0: endpoint number in usbRxToken */
usbFunctionWriteOut(data, len);
return;
}
#endif
if(usbRxToken == (uchar)USBPID_SETUP){
if(len != 8) /* Setup size must be always 8 bytes. Ignore otherwise. */
return;
usbMsgLen_t replyLen;
usbTxBuf[0] = USBPID_DATA0; /* initialize data toggling */
usbTxLen = USBPID_NAK; /* abort pending transmit */
usbMsgFlags = 0;
uchar type = rq->bmRequestType & USBRQ_TYPE_MASK;
if(type != USBRQ_TYPE_STANDARD){ /* standard requests are handled by driver */
replyLen = usbFunctionSetup(data);
}else{
replyLen = usbDriverSetup(rq);
}
#if USB_CFG_IMPLEMENT_FN_READ || USB_CFG_IMPLEMENT_FN_WRITE
if(replyLen == USB_NO_MSG){ /* use user-supplied read/write function */
/* do some conditioning on replyLen, but on IN transfers only */
if((rq->bmRequestType & USBRQ_DIR_MASK) != USBRQ_DIR_HOST_TO_DEVICE){
if(sizeof(replyLen) < sizeof(rq->wLength.word)){ /* help compiler with optimizing */
replyLen = rq->wLength.bytes[0];
}else{
replyLen = rq->wLength.word;
}
}
usbMsgFlags = USB_FLG_USE_USER_RW;
}else /* The 'else' prevents that we limit a replyLen of USB_NO_MSG to the maximum transfer len. */
#endif
if(sizeof(replyLen) < sizeof(rq->wLength.word)){ /* help compiler with optimizing */
if(!rq->wLength.bytes[1] && replyLen > rq->wLength.bytes[0]) /* limit length to max */
replyLen = rq->wLength.bytes[0];
}else{
if(replyLen > rq->wLength.word) /* limit length to max */
replyLen = rq->wLength.word;
}
usbMsgLen = replyLen;
}else{ /* usbRxToken must be USBPID_OUT, which means data phase of setup (control-out) */
#if USB_CFG_IMPLEMENT_FN_WRITE
if(usbMsgFlags & USB_FLG_USE_USER_RW){
uchar rval = usbFunctionWrite(data, len);
if(rval == 0xff){ /* an error occurred */
usbTxLen = USBPID_STALL;
}else if(rval != 0){ /* This was the final package */
usbMsgLen = 0; /* answer with a zero-sized data packet */
}
}
#endif
}
}
/* ------------------------------------------------------------------------- */
/* This function is similar to usbFunctionRead(), but it's also called for
* data handled automatically by the driver (e.g. descriptor reads).
*/
static uchar usbDeviceRead(uchar *data, uchar len)
{
if(len > 0){ /* don't bother app with 0 sized reads */
#if USB_CFG_IMPLEMENT_FN_READ
if(usbMsgFlags & USB_FLG_USE_USER_RW){
len = usbFunctionRead(data, len);
}else
#endif
{
uchar i = len;
usbMsgPtr_t r = usbMsgPtr;
if(usbMsgFlags & USB_FLG_MSGPTR_IS_ROM){ /* ROM data */
do{
uchar c = USB_READ_FLASH(r); /* assign to char size variable to enforce byte ops */
*data++ = c;
r++;
}while(--i);
}else{ /* RAM data */
do{
*data++ = *((uchar *)r);
r++;
}while(--i);
}
usbMsgPtr = r;
}
}
return len;
}
/* ------------------------------------------------------------------------- */
/* usbBuildTxBlock() is called when we have data to transmit and the
* interrupt routine's transmit buffer is empty.
*/
static inline void usbBuildTxBlock(void)
{
usbMsgLen_t wantLen;
uchar len;
wantLen = usbMsgLen;
if(wantLen > 8)
wantLen = 8;
usbMsgLen -= wantLen;
usbTxBuf[0] ^= USBPID_DATA0 ^ USBPID_DATA1; /* DATA toggling */
len = usbDeviceRead(usbTxBuf + 1, wantLen);
if(len <= 8){ /* valid data packet */
usbCrc16Append(&usbTxBuf[1], len);
len += 4; /* length including sync byte */
if(len < 12) /* a partial package identifies end of message */
usbMsgLen = USB_NO_MSG;
}else{
len = USBPID_STALL; /* stall the endpoint */
usbMsgLen = USB_NO_MSG;
}
usbTxLen = len;
DBG2(0x20, usbTxBuf, len-1);
}
/* ------------------------------------------------------------------------- */
static inline void usbHandleResetHook(uchar notResetState)
{
#ifdef USB_RESET_HOOK
static uchar wasReset;
uchar isReset = !notResetState;
if(wasReset != isReset){
USB_RESET_HOOK(isReset);
wasReset = isReset;
}
#else
notResetState = notResetState; // avoid compiler warning
#endif
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbPoll(void)
{
schar len;
uchar i;
len = usbRxLen - 3;
if(len >= 0){
/* We could check CRC16 here -- but ACK has already been sent anyway. If you
* need data integrity checks with this driver, check the CRC in your app
* code and report errors back to the host. Since the ACK was already sent,
* retries must be handled on application level.
* unsigned crc = usbCrc16(buffer + 1, usbRxLen - 3);
*/
usbProcessRx(usbRxBuf + USB_BUFSIZE + 1 - usbInputBufOffset, len);
#if USB_CFG_HAVE_FLOWCONTROL
if(usbRxLen > 0) /* only mark as available if not inactivated */
usbRxLen = 0;
#else
usbRxLen = 0; /* mark rx buffer as available */
#endif
}
if(usbTxLen & 0x10){ /* transmit system idle */
if(usbMsgLen != USB_NO_MSG){ /* transmit data pending? */
usbBuildTxBlock();
}
}
for(i = 20; i > 0; i--){
uchar usbLineStatus = USBIN & USBMASK;
if(usbLineStatus != 0) /* SE0 has ended */
goto isNotReset;
}
/* RESET condition, called multiple times during reset */
usbNewDeviceAddr = 0;
usbDeviceAddr = 0;
usbResetStall();
DBG1(0xff, 0, 0);
isNotReset:
usbHandleResetHook(i);
}
/* ------------------------------------------------------------------------- */
USB_PUBLIC void usbInit(void)
{
#if USB_INTR_CFG_SET != 0
USB_INTR_CFG |= USB_INTR_CFG_SET;
#endif
#if USB_INTR_CFG_CLR != 0
USB_INTR_CFG &= ~(USB_INTR_CFG_CLR);
#endif
USB_INTR_ENABLE |= (1 << USB_INTR_ENABLE_BIT);
usbResetDataToggling();
#if USB_CFG_HAVE_INTRIN_ENDPOINT && !USB_CFG_SUPPRESS_INTR_CODE
usbTxLen1 = USBPID_NAK;
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
usbTxLen3 = USBPID_NAK;
#endif
#endif
}
/* ------------------------------------------------------------------------- */

View File

@ -1,746 +0,0 @@
/* Name: usbdrv.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
#ifndef __usbdrv_h_included__
#define __usbdrv_h_included__
#include "usbconfig.h"
#include "usbportability.h"
/*
Hardware Prerequisites:
=======================
USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+
triggers the interrupt (best achieved by using INT0 for D+), but it is also
possible to trigger the interrupt from D-. If D- is used, interrupts are also
triggered by SOF packets. D- requires a pull-up of 1.5k to +3.5V (and the
device must be powered at 3.5V) to identify as low-speed USB device. A
pull-down or pull-up of 1M SHOULD be connected from D+ to +3.5V to prevent
interference when no USB master is connected. If you use Zener diodes to limit
the voltage on D+ and D-, you MUST use a pull-down resistor, not a pull-up.
We use D+ as interrupt source and not D- because it does not trigger on
keep-alive and RESET states. If you want to count keep-alive events with
USB_COUNT_SOF, you MUST use D- as an interrupt source.
As a compile time option, the 1.5k pull-up resistor on D- can be made
switchable to allow the device to disconnect at will. See the definition of
usbDeviceConnect() and usbDeviceDisconnect() further down in this file.
Please adapt the values in usbconfig.h according to your hardware!
The device MUST be clocked at exactly 12 MHz, 15 MHz, 16 MHz or 20 MHz
or at 12.8 MHz resp. 16.5 MHz +/- 1%. See usbconfig-prototype.h for details.
Limitations:
============
Robustness with respect to communication errors:
The driver assumes error-free communication. It DOES check for errors in
the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte,
token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due
to timing constraints: We must start sending a reply within 7 bit times.
Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU
performance does not permit that. The driver does not check Data0/Data1
toggling, but application software can implement the check.
Input characteristics:
Since no differential receiver circuit is used, electrical interference
robustness may suffer. The driver samples only one of the data lines with
an ordinary I/O pin's input characteristics. However, since this is only a
low speed USB implementation and the specification allows for 8 times the
bit rate over the same hardware, we should be on the safe side. Even the spec
requires detection of asymmetric states at high bit rate for SE0 detection.
Number of endpoints:
The driver supports the following endpoints:
- Endpoint 0, the default control endpoint.
- Any number of interrupt- or bulk-out endpoints. The data is sent to
usbFunctionWriteOut() and USB_CFG_IMPLEMENT_FN_WRITEOUT must be defined
to 1 to activate this feature. The endpoint number can be found in the
global variable 'usbRxToken'.
- One default interrupt- or bulk-in endpoint. This endpoint is used for
interrupt- or bulk-in transfers which are not handled by any other endpoint.
You must define USB_CFG_HAVE_INTRIN_ENDPOINT in order to activate this
feature and call usbSetInterrupt() to send interrupt/bulk data.
- One additional interrupt- or bulk-in endpoint. This was endpoint 3 in
previous versions of this driver but can now be configured to any endpoint
number. You must define USB_CFG_HAVE_INTRIN_ENDPOINT3 in order to activate
this feature and call usbSetInterrupt3() to send interrupt/bulk data. The
endpoint number can be set with USB_CFG_EP3_NUMBER.
Please note that the USB standard forbids bulk endpoints for low speed devices!
Most operating systems allow them anyway, but the AVR will spend 90% of the CPU
time in the USB interrupt polling for bulk data.
Maximum data payload:
Data payload of control in and out transfers may be up to 254 bytes. In order
to accept payload data of out transfers, you need to implement
'usbFunctionWrite()'.
USB Suspend Mode supply current:
The USB standard limits power consumption to 500uA when the bus is in suspend
mode. This is not a problem for self-powered devices since they don't need
bus power anyway. Bus-powered devices can achieve this only by putting the
CPU in sleep mode. The driver does not implement suspend handling by itself.
However, the application may implement activity monitoring and wakeup from
sleep. The host sends regular SE0 states on the bus to keep it active. These
SE0 states can be detected by using D- as the interrupt source. Define
USB_COUNT_SOF to 1 and use the global variable usbSofCount to check for bus
activity.
Operation without an USB master:
The driver behaves neutral without connection to an USB master if D- reads
as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M)
pull-down or pull-up resistor on D+ (interrupt). If Zener diodes are used,
use a pull-down. If D- becomes statically 0, the driver may block in the
interrupt routine.
Interrupt latency:
The application must ensure that the USB interrupt is not disabled for more
than 25 cycles (this is for 12 MHz, faster clocks allow longer latency).
This implies that all interrupt routines must either have the "ISR_NOBLOCK"
attribute set (see "avr/interrupt.h") or be written in assembler with "sei"
as the first instruction.
Maximum interrupt duration / CPU cycle consumption:
The driver handles all USB communication during the interrupt service
routine. The routine will not return before an entire USB message is received
and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if
the host conforms to the standard. The driver will consume CPU cycles for all
USB messages, even if they address another (low-speed) device on the same bus.
*/
/* ------------------------------------------------------------------------- */
/* --------------------------- Module Interface ---------------------------- */
/* ------------------------------------------------------------------------- */
#define USBDRV_VERSION 20121206
/* This define uniquely identifies a driver version. It is a decimal number
* constructed from the driver's release date in the form YYYYMMDD. If the
* driver's behavior or interface changes, you can use this constant to
* distinguish versions. If it is not defined, the driver's release date is
* older than 2006-01-25.
*/
#ifndef USB_PUBLIC
#define USB_PUBLIC
#endif
/* USB_PUBLIC is used as declaration attribute for all functions exported by
* the USB driver. The default is no attribute (see above). You may define it
* to static either in usbconfig.h or from the command line if you include
* usbdrv.c instead of linking against it. Including the C module of the driver
* directly in your code saves a couple of bytes in flash memory.
*/
#ifndef __ASSEMBLER__
#ifndef uchar
#define uchar unsigned char
#endif
#ifndef schar
#define schar signed char
#endif
/* shortcuts for well defined 8 bit integer types */
#if USB_CFG_LONG_TRANSFERS /* if more than 254 bytes transfer size required */
# define usbMsgLen_t unsigned
#else
# define usbMsgLen_t uchar
#endif
/* usbMsgLen_t is the data type used for transfer lengths. By default, it is
* defined to uchar, allowing a maximum of 254 bytes (255 is reserved for
* USB_NO_MSG below). If the usbconfig.h defines USB_CFG_LONG_TRANSFERS to 1,
* a 16 bit data type is used, allowing up to 16384 bytes (the rest is used
* for flags in the descriptor configuration).
*/
#define USB_NO_MSG ((usbMsgLen_t)-1) /* constant meaning "no message" */
#ifndef usbMsgPtr_t
#define usbMsgPtr_t uchar *
#endif
/* Making usbMsgPtr_t a define allows the user of this library to define it to
* an 8 bit type on tiny devices. This reduces code size, especially if the
* compiler supports a tiny memory model.
* The type can be a pointer or scalar type, casts are made where necessary.
* Although it's paradoxical, Gcc 4 generates slightly better code for scalar
* types than for pointers.
*/
struct usbRequest; /* forward declaration */
USB_PUBLIC void usbInit(void);
/* This function must be called before interrupts are enabled and the main
* loop is entered. We exepct that the PORT and DDR bits for D+ and D- have
* not been changed from their default status (which is 0). If you have changed
* them, set both back to 0 (configure them as input with no internal pull-up).
*/
USB_PUBLIC void usbPoll(void);
/* This function must be called at regular intervals from the main loop.
* Maximum delay between calls is somewhat less than 50ms (USB timeout for
* accepting a Setup message). Otherwise the device will not be recognized.
* Please note that debug outputs through the UART take ~ 0.5ms per byte
* at 19200 bps.
*/
extern usbMsgPtr_t usbMsgPtr;
/* This variable may be used to pass transmit data to the driver from the
* implementation of usbFunctionWrite(). It is also used internally by the
* driver for standard control requests.
*/
USB_PUBLIC usbMsgLen_t usbFunctionSetup(uchar data[8]);
/* This function is called when the driver receives a SETUP transaction from
* the host which is not answered by the driver itself (in practice: class and
* vendor requests). All control transfers start with a SETUP transaction where
* the host communicates the parameters of the following (optional) data
* transfer. The SETUP data is available in the 'data' parameter which can
* (and should) be casted to 'usbRequest_t *' for a more user-friendly access
* to parameters.
*
* If the SETUP indicates a control-in transfer, you should provide the
* requested data to the driver. There are two ways to transfer this data:
* (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data
* block and return the length of the data in 'usbFunctionSetup()'. The driver
* will handle the rest. Or (2) return USB_NO_MSG in 'usbFunctionSetup()'. The
* driver will then call 'usbFunctionRead()' when data is needed. See the
* documentation for usbFunctionRead() for details.
*
* If the SETUP indicates a control-out transfer, the only way to receive the
* data from the host is through the 'usbFunctionWrite()' call. If you
* implement this function, you must return USB_NO_MSG in 'usbFunctionSetup()'
* to indicate that 'usbFunctionWrite()' should be used. See the documentation
* of this function for more information. If you just want to ignore the data
* sent by the host, return 0 in 'usbFunctionSetup()'.
*
* Note that calls to the functions usbFunctionRead() and usbFunctionWrite()
* are only done if enabled by the configuration in usbconfig.h.
*/
USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq);
/* You need to implement this function ONLY if you provide USB descriptors at
* runtime (which is an expert feature). It is very similar to
* usbFunctionSetup() above, but it is called only to request USB descriptor
* data. See the documentation of usbFunctionSetup() above for more info.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len);
/* This function sets the message which will be sent during the next interrupt
* IN transfer. The message is copied to an internal buffer and must not exceed
* a length of 8 bytes. The message may be 0 bytes long just to indicate the
* interrupt status to the host.
* If you need to transfer more bytes, use a control read after the interrupt.
*/
#define usbInterruptIsReady() (usbTxLen1 & 0x10)
/* This macro indicates whether the last interrupt message has already been
* sent. If you set a new interrupt message before the old was sent, the
* message already buffered will be lost.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len);
#define usbInterruptIsReady3() (usbTxLen3 & 0x10)
/* Same as above for endpoint 3 */
#endif
#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */
#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */
#define usbHidReportDescriptor usbDescriptorHidReport
/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */
/* If you implement an HID device, you need to provide a report descriptor.
* The HID report descriptor syntax is a bit complex. If you understand how
* report descriptors are constructed, we recommend that you use the HID
* Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/.
* Otherwise you should probably start with a working example.
*/
#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */
#if USB_CFG_IMPLEMENT_FN_WRITE
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len);
/* This function is called by the driver to provide a control transfer's
* payload data (control-out). It is called in chunks of up to 8 bytes. The
* total count provided in the current control transfer can be obtained from
* the 'length' property in the setup data. If an error occurred during
* processing, return 0xff (== -1). The driver will answer the entire transfer
* with a STALL token in this case. If you have received the entire payload
* successfully, return 1. If you expect more data, return 0. If you don't
* know whether the host will send more data (you should know, the total is
* provided in the usbFunctionSetup() call!), return 1.
* NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called
* for the remaining data. You must continue to return 0xff for STALL in these
* calls.
* In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITE */
#if USB_CFG_IMPLEMENT_FN_READ
USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len);
/* This function is called by the driver to ask the application for a control
* transfer's payload data (control-in). It is called in chunks of up to 8
* bytes each. You should copy the data to the location given by 'data' and
* return the actual number of bytes copied. If you return less than requested,
* the control-in transfer is terminated. If you return 0xff, the driver aborts
* the transfer with a STALL token.
* In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_READ */
extern uchar usbRxToken; /* may be used in usbFunctionWriteOut() below */
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len);
/* This function is called by the driver when data is received on an interrupt-
* or bulk-out endpoint. The endpoint number can be found in the global
* variable usbRxToken. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT to 1 in
* usbconfig.h to get this function called.
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT)))
#define usbDeviceDisconnect() ((USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT)))
#else /* USB_CFG_PULLUP_IOPORTNAME */
#define usbDeviceConnect() (USBDDR &= ~(1<<USBMINUS))
#define usbDeviceDisconnect() (USBDDR |= (1<<USBMINUS))
#endif /* USB_CFG_PULLUP_IOPORTNAME */
/* The macros usbDeviceConnect() and usbDeviceDisconnect() (intended to look
* like a function) connect resp. disconnect the device from the host's USB.
* If the constants USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT are defined
* in usbconfig.h, a disconnect consists of removing the pull-up resisitor
* from D-, otherwise the disconnect is done by brute-force pulling D- to GND.
* This does not conform to the spec, but it works.
* Please note that the USB interrupt must be disabled while the device is
* in disconnected state, or the interrupt handler will hang! You can either
* turn off the USB interrupt selectively with
* USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT)
* or use cli() to disable interrupts globally.
*/
extern unsigned usbCrc16(unsigned data, uchar len);
#define usbCrc16(data, len) usbCrc16((unsigned)(data), len)
/* This function calculates the binary complement of the data CRC used in
* USB data packets. The value is used to build raw transmit packets.
* You may want to use this function for data checksums or to verify received
* data. We enforce 16 bit calling conventions for compatibility with IAR's
* tiny memory model.
*/
extern unsigned usbCrc16Append(unsigned data, uchar len);
#define usbCrc16Append(data, len) usbCrc16Append((unsigned)(data), len)
/* This function is equivalent to usbCrc16() above, except that it appends
* the 2 bytes CRC (lowbyte first) in the 'data' buffer after reading 'len'
* bytes.
*/
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
extern unsigned usbMeasureFrameLength(void);
/* This function MUST be called IMMEDIATELY AFTER USB reset and measures 1/7 of
* the number of CPU cycles during one USB frame minus one low speed bit
* length. In other words: return value = 1499 * (F_CPU / 10.5 MHz)
* Since this is a busy wait, you MUST disable all interrupts with cli() before
* calling this function.
* This can be used to calibrate the AVR's RC oscillator.
*/
#endif
extern uchar usbConfiguration;
/* This value contains the current configuration set by the host. The driver
* allows setting and querying of this variable with the USB SET_CONFIGURATION
* and GET_CONFIGURATION requests, but does not use it otherwise.
* You may want to reflect the "configured" status with a LED on the device or
* switch on high power parts of the circuit only if the device is configured.
*/
#if USB_COUNT_SOF
extern volatile uchar usbSofCount;
/* This variable is incremented on every SOF packet. It is only available if
* the macro USB_COUNT_SOF is defined to a value != 0.
*/
#endif
#if USB_CFG_CHECK_DATA_TOGGLING
extern uchar usbCurrentDataToken;
/* This variable can be checked in usbFunctionWrite() and usbFunctionWriteOut()
* to ignore duplicate packets.
*/
#endif
#define USB_STRING_DESCRIPTOR_HEADER(stringLength) ((2*(stringLength)+2) | (3<<8))
/* This macro builds a descriptor header for a string descriptor given the
* string's length. See usbdrv.c for an example how to use it.
*/
#if USB_CFG_HAVE_FLOWCONTROL
extern volatile schar usbRxLen;
#define usbDisableAllRequests() usbRxLen = -1
/* Must be called from usbFunctionWrite(). This macro disables all data input
* from the USB interface. Requests from the host are answered with a NAK
* while they are disabled.
*/
#define usbEnableAllRequests() usbRxLen = 0
/* May only be called if requests are disabled. This macro enables input from
* the USB interface after it has been disabled with usbDisableAllRequests().
*/
#define usbAllRequestsAreDisabled() (usbRxLen < 0)
/* Use this macro to find out whether requests are disabled. It may be needed
* to ensure that usbEnableAllRequests() is never called when requests are
* enabled.
*/
#endif
#define USB_SET_DATATOKEN1(token) usbTxBuf1[0] = token
#define USB_SET_DATATOKEN3(token) usbTxBuf3[0] = token
/* These two macros can be used by application software to reset data toggling
* for interrupt-in endpoints 1 and 3. Since the token is toggled BEFORE
* sending data, you must set the opposite value of the token which should come
* first.
*/
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ----------------- Definitions for Descriptor Properties ----------------- */
/* ------------------------------------------------------------------------- */
/* This is advanced stuff. See usbconfig-prototype.h for more information
* about the various methods to define USB descriptors. If you do nothing,
* the default descriptors will be used.
*/
#define USB_PROP_IS_DYNAMIC (1u << 14)
/* If this property is set for a descriptor, usbFunctionDescriptor() will be
* used to obtain the particular descriptor. Data directly returned via
* usbMsgPtr are FLASH data by default, combine (OR) with USB_PROP_IS_RAM to
* return RAM data.
*/
#define USB_PROP_IS_RAM (1u << 15)
/* If this property is set for a descriptor, the data is read from RAM
* memory instead of Flash. The property is used for all methods to provide
* external descriptors.
*/
#define USB_PROP_LENGTH(len) ((len) & 0x3fff)
/* If a static external descriptor is used, this is the total length of the
* descriptor in bytes.
*/
/* all descriptors which may have properties: */
#ifndef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE 0
#endif
#ifndef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRINGS
#define USB_CFG_DESCR_PROPS_STRINGS 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#endif
#ifndef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 0
#endif
#if !(USB_CFG_DESCR_PROPS_HID_REPORT)
# undef USB_CFG_DESCR_PROPS_HID_REPORT
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* do some backward compatibility tricks */
# define USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# else
# define USB_CFG_DESCR_PROPS_HID_REPORT 0
# endif
#endif
#ifndef USB_CFG_DESCR_PROPS_UNKNOWN
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#endif
/* ------------------ forward declaration of descriptors ------------------- */
/* If you use external static descriptors, they must be stored in global
* arrays as declared below:
*/
#ifndef __ASSEMBLER__
extern
#if !(USB_CFG_DESCR_PROPS_DEVICE & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_CONFIGURATION & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorConfiguration[];
extern
#if !(USB_CFG_DESCR_PROPS_HID_REPORT & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorHidReport[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_0 & USB_PROP_IS_RAM)
PROGMEM const
#endif
char usbDescriptorString0[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_VENDOR & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringVendor[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_PRODUCT & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER & USB_PROP_IS_RAM)
PROGMEM const
#endif
int usbDescriptorStringSerialNumber[];
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ------------------------ General Purpose Macros ------------------------- */
/* ------------------------------------------------------------------------- */
#define USB_CONCAT(a, b) a ## b
#define USB_CONCAT_EXPANDED(a, b) USB_CONCAT(a, b)
#define USB_OUTPORT(name) USB_CONCAT(PORT, name)
#define USB_INPORT(name) USB_CONCAT(PIN, name)
#define USB_DDRPORT(name) USB_CONCAT(DDR, name)
/* The double-define trick above lets us concatenate strings which are
* defined by macros.
*/
/* ------------------------------------------------------------------------- */
/* ------------------------- Constant definitions -------------------------- */
/* ------------------------------------------------------------------------- */
#if !defined __ASSEMBLER__ && (!defined USB_CFG_VENDOR_ID || !defined USB_CFG_DEVICE_ID)
#warning "You should define USB_CFG_VENDOR_ID and USB_CFG_DEVICE_ID in usbconfig.h"
/* If the user has not defined IDs, we default to obdev's free IDs.
* See USB-IDs-for-free.txt for details.
*/
#endif
/* make sure we have a VID and PID defined, byte order is lowbyte, highbyte */
#ifndef USB_CFG_VENDOR_ID
# define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
#endif
#ifndef USB_CFG_DEVICE_ID
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# define USB_CFG_DEVICE_ID 0xdf, 0x05 /* = 0x5df = 1503, shared PID for HIDs */
# elif USB_CFG_INTERFACE_CLASS == 2
# define USB_CFG_DEVICE_ID 0xe1, 0x05 /* = 0x5e1 = 1505, shared PID for CDC Modems */
# else
# define USB_CFG_DEVICE_ID 0xdc, 0x05 /* = 0x5dc = 1500, obdev's free PID */
# endif
#endif
/* Derive Output, Input and DataDirection ports from port names */
#ifndef USB_CFG_IOPORTNAME
#error "You must define USB_CFG_IOPORTNAME in usbconfig.h, see usbconfig-prototype.h"
#endif
#define USBOUT USB_OUTPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_OUT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBIN USB_INPORT(USB_CFG_IOPORTNAME)
#define USBDDR USB_DDRPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_DDR USB_DDRPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBMINUS USB_CFG_DMINUS_BIT
#define USBPLUS USB_CFG_DPLUS_BIT
#define USBIDLE (1<<USB_CFG_DMINUS_BIT) /* value representing J state */
#define USBMASK ((1<<USB_CFG_DPLUS_BIT) | (1<<USB_CFG_DMINUS_BIT)) /* mask for USB I/O bits */
/* defines for backward compatibility with older driver versions: */
#define USB_CFG_IOPORT USB_OUTPORT(USB_CFG_IOPORTNAME)
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define USB_CFG_PULLUP_IOPORT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#endif
#ifndef USB_CFG_EP3_NUMBER /* if not defined in usbconfig.h */
#define USB_CFG_EP3_NUMBER 3
#endif
#ifndef USB_CFG_HAVE_INTRIN_ENDPOINT3
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
#endif
#define USB_BUFSIZE 11 /* PID, 8 bytes data, 2 bytes CRC */
/* ----- Try to find registers and bits responsible for ext interrupt 0 ----- */
#ifndef USB_INTR_CFG /* allow user to override our default */
# if defined EICRA
# define USB_INTR_CFG EICRA
# else
# define USB_INTR_CFG MCUCR
# endif
#endif
#ifndef USB_INTR_CFG_SET /* allow user to override our default */
# if defined(USB_COUNT_SOF) || defined(USB_SOF_HOOK)
# define USB_INTR_CFG_SET (1 << ISC01) /* cfg for falling edge */
/* If any SOF logic is used, the interrupt must be wired to D- where
* we better trigger on falling edge
*/
# else
# define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) /* cfg for rising edge */
# endif
#endif
#ifndef USB_INTR_CFG_CLR /* allow user to override our default */
# define USB_INTR_CFG_CLR 0 /* no bits to clear */
#endif
#ifndef USB_INTR_ENABLE /* allow user to override our default */
# if defined GIMSK
# define USB_INTR_ENABLE GIMSK
# elif defined EIMSK
# define USB_INTR_ENABLE EIMSK
# else
# define USB_INTR_ENABLE GICR
# endif
#endif
#ifndef USB_INTR_ENABLE_BIT /* allow user to override our default */
# define USB_INTR_ENABLE_BIT INT0
#endif
#ifndef USB_INTR_PENDING /* allow user to override our default */
# if defined EIFR
# define USB_INTR_PENDING EIFR
# else
# define USB_INTR_PENDING GIFR
# endif
#endif
#ifndef USB_INTR_PENDING_BIT /* allow user to override our default */
# define USB_INTR_PENDING_BIT INTF0
#endif
/*
The defines above don't work for the following chips
at90c8534: no ISC0?, no PORTB, can't find a data sheet
at86rf401: no PORTB, no MCUCR etc, low clock rate
atmega103: no ISC0? (maybe omission in header, can't find data sheet)
atmega603: not defined in avr-libc
at43usb320, at43usb355, at76c711: have USB anyway
at94k: is different...
at90s1200, attiny11, attiny12, attiny15, attiny28: these have no RAM
*/
/* ------------------------------------------------------------------------- */
/* ----------------- USB Specification Constants and Types ----------------- */
/* ------------------------------------------------------------------------- */
/* USB Token values */
#define USBPID_SETUP 0x2d
#define USBPID_OUT 0xe1
#define USBPID_IN 0x69
#define USBPID_DATA0 0xc3
#define USBPID_DATA1 0x4b
#define USBPID_ACK 0xd2
#define USBPID_NAK 0x5a
#define USBPID_STALL 0x1e
#ifndef USB_INITIAL_DATATOKEN
#define USB_INITIAL_DATATOKEN USBPID_DATA1
#endif
#ifndef __ASSEMBLER__
typedef struct usbTxStatus{
volatile uchar len;
uchar buffer[USB_BUFSIZE];
}usbTxStatus_t;
extern usbTxStatus_t usbTxStatus1, usbTxStatus3;
#define usbTxLen1 usbTxStatus1.len
#define usbTxBuf1 usbTxStatus1.buffer
#define usbTxLen3 usbTxStatus3.len
#define usbTxBuf3 usbTxStatus3.buffer
typedef union usbWord{
unsigned word;
uchar bytes[2];
}usbWord_t;
typedef struct usbRequest{
uchar bmRequestType;
uchar bRequest;
usbWord_t wValue;
usbWord_t wIndex;
usbWord_t wLength;
}usbRequest_t;
/* This structure matches the 8 byte setup request */
#endif
/* bmRequestType field in USB setup:
* d t t r r r r r, where
* d ..... direction: 0=host->device, 1=device->host
* t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved
* r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other
*/
/* USB setup recipient values */
#define USBRQ_RCPT_MASK 0x1f
#define USBRQ_RCPT_DEVICE 0
#define USBRQ_RCPT_INTERFACE 1
#define USBRQ_RCPT_ENDPOINT 2
/* USB request type values */
#define USBRQ_TYPE_MASK 0x60
#define USBRQ_TYPE_STANDARD (0<<5)
#define USBRQ_TYPE_CLASS (1<<5)
#define USBRQ_TYPE_VENDOR (2<<5)
/* USB direction values: */
#define USBRQ_DIR_MASK 0x80
#define USBRQ_DIR_HOST_TO_DEVICE (0<<7)
#define USBRQ_DIR_DEVICE_TO_HOST (1<<7)
/* USB Standard Requests */
#define USBRQ_GET_STATUS 0
#define USBRQ_CLEAR_FEATURE 1
#define USBRQ_SET_FEATURE 3
#define USBRQ_SET_ADDRESS 5
#define USBRQ_GET_DESCRIPTOR 6
#define USBRQ_SET_DESCRIPTOR 7
#define USBRQ_GET_CONFIGURATION 8
#define USBRQ_SET_CONFIGURATION 9
#define USBRQ_GET_INTERFACE 10
#define USBRQ_SET_INTERFACE 11
#define USBRQ_SYNCH_FRAME 12
/* USB descriptor constants */
#define USBDESCR_DEVICE 1
#define USBDESCR_CONFIG 2
#define USBDESCR_STRING 3
#define USBDESCR_INTERFACE 4
#define USBDESCR_ENDPOINT 5
#define USBDESCR_HID 0x21
#define USBDESCR_HID_REPORT 0x22
#define USBDESCR_HID_PHYS 0x23
//#define USBATTR_BUSPOWER 0x80 // USB 1.1 does not define this value any more
#define USBATTR_BUSPOWER 0
#define USBATTR_SELFPOWER 0x40
#define USBATTR_REMOTEWAKE 0x20
/* USB HID Requests */
#define USBRQ_HID_GET_REPORT 0x01
#define USBRQ_HID_GET_IDLE 0x02
#define USBRQ_HID_GET_PROTOCOL 0x03
#define USBRQ_HID_SET_REPORT 0x09
#define USBRQ_HID_SET_IDLE 0x0a
#define USBRQ_HID_SET_PROTOCOL 0x0b
/* ------------------------------------------------------------------------- */
#endif /* __usbdrv_h_included__ */

View File

@ -1,392 +0,0 @@
/* Name: usbdrvasm.S
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2007-06-13
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/*
General Description:
This module is the assembler part of the USB driver. This file contains
general code (preprocessor acrobatics and CRC computation) and then includes
the file appropriate for the given clock rate.
*/
#define __SFR_OFFSET 0 /* used by avr-libc's register definitions */
#include "usbportability.h"
#include "usbdrv.h" /* for common defs */
/* register names */
#define x1 r16
#define x2 r17
#define shift r18
#define cnt r19
#define x3 r20
#define x4 r21
#define x5 r22
#define bitcnt x5
#define phase x4
#define leap x4
/* Some assembler dependent definitions and declarations: */
#ifdef __IAR_SYSTEMS_ASM__
extern usbRxBuf, usbDeviceAddr, usbNewDeviceAddr, usbInputBufOffset
extern usbCurrentTok, usbRxLen, usbRxToken, usbTxLen
extern usbTxBuf, usbTxStatus1, usbTxStatus3
# if USB_COUNT_SOF
extern usbSofCount
# endif
public usbCrc16
public usbCrc16Append
COMMON INTVEC
# ifndef USB_INTR_VECTOR
ORG INT0_vect
# else /* USB_INTR_VECTOR */
ORG USB_INTR_VECTOR
# undef USB_INTR_VECTOR
# endif /* USB_INTR_VECTOR */
# define USB_INTR_VECTOR usbInterruptHandler
rjmp USB_INTR_VECTOR
RSEG CODE
#else /* __IAR_SYSTEMS_ASM__ */
# ifndef USB_INTR_VECTOR /* default to hardware interrupt INT0 */
# ifdef INT0_vect
# define USB_INTR_VECTOR INT0_vect // this is the "new" define for the vector
# else
# define USB_INTR_VECTOR SIG_INTERRUPT0 // this is the "old" vector
# endif
# endif
.text
.global USB_INTR_VECTOR
.type USB_INTR_VECTOR, @function
.global usbCrc16
.global usbCrc16Append
#endif /* __IAR_SYSTEMS_ASM__ */
#if USB_INTR_PENDING < 0x40 /* This is an I/O address, use in and out */
# define USB_LOAD_PENDING(reg) in reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) out USB_INTR_PENDING, reg
#else /* It's a memory address, use lds and sts */
# define USB_LOAD_PENDING(reg) lds reg, USB_INTR_PENDING
# define USB_STORE_PENDING(reg) sts USB_INTR_PENDING, reg
#endif
#define usbTxLen1 usbTxStatus1
#define usbTxBuf1 (usbTxStatus1 + 1)
#define usbTxLen3 usbTxStatus3
#define usbTxBuf3 (usbTxStatus3 + 1)
;----------------------------------------------------------------------------
; Utility functions
;----------------------------------------------------------------------------
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbCrc16 on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
RTMODEL "__rt_version", "3"
/* The line above will generate an error if cc calling conventions change.
* The value "3" above is valid for IAR 4.10B/W32
*/
# define argLen r18 /* argument 2 */
# define argPtrL r16 /* argument 1 */
# define argPtrH r17 /* argument 1 */
# define resCrcL r16 /* result */
# define resCrcH r17 /* result */
# define ptrL ZL
# define ptrH ZH
# define ptr Z
# define byte r22
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbCrc16 on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define argLen r22 /* argument 2 */
# define argPtrL r24 /* argument 1 */
# define argPtrH r25 /* argument 1 */
# define resCrcL r24 /* result */
# define resCrcH r25 /* result */
# define ptrL XL
# define ptrH XH
# define ptr x
# define byte r18
# define bitCnt r19
# define polyL r20
# define polyH r21
# define scratch r23
#endif
#if USB_USE_FAST_CRC
; This implementation is faster, but has bigger code size
; Thanks to Slawomir Fras (BoskiDialer) for this code!
; It implements the following C pseudo-code:
; unsigned table(unsigned char x)
; {
; unsigned value;
;
; value = (unsigned)x << 6;
; value ^= (unsigned)x << 7;
; if(parity(x))
; value ^= 0xc001;
; return value;
; }
; unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen)
; {
; unsigned crc = 0xffff;
;
; while(argLen--)
; crc = table(lo8(crc) ^ *argPtr++) ^ hi8(crc);
; return ~crc;
; }
; extern unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen);
; argPtr r24+25 / r16+r17
; argLen r22 / r18
; temp variables:
; byte r18 / r22
; scratch r23
; resCrc r24+r25 / r16+r17
; ptr X / Z
usbCrc16:
mov ptrL, argPtrL
mov ptrH, argPtrH
ldi resCrcL, 0xFF
ldi resCrcH, 0xFF
rjmp usbCrc16LoopTest
usbCrc16ByteLoop:
ld byte, ptr+
eor resCrcL, byte ; resCrcL is now 'x' in table()
mov byte, resCrcL ; compute parity of 'x'
swap byte
eor byte, resCrcL
mov scratch, byte
lsr byte
lsr byte
eor byte, scratch
inc byte
lsr byte
andi byte, 1 ; byte is now parity(x)
mov scratch, resCrcL
mov resCrcL, resCrcH
eor resCrcL, byte ; low byte of if(parity(x)) value ^= 0xc001;
neg byte
andi byte, 0xc0
mov resCrcH, byte ; high byte of if(parity(x)) value ^= 0xc001;
clr byte
lsr scratch
ror byte
eor resCrcH, scratch
eor resCrcL, byte
lsr scratch
ror byte
eor resCrcH, scratch
eor resCrcL, byte
usbCrc16LoopTest:
subi argLen, 1
brsh usbCrc16ByteLoop
com resCrcL
com resCrcH
ret
#else /* USB_USE_FAST_CRC */
; This implementation is slower, but has less code size
;
; extern unsigned usbCrc16(unsigned char *argPtr, unsigned char argLen);
; argPtr r24+25 / r16+r17
; argLen r22 / r18
; temp variables:
; byte r18 / r22
; bitCnt r19
; poly r20+r21
; scratch r23
; resCrc r24+r25 / r16+r17
; ptr X / Z
usbCrc16:
mov ptrL, argPtrL
mov ptrH, argPtrH
ldi resCrcL, 0
ldi resCrcH, 0
ldi polyL, lo8(0xa001)
ldi polyH, hi8(0xa001)
com argLen ; argLen = -argLen - 1: modified loop to ensure that carry is set
ldi bitCnt, 0 ; loop counter with starnd condition = end condition
rjmp usbCrcLoopEntry
usbCrcByteLoop:
ld byte, ptr+
eor resCrcL, byte
usbCrcBitLoop:
ror resCrcH ; carry is always set here (see brcs jumps to here)
ror resCrcL
brcs usbCrcNoXor
eor resCrcL, polyL
eor resCrcH, polyH
usbCrcNoXor:
subi bitCnt, 224 ; (8 * 224) % 256 = 0; this loop iterates 8 times
brcs usbCrcBitLoop
usbCrcLoopEntry:
subi argLen, -1
brcs usbCrcByteLoop
usbCrcReady:
ret
; Thanks to Reimar Doeffinger for optimizing this CRC routine!
#endif /* USB_USE_FAST_CRC */
; extern unsigned usbCrc16Append(unsigned char *data, unsigned char len);
usbCrc16Append:
rcall usbCrc16
st ptr+, resCrcL
st ptr+, resCrcH
ret
#undef argLen
#undef argPtrL
#undef argPtrH
#undef resCrcL
#undef resCrcH
#undef ptrL
#undef ptrH
#undef ptr
#undef byte
#undef bitCnt
#undef polyL
#undef polyH
#undef scratch
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
#ifdef __IAR_SYSTEMS_ASM__
/* Register assignments for usbMeasureFrameLength on IAR cc */
/* Calling conventions on IAR:
* First parameter passed in r16/r17, second in r18/r19 and so on.
* Callee must preserve r4-r15, r24-r29 (r28/r29 is frame pointer)
* Result is passed in r16/r17
* In case of the "tiny" memory model, pointers are only 8 bit with no
* padding. We therefore pass argument 1 as "16 bit unsigned".
*/
# define resL r16
# define resH r17
# define cnt16L r30
# define cnt16H r31
# define cntH r18
#else /* __IAR_SYSTEMS_ASM__ */
/* Register assignments for usbMeasureFrameLength on gcc */
/* Calling conventions on gcc:
* First parameter passed in r24/r25, second in r22/23 and so on.
* Callee must preserve r1-r17, r28/r29
* Result is passed in r24/r25
*/
# define resL r24
# define resH r25
# define cnt16L r24
# define cnt16H r25
# define cntH r26
#endif
# define cnt16 cnt16L
; extern unsigned usbMeasurePacketLength(void);
; returns time between two idle strobes in multiples of 7 CPU clocks
.global usbMeasureFrameLength
usbMeasureFrameLength:
ldi cntH, 6 ; wait ~ 10 ms for D- == 0
clr cnt16L
clr cnt16H
usbMFTime16:
dec cntH
breq usbMFTimeout
usbMFWaitStrobe: ; first wait for D- == 0 (idle strobe)
sbiw cnt16, 1 ;[0] [6]
breq usbMFTime16 ;[2]
sbic USBIN, USBMINUS ;[3]
rjmp usbMFWaitStrobe ;[4]
usbMFWaitIdle: ; then wait until idle again
sbis USBIN, USBMINUS ;1 wait for D- == 1
rjmp usbMFWaitIdle ;2
ldi cnt16L, 1 ;1 represents cycles so far
clr cnt16H ;1
usbMFWaitLoop:
in cntH, USBIN ;[0] [7]
adiw cnt16, 1 ;[1]
breq usbMFTimeout ;[3]
andi cntH, USBMASK ;[4]
brne usbMFWaitLoop ;[5]
usbMFTimeout:
#if resL != cnt16L
mov resL, cnt16L
mov resH, cnt16H
#endif
ret
#undef resL
#undef resH
#undef cnt16
#undef cnt16L
#undef cnt16H
#undef cntH
#endif /* USB_CFG_HAVE_MEASURE_FRAME_LENGTH */
;----------------------------------------------------------------------------
; Now include the clock rate specific code
;----------------------------------------------------------------------------
#ifndef USB_CFG_CLOCK_KHZ
# ifdef F_CPU
# define USB_CFG_CLOCK_KHZ (F_CPU/1000)
# else
# error "USB_CFG_CLOCK_KHZ not defined in usbconfig.h and no F_CPU set!"
# endif
#endif
#if USB_CFG_CHECK_CRC /* separate dispatcher for CRC type modules */
# if USB_CFG_CLOCK_KHZ == 18000
# include "usbdrvasm18-crc.inc"
# else
# error "USB_CFG_CLOCK_KHZ is not one of the supported crc-rates!"
# endif
#else /* USB_CFG_CHECK_CRC */
# if USB_CFG_CLOCK_KHZ == 12000
# include "usbdrvasm12.inc"
# elif USB_CFG_CLOCK_KHZ == 12800
# include "usbdrvasm128.inc"
# elif USB_CFG_CLOCK_KHZ == 15000
# include "usbdrvasm15.inc"
# elif USB_CFG_CLOCK_KHZ == 16000
# include "usbdrvasm16.inc"
# elif USB_CFG_CLOCK_KHZ == 16500
# include "usbdrvasm165.inc"
# elif USB_CFG_CLOCK_KHZ == 20000
# include "usbdrvasm20.inc"
# else
# error "USB_CFG_CLOCK_KHZ is not one of the supported non-crc-rates!"
# endif
#endif /* USB_CFG_CHECK_CRC */

View File

@ -1,20 +0,0 @@
/* Name: usbdrvasm.asm
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2006-03-01
* Tabsize: 4
* Copyright: (c) 2006 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/*
General Description:
The IAR compiler/assembler system prefers assembler files with file extension
".asm". We simply provide this file as an alias for usbdrvasm.S.
Thanks to Oleg Semyonov for his help with the IAR tools port!
*/
#include "usbdrvasm.S"
end

View File

@ -1,749 +0,0 @@
/* Name: usbdrvasm128.inc
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2008-10-11
* Tabsize: 4
* Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 12.8 MHz version of the USB driver. It is intended for use
with the internal RC oscillator. Although 12.8 MHz is outside the guaranteed
calibration range of the oscillator, almost all AVRs can reach this frequency.
This version contains a phase locked loop in the receiver routine to cope with
slight clock rate deviations of up to +/- 1%.
See usbdrv.h for a description of the entire driver.
LIMITATIONS
===========
Although it may seem very handy to save the crystal and use the internal
RC oscillator of the CPU, this method (and this module) has some serious
limitations:
(1) The guaranteed calibration range of the oscillator is only 8.1 MHz.
They typical range is 14.5 MHz and most AVRs can actually reach this rate.
(2) Writing EEPROM and Flash may be unreliable (short data lifetime) since
the write procedure is timed from the RC oscillator.
(3) End Of Packet detection (SE0) should be in bit 1, bit it is only checked
if bits 0 and 1 both read as 0 on D- and D+ read as 0 in the middle. This may
cause problems with old hubs which delay SE0 by up to one cycle.
(4) Code size is much larger than that of the other modules.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
Implementation notes:
======================
min frequency: 67 cycles for 8 bit -> 12.5625 MHz
max frequency: 69.286 cycles for 8 bit -> 12.99 MHz
nominal frequency: 12.77 MHz ( = sqrt(min * max))
sampling positions: (next even number in range [+/- 0.5])
cycle index range: 0 ... 66
bits:
.5, 8.875, 17.25, 25.625, 34, 42.375, 50.75, 59.125
[0/1], [9], [17], [25/+26], [34], [+42/43], [51], [59]
bit number: 0 1 2 3 4 5 6 7
spare cycles 1 2 1 2 1 1 1 0
operations to perform: duration cycle
----------------
eor fix, shift 1 -> 00
andi phase, USBMASK 1 -> 08
breq se0 1 -> 16 (moved to 11)
st y+, data 2 -> 24, 25
mov data, fix 1 -> 33
ser data 1 -> 41
subi cnt, 1 1 -> 49
brcs overflow 1 -> 50
layout of samples and operations:
[##] = sample bit
<##> = sample phase
*##* = operation
0: *00* [01] 02 03 04 <05> 06 07
1: *08* [09] 10 11 12 <13> 14 15 *16*
2: [17] 18 19 20 <21> 22 23
3: *24* *25* [26] 27 28 29 <30> 31 32
4: *33* [34] 35 36 37 <38> 39 40
5: *41* [42] 43 44 45 <46> 47 48
6: *49* *50* [51] 52 53 54 <55> 56 57 58
7: [59] 60 61 62 <63> 64 65 66
*****************************************************************************/
/* we prefer positive expressions (do if condition) instead of negative
* (skip if condition), therefore use defines for skip instructions:
*/
#define ifioclr sbis
#define ifioset sbic
#define ifrclr sbrs
#define ifrset sbrc
/* The registers "fix" and "data" swap their meaning during the loop. Use
* defines to keep their name constant.
*/
#define fix x2
#define data x1
#undef phase /* phase has a default definition to x4 */
#define phase x3
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG [sofError], YH, shift, x1, x2, x3, cnt, r0
push YL ;2 push only what is necessary to sync with edge ASAP
in YL, SREG ;1
push YL ;2
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;The first part waits at most 1 bit long since we must be in sync pattern.
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
;waitForJ, ensure that this prerequisite is met.
waitForJ:
inc YL
sbis USBIN, USBMINUS
brne waitForJ ; just make sure we have ANY timeout
waitForK:
;The following code results in a sampling window of 1/4 bit which meets the spec.
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS ;[0]
rjmp foundK ;[1]
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
#ifdef USB_SOF_HOOK
USB_SOF_HOOK
#endif
rjmp sofError
foundK:
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 4 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push YH ;[2]
lds YL, usbInputBufOffset;[4]
clr YH ;[6]
subi YL, lo8(-(usbRxBuf));[7]
sbci YH, hi8(-(usbRxBuf));[8]
sbis USBIN, USBMINUS ;[9] we want two bits K [we want to sample at 8 + 4 - 1.5 = 10.5]
rjmp haveTwoBitsK ;[10]
pop YH ;[11] undo the push from before
rjmp waitForK ;[13] this was not the end of sync, retry
haveTwoBitsK:
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
#define fix x2
#define data x1
push shift ;[12]
push x1 ;[14]
push x2 ;[16]
ldi shift, 0x80 ;[18] prevent bit-unstuffing but init low bits to 0
ifioset USBIN, USBMINUS ;[19] [01] <--- bit 0 [10.5 + 8 = 18.5]
ori shift, 1<<0 ;[02]
push x3 ;[03]
push cnt ;[05]
push r0 ;[07]
ifioset USBIN, USBMINUS ;[09] <--- bit 1
ori shift, 1<<1 ;[10]
ser fix ;[11]
ldi cnt, USB_BUFSIZE ;[12]
mov data, shift ;[13]
lsl shift ;[14]
nop2 ;[15]
ifioset USBIN, USBMINUS ;[17] <--- bit 2
ori data, 3<<2 ;[18] store in bit 2 AND bit 3
eor shift, data ;[19] do nrzi decoding
andi data, 1<<3 ;[20]
in phase, USBIN ;[21] <- phase
brne jumpToEntryAfterSet ;[22] if USBMINS at bit 3 was 1
nop ;[23]
rjmp entryAfterClr ;[24]
jumpToEntryAfterSet:
rjmp entryAfterSet ;[24]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
#undef fix
#define fix x1
#undef data
#define data x2
bit7IsSet:
ifrclr phase, USBMINUS ;[62] check phase only if D- changed
lpm ;[63]
in phase, USBIN ;[64] <- phase (one cycle too late)
ori shift, 1 << 7 ;[65]
nop ;[66]
;;;;rjmp bit0AfterSet ; -> [00] == [67] moved block up to save jump
bit0AfterSet:
eor fix, shift ;[00]
#undef fix
#define fix x2
#undef data
#define data x1 /* we now have result in data, fix is reset to 0xff */
ifioclr USBIN, USBMINUS ;[01] <--- sample 0
rjmp bit0IsClr ;[02]
andi shift, ~(7 << 0) ;[03]
breq unstuff0s ;[04]
in phase, USBIN ;[05] <- phase
rjmp bit1AfterSet ;[06]
unstuff0s:
in phase, USBIN ;[06] <- phase (one cycle too late)
andi fix, ~(1 << 0) ;[07]
ifioclr USBIN, USBMINUS ;[00]
ifioset USBIN, USBPLUS ;[01]
rjmp bit0IsClr ;[02] executed if first expr false or second true
se0AndStore: ; executed only if both bits 0
st y+, x1 ;[15/17] cycles after start of byte
rjmp se0 ;[17/19]
bit0IsClr:
ifrset phase, USBMINUS ;[04] check phase only if D- changed
lpm ;[05]
in phase, USBIN ;[06] <- phase (one cycle too late)
ori shift, 1 << 0 ;[07]
bit1AfterClr:
andi phase, USBMASK ;[08]
ifioset USBIN, USBMINUS ;[09] <--- sample 1
rjmp bit1IsSet ;[10]
breq se0AndStore ;[11] if D- was 0 in bits 0 AND 1 and D+ was 0 in between, we have SE0
andi shift, ~(7 << 1) ;[12]
in phase, USBIN ;[13] <- phase
breq unstuff1c ;[14]
rjmp bit2AfterClr ;[15]
unstuff1c:
andi fix, ~(1 << 1) ;[16]
nop2 ;[08]
nop2 ;[10]
bit1IsSet:
ifrclr phase, USBMINUS ;[12] check phase only if D- changed
lpm ;[13]
in phase, USBIN ;[14] <- phase (one cycle too late)
ori shift, 1 << 1 ;[15]
nop ;[16]
bit2AfterSet:
ifioclr USBIN, USBMINUS ;[17] <--- sample 2
rjmp bit2IsClr ;[18]
andi shift, ~(7 << 2) ;[19]
breq unstuff2s ;[20]
in phase, USBIN ;[21] <- phase
rjmp bit3AfterSet ;[22]
unstuff2s:
in phase, USBIN ;[22] <- phase (one cycle too late)
andi fix, ~(1 << 2) ;[23]
nop2 ;[16]
nop2 ;[18]
bit2IsClr:
ifrset phase, USBMINUS ;[20] check phase only if D- changed
lpm ;[21]
in phase, USBIN ;[22] <- phase (one cycle too late)
ori shift, 1 << 2 ;[23]
bit3AfterClr:
st y+, data ;[24]
entryAfterClr:
ifioset USBIN, USBMINUS ;[26] <--- sample 3
rjmp bit3IsSet ;[27]
andi shift, ~(7 << 3) ;[28]
breq unstuff3c ;[29]
in phase, USBIN ;[30] <- phase
rjmp bit4AfterClr ;[31]
unstuff3c:
in phase, USBIN ;[31] <- phase (one cycle too late)
andi fix, ~(1 << 3) ;[32]
nop2 ;[25]
nop2 ;[27]
bit3IsSet:
ifrclr phase, USBMINUS ;[29] check phase only if D- changed
lpm ;[30]
in phase, USBIN ;[31] <- phase (one cycle too late)
ori shift, 1 << 3 ;[32]
bit4AfterSet:
mov data, fix ;[33] undo this move by swapping defines
#undef fix
#define fix x1
#undef data
#define data x2
ifioclr USBIN, USBMINUS ;[34] <--- sample 4
rjmp bit4IsClr ;[35]
andi shift, ~(7 << 4) ;[36]
breq unstuff4s ;[37]
in phase, USBIN ;[38] <- phase
rjmp bit5AfterSet ;[39]
unstuff4s:
in phase, USBIN ;[39] <- phase (one cycle too late)
andi fix, ~(1 << 4) ;[40]
nop2 ;[33]
nop2 ;[35]
bit4IsClr:
ifrset phase, USBMINUS ;[37] check phase only if D- changed
lpm ;[38]
in phase, USBIN ;[39] <- phase (one cycle too late)
ori shift, 1 << 4 ;[40]
bit5AfterClr:
ser data ;[41]
ifioset USBIN, USBMINUS ;[42] <--- sample 5
rjmp bit5IsSet ;[43]
andi shift, ~(7 << 5) ;[44]
breq unstuff5c ;[45]
in phase, USBIN ;[46] <- phase
rjmp bit6AfterClr ;[47]
unstuff5c:
in phase, USBIN ;[47] <- phase (one cycle too late)
andi fix, ~(1 << 5) ;[48]
nop2 ;[41]
nop2 ;[43]
bit5IsSet:
ifrclr phase, USBMINUS ;[45] check phase only if D- changed
lpm ;[46]
in phase, USBIN ;[47] <- phase (one cycle too late)
ori shift, 1 << 5 ;[48]
bit6AfterSet:
subi cnt, 1 ;[49]
brcs jumpToOverflow ;[50]
ifioclr USBIN, USBMINUS ;[51] <--- sample 6
rjmp bit6IsClr ;[52]
andi shift, ~(3 << 6) ;[53]
cpi shift, 2 ;[54]
in phase, USBIN ;[55] <- phase
brlt unstuff6s ;[56]
rjmp bit7AfterSet ;[57]
jumpToOverflow:
rjmp overflow
unstuff6s:
andi fix, ~(1 << 6) ;[50]
lpm ;[51]
bit6IsClr:
ifrset phase, USBMINUS ;[54] check phase only if D- changed
lpm ;[55]
in phase, USBIN ;[56] <- phase (one cycle too late)
ori shift, 1 << 6 ;[57]
nop ;[58]
bit7AfterClr:
ifioset USBIN, USBMINUS ;[59] <--- sample 7
rjmp bit7IsSet ;[60]
andi shift, ~(1 << 7) ;[61]
cpi shift, 4 ;[62]
in phase, USBIN ;[63] <- phase
brlt unstuff7c ;[64]
rjmp bit0AfterClr ;[65] -> [00] == [67]
unstuff7c:
andi fix, ~(1 << 7) ;[58]
nop ;[59]
rjmp bit7IsSet ;[60]
bit7IsClr:
ifrset phase, USBMINUS ;[62] check phase only if D- changed
lpm ;[63]
in phase, USBIN ;[64] <- phase (one cycle too late)
ori shift, 1 << 7 ;[65]
nop ;[66]
;;;;rjmp bit0AfterClr ; -> [00] == [67] moved block up to save jump
bit0AfterClr:
eor fix, shift ;[00]
#undef fix
#define fix x2
#undef data
#define data x1 /* we now have result in data, fix is reset to 0xff */
ifioset USBIN, USBMINUS ;[01] <--- sample 0
rjmp bit0IsSet ;[02]
andi shift, ~(7 << 0) ;[03]
breq unstuff0c ;[04]
in phase, USBIN ;[05] <- phase
rjmp bit1AfterClr ;[06]
unstuff0c:
in phase, USBIN ;[06] <- phase (one cycle too late)
andi fix, ~(1 << 0) ;[07]
ifioclr USBIN, USBMINUS ;[00]
ifioset USBIN, USBPLUS ;[01]
rjmp bit0IsSet ;[02] executed if first expr false or second true
rjmp se0AndStore ;[03] executed only if both bits 0
bit0IsSet:
ifrclr phase, USBMINUS ;[04] check phase only if D- changed
lpm ;[05]
in phase, USBIN ;[06] <- phase (one cycle too late)
ori shift, 1 << 0 ;[07]
bit1AfterSet:
andi shift, ~(7 << 1) ;[08] compensated by "ori shift, 1<<1" if bit1IsClr
ifioclr USBIN, USBMINUS ;[09] <--- sample 1
rjmp bit1IsClr ;[10]
breq unstuff1s ;[11]
nop2 ;[12] do not check for SE0 if bit 0 was 1
in phase, USBIN ;[14] <- phase (one cycle too late)
rjmp bit2AfterSet ;[15]
unstuff1s:
in phase, USBIN ;[13] <- phase
andi fix, ~(1 << 1) ;[14]
lpm ;[07]
nop2 ;[10]
bit1IsClr:
ifrset phase, USBMINUS ;[12] check phase only if D- changed
lpm ;[13]
in phase, USBIN ;[14] <- phase (one cycle too late)
ori shift, 1 << 1 ;[15]
nop ;[16]
bit2AfterClr:
ifioset USBIN, USBMINUS ;[17] <--- sample 2
rjmp bit2IsSet ;[18]
andi shift, ~(7 << 2) ;[19]
breq unstuff2c ;[20]
in phase, USBIN ;[21] <- phase
rjmp bit3AfterClr ;[22]
unstuff2c:
in phase, USBIN ;[22] <- phase (one cycle too late)
andi fix, ~(1 << 2) ;[23]
nop2 ;[16]
nop2 ;[18]
bit2IsSet:
ifrclr phase, USBMINUS ;[20] check phase only if D- changed
lpm ;[21]
in phase, USBIN ;[22] <- phase (one cycle too late)
ori shift, 1 << 2 ;[23]
bit3AfterSet:
st y+, data ;[24]
entryAfterSet:
ifioclr USBIN, USBMINUS ;[26] <--- sample 3
rjmp bit3IsClr ;[27]
andi shift, ~(7 << 3) ;[28]
breq unstuff3s ;[29]
in phase, USBIN ;[30] <- phase
rjmp bit4AfterSet ;[31]
unstuff3s:
in phase, USBIN ;[31] <- phase (one cycle too late)
andi fix, ~(1 << 3) ;[32]
nop2 ;[25]
nop2 ;[27]
bit3IsClr:
ifrset phase, USBMINUS ;[29] check phase only if D- changed
lpm ;[30]
in phase, USBIN ;[31] <- phase (one cycle too late)
ori shift, 1 << 3 ;[32]
bit4AfterClr:
mov data, fix ;[33] undo this move by swapping defines
#undef fix
#define fix x1
#undef data
#define data x2
ifioset USBIN, USBMINUS ;[34] <--- sample 4
rjmp bit4IsSet ;[35]
andi shift, ~(7 << 4) ;[36]
breq unstuff4c ;[37]
in phase, USBIN ;[38] <- phase
rjmp bit5AfterClr ;[39]
unstuff4c:
in phase, USBIN ;[39] <- phase (one cycle too late)
andi fix, ~(1 << 4) ;[40]
nop2 ;[33]
nop2 ;[35]
bit4IsSet:
ifrclr phase, USBMINUS ;[37] check phase only if D- changed
lpm ;[38]
in phase, USBIN ;[39] <- phase (one cycle too late)
ori shift, 1 << 4 ;[40]
bit5AfterSet:
ser data ;[41]
ifioclr USBIN, USBMINUS ;[42] <--- sample 5
rjmp bit5IsClr ;[43]
andi shift, ~(7 << 5) ;[44]
breq unstuff5s ;[45]
in phase, USBIN ;[46] <- phase
rjmp bit6AfterSet ;[47]
unstuff5s:
in phase, USBIN ;[47] <- phase (one cycle too late)
andi fix, ~(1 << 5) ;[48]
nop2 ;[41]
nop2 ;[43]
bit5IsClr:
ifrset phase, USBMINUS ;[45] check phase only if D- changed
lpm ;[46]
in phase, USBIN ;[47] <- phase (one cycle too late)
ori shift, 1 << 5 ;[48]
bit6AfterClr:
subi cnt, 1 ;[49]
brcs overflow ;[50]
ifioset USBIN, USBMINUS ;[51] <--- sample 6
rjmp bit6IsSet ;[52]
andi shift, ~(3 << 6) ;[53]
cpi shift, 2 ;[54]
in phase, USBIN ;[55] <- phase
brlt unstuff6c ;[56]
rjmp bit7AfterClr ;[57]
unstuff6c:
andi fix, ~(1 << 6) ;[50]
lpm ;[51]
bit6IsSet:
ifrclr phase, USBMINUS ;[54] check phase only if D- changed
lpm ;[55]
in phase, USBIN ;[56] <- phase (one cycle too late)
ori shift, 1 << 6 ;[57]
bit7AfterSet:
ifioclr USBIN, USBMINUS ;[59] <--- sample 7
rjmp bit7IsClr ;[60]
andi shift, ~(1 << 7) ;[61]
cpi shift, 4 ;[62]
in phase, USBIN ;[63] <- phase
brlt unstuff7s ;[64]
rjmp bit0AfterSet ;[65] -> [00] == [67]
unstuff7s:
andi fix, ~(1 << 7) ;[58]
nop ;[59]
rjmp bit7IsClr ;[60]
macro POP_STANDARD ; 14 cycles
pop r0
pop cnt
pop x3
pop x2
pop x1
pop shift
pop YH
endm
macro POP_RETI ; 5 cycles
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
;----------------------------------------------------------------------------
; Transmitting data
;----------------------------------------------------------------------------
txByteLoop:
txBitloop:
stuffN1Delay: ; [03]
ror shift ;[-5] [11] [63]
brcc doExorN1 ;[-4] [64]
subi x3, 1 ;[-3]
brne commonN1 ;[-2]
lsl shift ;[-1] compensate ror after rjmp stuffDelay
nop ;[00] stuffing consists of just waiting 8 cycles
rjmp stuffN1Delay ;[01] after ror, C bit is reliably clear
sendNakAndReti:
ldi cnt, USBPID_NAK ;[-19]
rjmp sendCntAndReti ;[-18]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov r0, cnt ;[-16]
ldi YL, 0 ;[-15] R0 address is 0
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1) or USBOUT = 0x01
; K = (D+ = 1), (D- = 0) or USBOUT = 0x02
; Spec allows 7.5 bit times from EOP to SOP for replies (= 60 cycles)
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte
;uses: x1...x3, shift, cnt, Y [x1 = mirror USBOUT, x2 = USBMASK, x3 = bitstuff cnt]
;Numbers in brackets are time since first bit of sync pattern is sent (start of instruction)
usbSendAndReti:
in x2, USBDDR ;[-10] 10 cycles until SOP
ori x2, USBMASK ;[-9]
sbi USBOUT, USBMINUS ;[-8] prepare idle state; D+ and D- must have been 0 (no pullups)
out USBDDR, x2 ;[-6] <--- acquire bus
in x1, USBOUT ;[-5] port mirror for tx loop
ldi shift, 0x40 ;[-4] sync byte is first byte sent (we enter loop after ror)
ldi x2, USBMASK ;[-3]
doExorN1:
eor x1, x2 ;[-2] [06] [62]
ldi x3, 6 ;[-1] [07] [63]
commonN1:
stuffN2Delay:
out USBOUT, x1 ;[00] [08] [64] <--- set bit
ror shift ;[01]
brcc doExorN2 ;[02]
subi x3, 1 ;[03]
brne commonN2 ;[04]
lsl shift ;[05] compensate ror after rjmp stuffDelay
rjmp stuffN2Delay ;[06] after ror, C bit is reliably clear
doExorN2:
eor x1, x2 ;[04] [12]
ldi x3, 6 ;[05] [13]
commonN2:
nop2 ;[06] [14]
subi cnt, 171 ;[08] [16] trick: (3 * 171) & 0xff = 1
out USBOUT, x1 ;[09] [17] <--- set bit
brcs txBitloop ;[10] [27] [44]
stuff6Delay:
ror shift ;[45] [53]
brcc doExor6 ;[46]
subi x3, 1 ;[47]
brne common6 ;[48]
lsl shift ;[49] compensate ror after rjmp stuffDelay
nop ;[50] stuffing consists of just waiting 8 cycles
rjmp stuff6Delay ;[51] after ror, C bit is reliably clear
doExor6:
eor x1, x2 ;[48] [56]
ldi x3, 6 ;[49]
common6:
stuff7Delay:
ror shift ;[50] [58]
out USBOUT, x1 ;[51] <--- set bit
brcc doExor7 ;[52]
subi x3, 1 ;[53]
brne common7 ;[54]
lsl shift ;[55] compensate ror after rjmp stuffDelay
rjmp stuff7Delay ;[56] after ror, C bit is reliably clear
doExor7:
eor x1, x2 ;[54] [62]
ldi x3, 6 ;[55]
common7:
ld shift, y+ ;[56]
nop ;[58]
tst cnt ;[59]
out USBOUT, x1 ;[60] [00]<--- set bit
brne txByteLoop ;[61] [01]
;make SE0:
cbr x1, USBMASK ;[02] prepare SE0 [spec says EOP may be 15 to 18 cycles]
lds x2, usbNewDeviceAddr;[03]
lsl x2 ;[05] we compare with left shifted address
subi YL, 2 + 0 ;[06] Only assign address on data packets, not ACK/NAK in r0
sbci YH, 0 ;[07]
out USBOUT, x1 ;[00] <-- out SE0 -- from now 2 bits = 16 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[01]
sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[03] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[04]
ori x1, USBIDLE ;[05]
in x2, USBDDR ;[06]
cbr x2, USBMASK ;[07] set both pins to input
mov x3, x1 ;[08]
cbr x3, USBMASK ;[09] configure no pullup on both pins
lpm ;[10]
lpm ;[13]
out USBOUT, x1 ;[16] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[17] <-- release bus now
out USBOUT, x3 ;[18] <-- ensure no pull-up resistors are active
rjmp doReturn
/*****************************************************************************
The following PHP script generates a code skeleton for the receiver routine:
<?php
function printCmdBuffer($thisBit)
{
global $cycle;
$nextBit = ($thisBit + 1) % 8;
$s = ob_get_contents();
ob_end_clean();
$s = str_replace("#", $thisBit, $s);
$s = str_replace("@", $nextBit, $s);
$lines = explode("\n", $s);
for($i = 0; $i < count($lines); $i++){
$s = $lines[$i];
if(ereg("\\[([0-9-][0-9])\\]", $s, $regs)){
$c = $cycle + (int)$regs[1];
$s = ereg_replace("\\[[0-9-][0-9]\\]", sprintf("[%02d]", $c), $s);
}
if(strlen($s) > 0)
echo "$s\n";
}
}
function printBit($isAfterSet, $bitNum)
{
ob_start();
if($isAfterSet){
?>
ifioclr USBIN, USBMINUS ;[00] <--- sample
rjmp bit#IsClr ;[01]
andi shift, ~(7 << #) ;[02]
breq unstuff#s ;[03]
in phase, USBIN ;[04] <- phase
rjmp bit@AfterSet ;[05]
unstuff#s:
in phase, USBIN ;[05] <- phase (one cycle too late)
andi fix, ~(1 << #) ;[06]
nop2 ;[-1]
nop2 ;[01]
bit#IsClr:
ifrset phase, USBMINUS ;[03] check phase only if D- changed
lpm ;[04]
in phase, USBIN ;[05] <- phase (one cycle too late)
ori shift, 1 << # ;[06]
<?php
}else{
?>
ifioset USBIN, USBMINUS ;[00] <--- sample
rjmp bit#IsSet ;[01]
andi shift, ~(7 << #) ;[02]
breq unstuff#c ;[03]
in phase, USBIN ;[04] <- phase
rjmp bit@AfterClr ;[05]
unstuff#c:
in phase, USBIN ;[05] <- phase (one cycle too late)
andi fix, ~(1 << #) ;[06]
nop2 ;[-1]
nop2 ;[01]
bit#IsSet:
ifrclr phase, USBMINUS ;[03] check phase only if D- changed
lpm ;[04]
in phase, USBIN ;[05] <- phase (one cycle too late)
ori shift, 1 << # ;[06]
<?php
}
printCmdBuffer($bitNum);
}
$bitStartCycles = array(1, 9, 17, 26, 34, 42, 51, 59);
for($i = 0; $i < 16; $i++){
$bit = $i % 8;
$emitClrCode = ($i + (int)($i / 8)) % 2;
$cycle = $bitStartCycles[$bit];
if($emitClrCode){
printf("bit%dAfterClr:\n", $bit);
}else{
printf("bit%dAfterSet:\n", $bit);
}
ob_start();
echo " ***** ;[-1]\n";
printCmdBuffer($bit);
printBit(!$emitClrCode, $bit);
if($i == 7)
echo "\n";
}
?>
*****************************************************************************/

View File

@ -1,345 +0,0 @@
/* Name: usbdrvasm16.inc
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2007-06-15
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 16 MHz version of the asssembler part of the USB driver. It
requires a 16 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 16 MHz -> 10.6666666 cycles per bit, 85.333333333 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt
push YL ;[-25] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-23]
push YL ;[-22]
push YH ;[-20]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;The first part waits at most 1 bit long since we must be in sync pattern.
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
;waitForJ, ensure that this prerequisite is met.
waitForJ:
inc YL
sbis USBIN, USBMINUS
brne waitForJ ; just make sure we have ANY timeout
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-15]
rjmp foundK ;[-14]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
#ifdef USB_SOF_HOOK
USB_SOF_HOOK
#endif
rjmp sofError
foundK: ;[-12]
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push bitcnt ;[-12]
; [---] ;[-11]
lds YL, usbInputBufOffset;[-10]
; [---] ;[-9]
clr YH ;[-8]
subi YL, lo8(-(usbRxBuf));[-7] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-6] [rx loop init]
push shift ;[-5]
; [---] ;[-4]
ldi bitcnt, 0x55 ;[-3] [rx loop init]
sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early)
rjmp haveTwoBitsK ;[-1]
pop shift ;[0] undo the push from before
pop bitcnt ;[2] undo the push from before
rjmp waitForK ;[4] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 21 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK:
push x1 ;[1]
push x2 ;[3]
push x3 ;[5]
ldi shift, 0 ;[7]
ldi x3, 1<<4 ;[8] [rx loop init] first sample is inverse bit, compensate that
push x4 ;[9] == leap
in x1, USBIN ;[11] <-- sample bit 0
andi x1, USBMASK ;[12]
bst x1, USBMINUS ;[13]
bld shift, 7 ;[14]
push cnt ;[15]
ldi leap, 0 ;[17] [rx loop init]
ldi cnt, USB_BUFSIZE;[18] [rx loop init]
rjmp rxbit1 ;[19] arrives at [21]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
; duration of unstuffing code should be 10.66666667 cycles. We adjust "leap"
; accordingly to approximate this value in the long run.
unstuff6:
andi x2, USBMASK ;[03]
ori x3, 1<<6 ;[04] will not be shifted any more
andi shift, ~0x80;[05]
mov x1, x2 ;[06] sampled bit 7 is actually re-sampled bit 6
subi leap, -1 ;[07] total duration = 11 bits -> subtract 1/3
rjmp didUnstuff6 ;[08]
unstuff7:
ori x3, 1<<7 ;[09] will not be shifted any more
in x2, USBIN ;[00] [10] re-sample bit 7
andi x2, USBMASK ;[01]
andi shift, ~0x80;[02]
subi leap, 2 ;[03] total duration = 10 bits -> add 1/3
rjmp didUnstuff7 ;[04]
unstuffEven:
ori x3, 1<<6 ;[09] will be shifted right 6 times for bit 0
in x1, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x1, USBMASK ;[02]
breq se0 ;[03]
subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3
nop2 ;[05]
rjmp didUnstuffE ;[06]
unstuffOdd:
ori x3, 1<<5 ;[09] will be shifted right 4 times for bit 1
in x2, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x2, USBMASK ;[02]
breq se0 ;[03]
subi leap, -1 ;[04] total duration = 11 bits -> subtract 1/3
nop2 ;[05]
rjmp didUnstuffO ;[06]
rxByteLoop:
andi x1, USBMASK ;[03]
eor x2, x1 ;[04]
subi leap, 1 ;[05]
brpl skipLeap ;[06]
subi leap, -3 ;1 one leap cycle every 3rd byte -> 85 + 1/3 cycles per byte
nop ;1
skipLeap:
subi x2, 1 ;[08]
ror shift ;[09]
didUnstuff6:
cpi shift, 0xfc ;[10]
in x2, USBIN ;[00] [11] <-- sample bit 7
brcc unstuff6 ;[01]
andi x2, USBMASK ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
didUnstuff7:
cpi shift, 0xfc ;[06]
brcc unstuff7 ;[07]
eor x3, shift ;[08] reconstruct: x3 is 1 at bit locations we changed, 0 at others
st y+, x3 ;[09] store data
rxBitLoop:
in x1, USBIN ;[00] [11] <-- sample bit 0/2/4
andi x1, USBMASK ;[01]
eor x2, x1 ;[02]
andi x3, 0x3f ;[03] topmost two bits reserved for 6 and 7
subi x2, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffEven ;[07]
didUnstuffE:
lsr x3 ;[08]
lsr x3 ;[09]
rxbit1:
in x2, USBIN ;[00] [10] <-- sample bit 1/3/5
andi x2, USBMASK ;[01]
breq se0 ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffOdd ;[07]
didUnstuffO:
subi bitcnt, 0xab;[08] == addi 0x55, 0x55 = 0x100/3
brcs rxBitLoop ;[09]
subi cnt, 1 ;[10]
in x1, USBIN ;[00] [11] <-- sample bit 6
brcc rxByteLoop ;[01]
rjmp overflow
macro POP_STANDARD ; 14 cycles
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop bitcnt
endm
macro POP_RETI ; 7 cycles
pop YH
pop YL
out SREG, YL
pop YL
endm
#include "asmcommon.inc"
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
bitstuffN:
eor x1, x4 ;[5]
ldi x2, 0 ;[6]
nop2 ;[7]
nop ;[9]
out USBOUT, x1 ;[10] <-- out
rjmp didStuffN ;[0]
bitstuff6:
eor x1, x4 ;[5]
ldi x2, 0 ;[6] Carry is zero due to brcc
rol shift ;[7] compensate for ror shift at branch destination
rjmp didStuff6 ;[8]
bitstuff7:
ldi x2, 0 ;[2] Carry is zero due to brcc
rjmp didStuff7 ;[3]
sendNakAndReti:
ldi x3, USBPID_NAK ;[-18]
rjmp sendX3AndReti ;[-17]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov x3, cnt ;[-16]
sendX3AndReti:
ldi YL, 20 ;[-15] x3==r20 address is 20
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We don't match the transfer rate exactly (don't insert leap cycles every third
;byte) because the spec demands only 1.5% precision anyway.
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
txByteLoop:
ldi bitcnt, 0x35 ;[-4] [6] binary 0011 0101
txBitLoop:
sbrs shift, 0 ;[-3] [7]
eor x1, x4 ;[-2] [8]
out USBOUT, x1 ;[-1] [9] <-- out N
ror shift ;[0] [10]
ror x2 ;[1]
didStuffN:
cpi x2, 0xfc ;[2]
brcc bitstuffN ;[3]
lsr bitcnt ;[4]
brcc txBitLoop ;[5]
brne txBitLoop ;[6]
sbrs shift, 0 ;[7]
eor x1, x4 ;[8]
didStuff6:
out USBOUT, x1 ;[-1] [9] <-- out 6
ror shift ;[0] [10]
ror x2 ;[1]
cpi x2, 0xfc ;[2]
brcc bitstuff6 ;[3]
ror shift ;[4]
didStuff7:
ror x2 ;[5]
sbrs x2, 7 ;[6]
eor x1, x4 ;[7]
nop ;[8]
cpi x2, 0xfc ;[9]
out USBOUT, x1 ;[-1][10] <-- out 7
brcc bitstuff7 ;[0] [11]
ld shift, y+ ;[1]
dec cnt ;[3]
brne txByteLoop ;[4]
;make SE0:
cbr x1, USBMASK ;[5] prepare SE0 [spec says EOP may be 21 to 25 cycles]
lds x2, usbNewDeviceAddr;[6]
lsl x2 ;[8] we compare with left shifted address
subi YL, 20 + 2 ;[9] Only assign address on data packets, not ACK/NAK in x3
sbci YH, 0 ;[10]
out USBOUT, x1 ;[11] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
breq skipAddrAssign ;[0]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[2] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[3]
ori x1, USBIDLE ;[4]
in x2, USBDDR ;[5]
cbr x2, USBMASK ;[6] set both pins to input
mov x3, x1 ;[7]
cbr x3, USBMASK ;[8] configure no pullup on both pins
ldi x4, 4 ;[9]
se0Delay:
dec x4 ;[10] [13] [16] [19]
brne se0Delay ;[11] [14] [17] [20]
out USBOUT, x1 ;[21] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[22] <-- release bus now
out USBOUT, x3 ;[23] <-- ensure no pull-up resistors are active
rjmp doReturn

View File

@ -1,143 +0,0 @@
/* Name: usbportability.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2008-06-17
* Tabsize: 4
* Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
*/
/*
General Description:
This header is intended to contain all (or at least most of) the compiler
and library dependent stuff. The C code is written for avr-gcc and avr-libc.
The API of other development environments is converted to gcc's and avr-libc's
API by means of defines.
This header also contains all system includes since they depend on the
development environment.
Thanks to Oleg Semyonov for his help with the IAR tools port!
*/
#ifndef __usbportability_h_INCLUDED__
#define __usbportability_h_INCLUDED__
/* We check explicitly for IAR and CodeVision. Default is avr-gcc/avr-libc. */
/* ------------------------------------------------------------------------- */
#if defined __IAR_SYSTEMS_ICC__ || defined __IAR_SYSTEMS_ASM__ /* check for IAR */
/* ------------------------------------------------------------------------- */
#ifndef ENABLE_BIT_DEFINITIONS
# define ENABLE_BIT_DEFINITIONS 1 /* Enable bit definitions */
#endif
/* Include IAR headers */
#include <ioavr.h>
#ifndef __IAR_SYSTEMS_ASM__
# include <inavr.h>
#endif
#define __attribute__(arg) /* not supported on IAR */
#ifdef __IAR_SYSTEMS_ASM__
# define __ASSEMBLER__ /* IAR does not define standard macro for asm */
#endif
#ifdef __HAS_ELPM__
# define PROGMEM __farflash
#else
# define PROGMEM __flash
#endif
#define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr))
/* The following definitions are not needed by the driver, but may be of some
* help if you port a gcc based project to IAR.
*/
#define cli() __disable_interrupt()
#define sei() __enable_interrupt()
#define wdt_reset() __watchdog_reset()
#define _BV(x) (1 << (x))
/* assembler compatibility macros */
#define nop2 rjmp $+2 /* jump to next instruction */
#define XL r26
#define XH r27
#define YL r28
#define YH r29
#define ZL r30
#define ZH r31
#define lo8(x) LOW(x)
#define hi8(x) (((x)>>8) & 0xff) /* not HIGH to allow XLINK to make a proper range check */
/* Depending on the device you use, you may get problems with the way usbdrv.h
* handles the differences between devices. Since IAR does not use #defines
* for MCU registers, we can't check for the existence of a particular
* register with an #ifdef. If the autodetection mechanism fails, include
* definitions for the required USB_INTR_* macros in your usbconfig.h. See
* usbconfig-prototype.h and usbdrv.h for details.
*/
/* ------------------------------------------------------------------------- */
#elif __CODEVISIONAVR__ /* check for CodeVision AVR */
/* ------------------------------------------------------------------------- */
/* This port is not working (yet) */
/* #define F_CPU _MCU_CLOCK_FREQUENCY_ seems to be defined automatically */
#include <io.h>
#include <delay.h>
#define __attribute__(arg) /* not supported on IAR */
#define PROGMEM __flash
#define USB_READ_FLASH(addr) (*(PROGMEM char *)(addr))
#ifndef __ASSEMBLER__
static inline void cli(void)
{
#asm("cli");
}
static inline void sei(void)
{
#asm("sei");
}
#endif
#define _delay_ms(t) delay_ms(t)
#define _BV(x) (1 << (x))
#define USB_CFG_USE_SWITCH_STATEMENT 1 /* macro for if() cascase fails for unknown reason */
#define macro .macro
#define endm .endmacro
#define nop2 rjmp .+0 /* jump to next instruction */
/* ------------------------------------------------------------------------- */
#else /* default development environment is avr-gcc/avr-libc */
/* ------------------------------------------------------------------------- */
#include <avr/io.h>
#ifdef __ASSEMBLER__
# define _VECTOR(N) __vector_ ## N /* io.h does not define this for asm */
#else
# include <avr/pgmspace.h>
#endif
#if USB_CFG_DRIVER_FLASH_PAGE
# define USB_READ_FLASH(addr) pgm_read_byte_far(((long)USB_CFG_DRIVER_FLASH_PAGE << 16) | (long)(addr))
#else
# define USB_READ_FLASH(addr) pgm_read_byte(addr)
#endif
#define macro .macro
#define endm .endm
#define nop2 rjmp .+0 /* jump to next instruction */
#endif /* development environment */
/* for conveniecne, ensure that PRG_RDB exists */
#ifndef PRG_RDB
# define PRG_RDB(addr) USB_READ_FLASH(addr)
#endif
#endif /* __usbportability_h_INCLUDED__ */

View File

@ -1,145 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
uint8_t *util_strupper(uint8_t * s)
{
uint8_t *p;
for (p = s; *p != '\0'; p++)
if (*p >= 'a' && *p <= 'z')
*p += 'A' - 'a';
return s;
}
uint8_t *util_strlower(uint8_t * s)
{
uint8_t *p;
for (p = s; *p != '\0'; p++)
if (*p >= 'A' && *p <= 'Z')
*p += 'a' - 'A';
return s;
}
void util_chomp(uint8_t * s)
{
uint16_t len;
len = strlen((char *) s);
if (len >= 2 && s[len - 1] == '\n' && s[len - 2] == '\r')
s[len - 2] = '\0';
else if (len >= 1 && (s[len - 1] == '\n' || s[len - 1] == '\r'))
s[len - 1] = '\0';
}
void util_trim(uint8_t * s)
{
uint8_t *p = s;
uint8_t *q;
/*
* skip leading whitespace
*/
while (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
p++;
/*
* now p points at the first non-whitespace uint8_tacter
*/
if (*p == '\0') {
/*
* only whitespace
*/
*s = '\0';
return;
}
q = s + strlen((char *) s);
/*
* skip trailing whitespace
*/
/*
* we have found p < q such that *p is non-whitespace, so this loop terminates with q >= p
*/
do
q--;
while (*q == ' ' || *q == '\t' || *q == '\r' || *q == '\n');
/*
* now q points at the last non-whitespace uint8_tacter
*/
/*
* cut off trailing whitespace
*/
*++q = '\0';
/*
* move to string
*/
memmove(s, p, q + 1 - p);
}
uint32_t util_sscandec(const uint8_t * s)
{
uint32_t result;
if (*s == '\0')
return -1;
result = 0;
for (;;) {
if (*s >= '0' && *s <= '9')
result = 10 * result + *s - '0';
else if (*s == '\0')
return result;
else
return -1;
s++;
}
}
uint32_t util_sscanhex(const uint8_t * s)
{
int32_t result;
if (*s == '\0')
return -1;
result = 0;
for (;;) {
if (*s >= '0' && *s <= '9')
result = 16 * result + *s - '0';
else if (*s >= 'A' && *s <= 'F')
result = 16 * result + *s - 'A' + 10;
else if (*s >= 'a' && *s <= 'f')
result = 16 * result + *s - 'a' + 10;
else if (*s == '\0')
return result;
else
return -1;
s++;
}
}
uint8_t util_sscanbool(const uint8_t * s)
{
if (*s == '0' && s[1] == '\0')
return 0;
if (*s == '1' && s[1] == '\0')
return 1;
return -1;
}

View File

@ -1,32 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#ifndef __UTIL_H__
#define __UTIL_H__
uint8_t *util_strupper(uint8_t * s);
uint8_t *util_strlower(uint8_t * s);
void util_chomp(uint8_t * s);
void util_trim(uint8_t * s);
uint32_t util_sscandec(const uint8_t * s);
uint32_t util_sscanhex(const uint8_t * s);
uint8_t util_sscanbool(const uint8_t * s);
#endif

View File

@ -1,30 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include "watchdog.h"
void wdt_init(void)
{
MCUSR = 0;
wdt_disable();
return;
}

View File

@ -1,41 +0,0 @@
/*
* =====================================================================================
*
* ________ .__ __ ________ ____ ________
* \_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
* / / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
* / \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
* \_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
* \__> \/ \/ \/ \/ \/
*
* www.optixx.org
*
*
* Version: 1.0
* Created: 07/21/2009 03:32:16 PM
* Author: david@optixx.org
*
* =====================================================================================
*/
#include <avr/wdt.h>
#ifndef __WATCHDOG_H__
#define __WATCHDOG_H__
void wdt_init(void) __attribute__ ((naked)) __attribute__ ((section(".init3")));
#define soft_reset() \
do \
{ \
wdt_enable(WDTO_500MS );\
for(;;) \
{ \
} \
} while(0)
#endif

View File

@ -1,22 +0,0 @@
--- !ditz.rubyforge.org,2008-03-06/issue
title: relocate code
desc: |-
move main code to upper page like 0xe4 and use 0x4f as shared mem window
or even combine this
code seems to reloacte and start, but ram doesn't seem accessable. broked
sprintfs
type: :bugfix
component: fatfs
release:
reporter: David <david@optixx.org>
status: :unstarted
disposition:
creation_time: 2009-06-10 14:22:10.400739 Z
references: []
id: 032fab33a68ffbeb19f1e9fa4856101996759255
log_events:
- - 2009-06-10 14:22:11.288638 Z
- David <david@optixx.org>
- created
- ""

View File

@ -0,0 +1,18 @@
--- !ditz.rubyforge.org,2008-03-06/issue
title: Test
desc: Test
type: :bugfix
component: snesram
release:
reporter: David <david@optixx.org>
status: :unstarted
disposition:
creation_time: 2009-04-20 18:13:29.104365 Z
references: []
id: 33e57a7c3ac89afc2e37880441fe0eeec05e2b3f
log_events:
- - 2009-04-20 18:13:33.543384 Z
- David <david@optixx.org>
- created
- nope

View File

@ -1,21 +0,0 @@
--- !ditz.rubyforge.org,2008-03-06/issue
title: "debug ram mapping "
desc: |-
global vars seem to be borked or miss used. seems all kind of buffers are overlapping
just reordering global var order renders the code unusable.
also the strange sprintf buffer conflicts seem to related to this issue
type: :bugfix
component: fatfs
release:
reporter: David <david@optixx.org>
status: :unstarted
disposition:
creation_time: 2009-06-10 14:23:44.121219 Z
references: []
id: 6498cae9de5e51829e5dbb6b8fcaa20c7a647aa6
log_events:
- - 2009-06-10 14:23:45.632999 Z
- David <david@optixx.org>
- created
- ""

View File

@ -1,20 +0,0 @@
--- !ditz.rubyforge.org,2008-03-06/issue
title: debug sta return val
desc: |-
debug the sta value in diskio.c
never seems to take the correct value, looks like global,local scope problem
type: :bugfix
component: fatfs
release:
reporter: David <david@optixx.org>
status: :unstarted
disposition:
creation_time: 2009-06-10 14:20:20.608109 Z
references: []
id: 99ae09d1da472e76501325424bc586f78980199e
log_events:
- - 2009-06-10 14:20:24.343929 Z
- David <david@optixx.org>
- created
- ""

View File

@ -4,7 +4,5 @@ version: "0.5"
components:
- !ditz.rubyforge.org,2008-03-06/component
name: snesram
- !ditz.rubyforge.org,2008-03-06/component
name: fatfs
releases: []

View File

@ -1,10 +0,0 @@
x 2009-10-13 Send PCB to seeed
x 2009-10-13 RS232 cable add programm header and sio lines
x 2009-10-13 Assemble No. 006 & No. 007
x 2009-10-13 Flash all cartridge with latest firmware and bootloader
x 2009-10-13 Bootloader lockbits
x 2009-10-13 Rework No. 002
x 2009-10-13 Package for Quickdev16
x 2009-10-13 Add struct for usb and communcations flags
x 2009-10-13 Mail snega2usb about OEM
x 2009-10-13 Email to seeed about the retour package

View File

@ -1,45 +0,0 @@
--------------------------------
SDcard Board
--------------------------------
Connector
1 DO -> 7
2 GND -> 6
3 VCC -> 4
4 CS -> 1
5 DI -> 2
6 CLK -> 5
-
SDcard
------------------\
| \
| 8 7 6 5 4 3 2 1 9 |
| |
1 CS
2 CMD/DI
3 GND
4 VCC
5 CLK/SCLK
6 GND
7 DAT/DO
8 --
9 --
--------------------------------
Quickdev Header
--------------------------------
top/usb
1 GND -> GND
2 ISP RST - RESET -
3 ISP SCK - PB7 - CLK
4 ISP MISO - PB6 - DI
5 ISP MOSI - PB5 - DO
6 MMC CS - PB4 - CS
7 VCC -> VCC
#define SPI_DI 6 MISO
#define SPI_DO 5 MOSI

View File

@ -1,29 +0,0 @@
________ .__ __ ________ ____ ________
\_____ \ __ __|__| ____ | | __\______ \ _______ _/_ |/ _____/
/ / \ \| | \ |/ ___\| |/ / | | \_/ __ \ \/ /| / __ \
/ \_/. \ | / \ \___| < | ` \ ___/\ / | \ |__\ \
\_____\ \_/____/|__|\___ >__|_ \/_______ /\___ >\_/ |___|\_____ /
\__> \/ \/ \/ \/ \/
___.
__ __ _____\_ |__
| | \/ ___/| __ \
| | /\___ \ | \_\ \
|____//____ >|___ /
\/ \/

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More