Compare commits

..

No commits in common. "master" and "release-5-6" have entirely different histories.

1083 changed files with 57756 additions and 33003 deletions

74
.distr
View File

@ -1,57 +1,21 @@
README
CHANGES
Action
Copyright
pm
pmfile
config.pm
h
modules/h
NEW
README
TODO
TakeAction
bin
doc
emtest
etc
fast
fcc
first
util/data
util/LLgen
modules/src/alloc
modules/src/assert
modules/src/system
modules/src/string
modules/src/read_em
modules/src/em_code
modules/src/em_mes
modules/src/print
modules/src/object
modules/src/idf
modules/src/input
modules/src/flt_arith
util/amisc
util/cmisc
util/ack
lib/descr/fe
util/arch
#util/cpp
util/cgg
util/ncgg
util/misc
util/opt
util/ego
util/topgen
util/led
lang/cem
lang/pc
lang/m2
#lang/occam
#lang/basic
mach/proto
mach/i80
mach/i86
mach/i386
plat/cpm
plat/pc86
plat/linux386
examples
h
include
modules
lang
lib
mach
man
util

8
Action
View File

@ -30,10 +30,10 @@ name "Modules"
dir modules/src
indir
end
! name "LL(1) Parser generator"
! dir util/LLgen
! action "make firstinstall && make clean"
! end
name "LL(1) Parser generator"
dir util/LLgen
action "make firstinstall && make clean"
end
name "C preprocessor"
dir util/cpp
end

35
CHANGES
View File

@ -1,35 +0,0 @@
# $Source$
# $State$
# $Revision$
6.0pre4
Fixed some minor bit-rotting issues that were preventing compilation on
modern Linux systems.
6.0pre3
Added the cpm platform. Made some optimisations to the i80 code generator,
including getting topgen up and running and adding some peephole optimiser
rules. Fixed loads of bugs in ego so that it now works on platforms that
support it (pc86 and linux386). Made the floating point work on platforms
that support it (pc86 and linux386 again). Made stdint.h work. Lots and lots
of bugfixes and tweaks everywhere.
6.0pre2
Much simplified the syscall interface by disabling libmon and instead
calling the syscalls directly. Disabled the K&R C compiler and libc because
it doesn't actually gain us anything and has a high maintenance load --- the
ANSI C compiler works fine with K&R C. Adapted the rest of the system to
build with the ANSI C compiler. Rewrote the pc86 syscall interface and added
linux386 support, using the i386 code generator. Lots and lots of bugfixes
and tweaks everywhere.
6.0pre1
First working version of the 6.0 release stream. Working frontends: both C
compilers, Pascal, Modula-2, Basic and Occam. Working backends: i86. Working
platforms: pc86, the very noddy testbed setup that produces floppy disk
images.

260
README
View File

@ -1,146 +1,148 @@
THE AMSTERDAM COMPILER KIT V6.0pre4
===================================
# $Source$
# $State$
© 1987-2005 Vrije Universiteit, Amsterdam
2010-08-08
Installing the ACK on a modern platform
=======================================
This document provides some very quick and dirty instructions for installing
the ACK on a modern platform. It is not intended as a substitute for the
real instructions, which can be found in doc/install.pr.
INTRODUCTION
============
Let me repeat myself:
The Amsterdam Compiler Kit is a complete compiler toolchain consisting of
front end compilers for a number of different languages, code generators,
support libraries, and all the tools necessary to go from source code to
executable on any of the platforms it supports.
THE FULL INSTALLATION INSTRUCTIONS ARE IN doc/install.pr.
This is an early prerelease of the apocryphal version 6.0 release. Not a
lot is supported, the build mechanism needs work, and a lot of things are
probably broken. However, what's there should be sufficient to get things
done and to evaluate how the full 6.0 release should work.
The ACK is a very large and complex package and has received minimal
maintenance for the best part of a decade. During that time, the Unix
world has moved on, and many APIs have changed. It compiles cleanly on
my, dtrg's, test machine, which is a Debian Ubuntu Linux system. Your
mileage may vary.
All disclaimers now done, now on to the good stuff:
SUPPORT
=======
Building the ACK
----------------
Languages:
I'm assuming you're using Linux here, because that's what I use. If you
don't use Linux, please let me know if you have any trouble and I'll update
the instructions.
ANSI C, Pascal, Modula 2. K&R is supported via the ANSI C compiler.
1. Configure the build.
Platforms:
To do this, run the first/first script. You will be asked several
questions.
* What is the root of the ACK source tree?
This is the directory that you have unpacked the distribution into.
For example, /home/dg/src/Ack-5.6.
* What is the root of the configuration tree?
This is the directory that the build process will use for temporary
files. You'll only need this during the compilation process; it can
be removed afterwards.
For example, /tmp/ack-conf
* What is the root of the ACK binaries?
This is the ACK's installation path; where the binaries will live.
This needs to be writable during the build process --- if you want
to install in /usr/local, you either have to make /usr/local
writable or compile as root. Sorry!
* What is your system type?
Linux isn't on the list. Choose ANY.
* Is this the system you are running on?
Yes.
* Are you satisfied?
Yes.
* What default machine do you wish to compile for?
The ACK wants to know what architecture to target if you don't manually
specify an architecture. Unfortunately, it can't generate runnable
binaries for Linux or any other modern system (except possible Solaris
on Sparc). I'd recommend you choose em44. This will produce portable
binaries using the ACK's intermediate format, which you can run using
the int interpreter.
* What kind of Unix are you running?
Linux is a mixture, but I pick SYS_5 and it works.
* Do you wish to limit the installation?
No. If you pick Yes, the script will ask detailed questions about
exactly what you want to build. Modern systems are fast enough that
we may as well build everything.
* Which system call library do you wish to use on the VAX?
I don't have a VAX; the only person I know who has one uses it to vacuum
his carpets. I pick libsysV_2 with no ill effects.
If the configuration script is happy, it will generate a script called
INSTALL.
2. Do the compilation.
pc86 produces bootable floppy disk images for 8086 PCs
linux386 produces ELF executables for PC Linux systems
cpm produces i80 CP/M .COM files
The configuration script will recommend a command line. Execute this. On
modern systems, the compilation doesn't take long.
Check the output of the configuration script for "Failed" lines. On my
system there are two:
$ grep Failed INSTALL.out
Failed for Intel 8080 download programs, see dl/Out
Failed for Intel 8080 support
You can ignore these. They aren't important.
3. Use the ACK.
Ensure that the ACK's binary directory is on your path; this is /bin in
the directory you specified during the configuration process. In my
example, this is /usr/local/bin. The /man subdirectory should go on your
manpath.
INSTALLATION
============
The version 6.0 build mechanism has been completely rewritten and is based
around the Prime Mover build tool (see http://primemover.sf.net for more
information). Installation ought to be fairly straightforward.
Requirements:
- an ANSI C compiler. Currently, I'm afraid, it's hard-coded to use gcc.
To change, try changing the variable definitions in first/c.pm. This also
needs to be available as 'cc' from the shell.
- about 20MB free in /tmp (or some other temporary directory).
- about 6MB in the target directory.
Instructions:
- edit config.pm. There's a small section at the top containing some editable
variables. Probably the only one you may want to edit is PREFIX, which
changes where the ACK installs to.
- Run:
./pm configure
...from the command line. This will write out a configuration file.
- Run:
./pm
...from the command line. This will actually do the build. This takes
about two minutes on my 1.6GHz Athlon Linux machine and about 30 on my
166MHz Pentium OpenBSD machine.
- Run:
./pm install
...from the command line (possibly with sudo). This will install the built
ACK into whatever directory you nominated in PREFIX.
The ACK should now be ready to use.
USAGE
=====
Currently I haven't sorted out all the documentation --- it's supplied in the
distribution, but not all of it gets installed yet --- so here is a quickstart
guide.
The main command to use is 'ack'. This invokes the compiler and the linker.
Some useful options include:
-m<platform> build for the specified platform
-o <file> specifies the output file
-c produce a .o file
-c.s produce a .s assembly file
-O enable optimisation
-ansi compile ANSI C (when using the C compiler)
<file> build file
ack figures out which language to use from the file extension:
.c C (ANSI or K&R)
.b Basic
.mod Modula-2
.ocm Occam 1
.p Pascal
.o object files
.s assembly files
For further information, see the man page (which actually does get
installed, but is rather out of date).
There are some (known working) example programs in the 'examples' directory.
A sample command line is:
ack -mlinux386 -O examples/paranoia.c
GOTCHAS
=======
To test your path, do: ack
This should return silently.
To test your manpath, do: man ack
This will produce the documentation for the main compiler driver.
If this works, you can remove the conf tree (/tmp/ack-conf in my example).
Gotchas
-------
There are some things you should be aware of.
- Look at plat/<PLATFORMNAME>/README for information about the two supported
platforms.
* The ACK's archiver tool is called 'arch'. This conflicts on Linux platforms
with a utility that displays the current architecture. If your compilation
occasionally fails obscurely and displays something like 'i686', you are
running afoul of this. As a workaround, rearrange your path so the ACK's
bin directory comes first --- but do be aware that some Linux system
tools may stop working.
- The library support is fairly limited; for C, it's at roughly the ANSI C
level, and for the other languages it's similar.
* By default, the ack tool will compile K&R C. Practically all C source these
days is ANSI C --- use the -ansi switch to enable ANSI mode. No, the ACK is
not C99 compatible.
- When compiling languages other than C, the ACK will usually look at the
first character of the file. If it's a #, then the file will be run through
the C preprocessor anyway.
- BSD systems may need to up the number of file descriptors (e.g.
'ulimit -n 200') before the ACK will compile.
* Not all combinations of optimisation and architectures work. This is
perfectly normal, but the combinations are not well documented. Everything
supports -O.
- The ACK uses its own .o format. You won't be able to mix the ACK's object
files and another compiler's.
DISCLAIMER
==========
Disclaimer
----------
The ACK is mature, well-tested software, but the environment in which it was
developed for and tested under is rather different from that available on
@ -163,8 +165,10 @@ Please enjoy.
David Given (dtrg on Sourceforge)
dg@cowlark.com
2010-08-08
2005-06-24, 23:53
# $Source$
# $State$
# $Revision$
# Revision history
# $Log$
# Revision 2.2 2005-06-24 23:20:41 dtrg
# Added some new readmes at the top level.
#

View File

@ -1,5 +1,3 @@
#!/bin/sh
case $# in
0) PAR='make install && make clean' ; CMD=Action ;;
1) PAR="$1" ; CMD=Action ;;

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Compile and make dependencies. First argument is the file on which the

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Compile and make dependencies. First argument is the file on which the
@ -17,5 +16,5 @@ do
;;
esac
done
$UTIL_HOME/lib.bin/cpp -d -m $cpp_args > $n 2>/dev/null
$UTIL_HOME/lib.bin/cpp -d -m $cpp_args > $n
exec $CC $*

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Compile and make dependencies. First argument is the file on which the

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Produce dependencies for all argument files

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Resolve name clashes in the files on the argument list. If these

1
bin/em.pascal Executable file
View File

@ -0,0 +1 @@
exec /usr/em/doc/em/int/em /usr/em/doc/em/int/tables ${1-e.out} core

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Create a lint library file. The name of the library file is constructed

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: Create a lint library file. The name of the library file is constructed

View File

@ -1,5 +1,3 @@
#!/bin/sh
num=`expr $1 : '.*\.\([1-8]\)'`
if [ -d $2/man ] ; then : ; else mkdir $2/man ; fi

View File

@ -1,4 +1,3 @@
#!/bin/sh
: $Id$
: remove dependencies from a makefile, write result on standard output.

View File

@ -1,71 +0,0 @@
-- ======================================================================= --
-- ACK CONFIGURATION --
-- (Edit this before building) --
-- ======================================================================= --
-- What platform to build for by default?
DEFAULT_PLATFORM = "pc86"
-- Where should the ACK put its temporary files?
ACK_TEMP_DIR = "/tmp"
-- Where is the ACK going to be installed, eventually?
PREFIX = "/usr/local"
-- ======================================================================= --
-- BROKEN ACK CONFIGURATION --
-- (Currently not editable) --
-- ======================================================================= --
-- FIXME: the following two variables must be set to their Minix variants
-- due to hard-coded references in the descr files.
-- Name of the platform-independent library directory; 'share' on modern
-- systems, 'lib' on Minix-like systems.
PLATIND = "lib"
-- Name of the platform-dependent library directory; 'lib' on modern
-- systems, 'lib.bin' on Minix-like systems.
PLATDEP = "lib.bin"
-- ======================================================================= --
-- BUILD SYSTEM CONFIGURATION --
-- (Not user servicable) --
-- ======================================================================= --
-- Absolute path to the ACK source directory.
ROOTDIR = posix.getcwd().."/"
-- Temporary directory used during the build process.
TEMPDIR = "/tmp/ack-temp/"
-- Directory in which dynamically generated header files will go during
-- the build process.
HEADERDIR = TEMPDIR.."headers/"
-- Directory in which tools used by the build process but which not actually
-- deployed with the ACK will go.
TOOLDIR = TEMPDIR.."tools/"
-- Directory in which the libraries used to build the ACK tools but which are
-- not actually deployed with the ACK will go.
LIBDIR = TEMPDIR.."lib/"
-- Staging area where the installation will be built before actually copying
-- it.
BINDIR = TEMPDIR.."staging/"
-- Directory that the pm cache goes in.
pm.intermediate_cache_dir = TEMPDIR.."pmcache/"

3
distr/Action Normal file
View File

@ -0,0 +1,3 @@
name "EM tables"
dir etc
end

16
distr/Action1 Normal file
View File

@ -0,0 +1,16 @@
name "m68k2/cg bootstrap files"
dir mach/m68k2/cg
action "make EMHOME=/proj/em/Work distr"
end
name "vax4/cg bootstrap files"
dir mach/vax4/cg
action "make EMHOME=/proj/em/Work distr"
end
name "m68020/ncg bootstrap files"
dir mach/m68020/ncg
action "make EMHOME=/proj/em/Work distr"
end
name "m68k4/cg bootstrap files"
dir mach/m68k4/cg
action "make EMHOME=/proj/em/Work distr"
end

View File

@ -1,5 +1,3 @@
#!/bin/sh
: ${CDIR=.}
${DF-:} $CDIR .distr
if test ! -r $DESTDIR/$CDIR/.distr

26
distr/f.attf Normal file
View File

@ -0,0 +1,26 @@
-- ./doc/install.pr no RCS file
-- ./h/em_mnem.h no RCS file
-- ./h/em_pseu.h no RCS file
-- ./h/em_spec.h no RCS file
-- ./lang/basic/src/y.tab.c no RCS file
-- ./lang/basic/src/y.tab.h no RCS file
-- ./lang/pc/pem/pem22.m no RCS file
-- ./lang/pc/pem/pem24.m no RCS file
-- ./lang/pc/pem/pem44.m no RCS file
-- ./lib/LLgen/incl no RCS file
-- ./lib/LLgen/rec no RCS file
-- ./mach/m68k2/cg/tables1.c no RCS file
-- ./mach/m68k2/cg/tables1.h no RCS file
-- ./mach/m68020/ncg/tables1.c no RCS file
-- ./mach/m68020/ncg/tables1.h no RCS file
-- ./mach/vax4/cg/tables1.c no RCS file
-- ./mach/vax4/cg/tables1.h no RCS file
-- ./util/LLgen/src/parser no RCS file
-- ./util/LLgen/src/LLgen.c no RCS file
-- ./util/LLgen/src/Lpars.c no RCS file
-- ./util/LLgen/src/Lpars.h no RCS file
-- ./util/LLgen/src/tokens.c no RCS file
-- ./util/data/em_flag.c no RCS file
-- ./util/data/em_mnem.c no RCS file
-- ./util/data/em_pseu.c no RCS file
-- ./util/ego/share/pop_push.h no RCS file

View File

@ -1,4 +1,3 @@
#!/bin/sh
: Utility to make a tree of symbolic links to source tree.
: Mount the source tree read-only, use this script, and then try installation.
case $# in

View File

@ -1,5 +1,3 @@
#!/bin/sh
set -e
for i in `tail +2 $DESTDIR/$1/LIST`
do

View File

@ -8,7 +8,7 @@ destdir=
srcdir=`pwd`
arch=/usr/local/bin/arch
delete=no
copy="ln"
copy=ln
# --- Options parsing -------------------------------------------------------
@ -29,11 +29,7 @@ while [ "$1" != "" ]; do
;;
-c|--copy)
copy="cp -Rp"
;;
-S|--symlink)
copy="ln -s"
copy="cp -dp"
;;
-a|--arch)
@ -48,7 +44,6 @@ while [ "$1" != "" ]; do
echo " -d --destdir <path> The directory to create the distribution in."
echo " -x --delete Erase the destination directory first."
echo " -c --copy Make physical copies of the files. (default: hardlink)"
echo " -S --symlink Make symbolic links instead of copying or hardlinking."
echo " -a --arch <path> Where the ACK 'arch' tool is."
echo " -h --help Display this message."
exit 0
@ -61,7 +56,7 @@ while [ "$1" != "" ]; do
shift
done
if [ "$destdir" = "" ]; then
if [ "$destdir" == "" ]; then
echo "You must specify a destination directory. (Try --help for help.)"
exit 1
fi
@ -84,7 +79,6 @@ process_dir() {
path=$1
cd $path
echo $PWD
# Look for a LIST file and cache the first line.
@ -94,30 +88,35 @@ process_dir() {
fi
for i in `cat $path/.distr`; do
case "$i" in
\#*) # Comment. Do nothing.
;;
*)
if [ -d $i ]; then
# This is a directory. Recurse into it.
( process_dir $path/$i )
elif [ -f $i ]; then
# This is a file.
addfile $path/$i
elif [ "$i" = "$archivename" ]; then
# Build the named archive.
if [ -d $i ]; then
# This is a directory. Recurse into it.
$arch cDr `cat LIST`
addfile $path/$archivename
else
echo "Don't know what to do with $i, listed in $PWD/.distr."
exit 1
fi
;;
esac
( process_dir $path/$i )
elif [ -f $i ]; then
# This is a file.
addfile $path/$i
elif [ "$i" = "$archivename" ]; then
# Build the named archive.
$arch cDr `cat LIST`
addfile $path/$archivename
else
(
PATH=$PATH:.
export PATH
make distr || make $i || (
echo "Don't know what to do with $i, listed in $1/.distr."
exit 1
)
if [ ! -f "$path/$i" ]; then
echo "Make failed for $i, listed in $path/.distr"
exit 1
fi
addfile $path/$i
)
fi
done
}
@ -131,7 +130,7 @@ if !(strings $arch | grep archiver > /dev/null); then
echo "architecture.)"
echo ""
echo "Press RETURN to go ahead anyway, or CTRL+C to abort."
read ignored
read
fi
# Actually do the work.
@ -141,7 +140,7 @@ echo " into destination tree: $destdir"
echo ""
if [ -e $destdir ]; then
if [ "$delete" = "yes" ]; then
if [ "$delete" == "yes" ]; then
echo "Press RETURN to erase $destdir and its contents, or CTRL+C to abort."
read
echo "Erasing..."
@ -159,18 +158,7 @@ echo "Done."
# Revision history
# $Log$
# Revision 1.5 2007-04-24 19:48:41 dtrg
# Removed bashish.
#
# Revision 1.4 2007/02/25 20:56:41 dtrg
# Performed major renovations to make the script work on OpenBSD.
#
# Revision 1.3 2007/02/24 02:05:56 dtrg
# Removed some bashish; added comment support; removed the make
# distr functionality, as nothing was using it any more and it was
# causing problems.
#
# Revision 1.2 2005/06/24 23:19:23 dtrg
# Revision 1.2 2005-06-24 23:19:23 dtrg
# Added new mkdist tool.
#
# Revision 1.1 2005/06/24 22:13:57 dtrg

View File

@ -1,5 +1,3 @@
#!/bin/sh
if [ -f $DESTDIR/$1/$2 ]
then
:

1
distr/mks Executable file
View File

@ -0,0 +1 @@
cp .distr $DESTDIR/$1

View File

@ -16,6 +16,7 @@ regadd.doc
toolkit.doc
v7bugs.doc
val.doc
LLgen
6500.doc
i80.doc
z80.doc

6
doc/ceg/Makefile Normal file
View File

@ -0,0 +1,6 @@
PIC=pic
TBL=tbl
REFER=refer
../ceg.doc: ceg.tr ceg.ref
$(PIC) ceg.tr | $(REFER) -e -p ceg.ref | $(TBL) > $@

284
doc/ceg/proposal.tr Normal file
View File

@ -0,0 +1,284 @@
.TL
Code Expander
.br
(proposal)
.SH
Introduction
.LP
The \fBcode expander\fR, \fBce\fR, is a program that translates EM-code to
objectcode. The main goal is to translate very fast. \fBce\fR is an instance
of the EM_CODE(3L)-interface. During execution of \fBce\fR, \fBce\fR will build
in core a machine independent objectfile ( NEW A.OUT(5L)). With \fBcv\fR or
with routines supplied by the user the machine independent objectcode will
be converted to a machine dependent object code. \fBce\fR needs
information about the targetmachine (e.g. the opcode's). We divide the
information into two parts:
.IP
- The description in assembly instructions of EM-code instructions.
.IP
- The description in objectcode of assembly instructions.
.LP
With these two tables we can make a \fBcode expander generator\fR which
generates a \fBce\fR. It is possible to put the information in one table
but that will probably introduce (propable) more bugs in the table. So we
divide and conquer. With this approach it is also possible to generate
assembly code ( rather yhan objectcode), wich is useful for debugging.
There is of course a link between the two tables, the link
consist of a restriction on the assembly format. Every assembly
instruction must have the following format:
.sp
INSTR ::= LABEL : MNEMONIC [ OPERAND ( "," OPERAND)* ]
.sp
.LP
\fBCeg\fR uses the following algorithm:
.IP \0\0a)
The assembly table will be converted to a (C-)routine assemble().
assemble() gets as argument a string, the assembler instruction,
and can use the MNEMONIC to execute the corresponding action in the
assembly table.
.IP \0\0b)
The routine assemble() can now be used to convert the EM-code table to
a set of C-routines, wich together form an instance of the
EM_CODE(3L).
.SH
The EM-instruction table
.LP
We use the following grammar:
.sp
.TS
center box ;
l.
TABLE ::= (ROW)*
ROW ::= C_instr ( SPECIAL | SIMPLE)
SPECIAL ::= ( CONDITION SIMPLE)+ 'default' SIMPLE
SIMPLE ::= '==>' ACTIONLIST | '::=' ACTIONLIST
ACTIONLIST ::= [ ACTION ( ';' ACTION)* ] '.'
ACTION ::= function-call | assembly-instruction
.TE
.LP
An example for the 8086:
.LP
.DS
C_lxl
$arg1 == 0 ==> "push bp".
$arg1 == 1 ==> "push EM_BSIZE(bp)".
default ==> "mov cx, $arg1";
"mov si, bp";
"1: mov si, EM_BSIZE(si);
"loop 1b"
"push si".
.DE
.sp
Some remarks:
.sp
* The C_instr is a function indentifier in the EM_CODE(3L)-interface.
.LP
* CONDITION is a "boolean" C-expression.
.LP
* The arguments of an EM-instruction can be used in CONDITION and in assembly
instructions. They are referred by $arg\fIi\fR. \fBceg\fR modifies the
arguments as follows:
.IP \0\0-
For local variables at positive offsets it increases this offset by EM_BSIZE
.IP \0\0-
It makes names en labels unique. The user must supply the formats (see mach.h).
.LP
* function-call is allowed to implement e.g. push/pop optimization.
For example:
.LP
.DS
C_adi
$arg1 == 2 ==> combine( "pop ax");
combine( "pop bx");
"add ax, bx";
save( "push ax").
default ==> arg_error( "C_adi", $arg1).
.DE
.LP
* The C-functions called in the EM-instructions table have to use the routine
assemble()/gen?(). "assembler-instr" is in fact assemble( "assembler-instr").
.LP
* \fBceg\fR takes care not only about the conversions of arguments but also
about
changes between segments. There are situation when one doesn't want
conversion of arguments. This can be done by using ::= in stead of ==>.
This is usefull when two C_instr are equivalent. For example:
.IP
C_slu ::= C_sli( $arg1)
.LP
* There are EM-CODE instructions wich are machine independent (e.g. C_open()).
For these EM_CODE instructions \fBceg\fR will generate \fIdefault\fR-
instructions. There is one exception: in the case of C_pro() the tablewriter
has to supply a function prolog().
.LP
* Also the EM-pseudoinstructions C_bss_\fIcstp\fR(), C_hol_\fIcstp\fR(),
C_con_\fIcstp\fR() and C_rom_\fIcstp\fR can be translated automaticly.
\fBceg\fR only has to know how to interpretate string-constants:
.DS
\&..icon $arg2 == 1 ==> gen1( (char) atoi( $arg1))
$arg2 == 2 ==> gen2( atoi( $arg1))
$arg2 == 4 ==> gen4( atol( $arg1))
\&..ucon $arg2 == 1 ==> gen1( (char) atoi( $arg1))
$arg2 == 2 ==> gen2( atoi( $arg1))
$arg2 == 4 ==> gen4( atol( $arg1))
\&..fcon ::= not_implemented( "..fcon")
.DE
.LP
* Still, life can be made easier for the tablewriter; For the routines wich
he/she didn't implement \fBceg\fR will generate a default instruction wich
generates an error-message. \fBceg\fR seems to generate :
.IP
C_xxx ::= not_implemented( "C_xxx")
.SH
The assembly table
.LP
How to map assembly on objectcode.
.LP
Each row in the table consists of two fields, one field for the assembly
instruction, the other field for the corresponding objectcode. The tablewriter
can use the following primitives to generate code for the machine
instructions :
.IP "\0\0gen1( b)\0\0:" 17
generates one byte in de machine independent objectfile.
.IP "\0\0gen2( w)\0\0:" 17
generates one word ( = two bytes), the table writer can change the byte
order by setting the flag BYTES_REVERSED.
.IP "\0\0gen4( l)\0\0:" 17
generates two words ( = four bytes), the table writer can change the word
order by setting the flag WORDS_REVERSED.
.IP "\0\0reloc( n, o, r)\0\0:" 17
generates relocation information for a label ( = name + offset +
relocationtype).
.LP
Besides these primitives the table writer may use his self written
C-functions. This allows the table writer e.g. to write functions to set
bitfields within a byte.
.LP
There are more or less two methods to encode the assembly instructions:
.IP \0\0a)
MNEMONIC and OPERAND('s) are encoded independently of each other. This can be
done when the target machine has an orthogonal instruction set (e.g. pdp-11).
.IP \0\0b)
MNEMONIC and OPERAND('s) together determine the opcode. In this case the
assembler often uses overloading: one MNEMONIC is used for several
different machine-instructions. For example : (8086)
.br
mov ax, bx
.br
mov ax, variable
.br
These instructions have different opcodes.
.LP
As the transformation MNEMONIC-OPCODE is not one to
one the table writer must be allowed to put restrictions on the operands.
This can be done with type declarations. For example:
.LP
.DS
mov dst:REG, src:MEM ==>
gen1( 0x8b);
modRM( op2.reg, op1);
.DE
.DS
mov dst:REG, src:REG ==>
gen1( 0x89);
modRM( op2.reg, op1);
.DE
.LP
modRM() is a function written by the tablewriter and is used to encode
the operands. This frees the table writer of endless typing.
.LP
The table writer has to do the "typechecking" by himself. But typechecking
is almost the same as operand decoding. So it's more efficient to do this
in one function. We now have all the tools to describe the function
assemble().
.IP
assemble() first calls the function
decode_operand() ( by the table writer written), with two arguments: a
string ( the operand) and a
pointer to a struct. The struct is declared by the table writer and must
consist of at least a field called type. ( the other fields in the struct can
be used to remember information about the decoded operand.) Now assemble()
fires a row wich is selected by mapping the MNEMONIC and the type of the
operands.
.br
In the second field of a row there may be references to other
fields in the struct (e.g. op2.reg in the example above).
.LP
We ignored one problem. It's possible when the operands are encoded, that
not everything is known. For example $arg\fIi\fR arguments in the
EM-instruction table get their value at runtime. This problem is solved by
introducing a function eval(). eval() has a string as argument and returns
an arith. The string consists of constants and/or $arg\fIi\fR's and the value
returned by eval() is the value of the string. To encode the $arg\fIi\fR's
in as few bytes as possible the table writer can use the statements %if,
%else and %endif. They can be used in the same manner as #if, #else and
#endif in C and result in a runtime test. An example :
.LP
.DS
-- Some rows of the assembly table
mov dst:REG, src:DATA ==>
%if sfit( eval( src), 8) /* does the immediate-data fit in 1 byte? */
R53( 0x16 , op1.reg);
gen1( eval( src));
%else
R53( 0x17 , op1.reg);
gen2( eval( src));
%endif
.LD
mov dst:REG, src:REG ==>
gen1( 0x8b);
modRM( op1.reg, op2);
.DE
.DS
-- The corresponding part in the function assemble() :
case MNEM_mov :
decode_operand( arg1, &op1);
decode_operand( arg2, &op2);
if ( REG( op1.type) && DATA( op2.type)) {
printf( "if ( sfit( %s, 8)) {\\\\n", eval( src));
R53( 0x16 , op1.reg);
printf( "gen1( %s)\\\\n", eval( arg2));
printf( "}\\\\nelse {\\\\n");
R53( 0x17 , op1.reg);
printf( "gen2( %s)\\\\n", eval( arg2));
printf( "}\\\\n");
}
else if ( REG( op1.type) && REG( op2.type)) {
gen1( 0x8b);
modRM( op1.reg, op2);
}
.DE
.DS
-- Some rows of the right part of the EM-instruction table are translated
-- in the following C-functions.
"mov ax, $arg1" ==>
if ( sfit( w, 8)) { /* w is the actual argument of C_xxx( w) */
gen1( 176); /* R53() */
gen1( w);
}
else {
gen1( 184);
gen2( w);
}
.LD
"mov ax, bx" ==>
gen1( 138);
gen1( 99); /* modRM() */
.DE
.SH
Restrictions
.LP
.IP \0\01)
The EM-instructions C_exc() is not implemented.
.IP \0\03)
All messages are ignored.

276
doc/ceg/prototype.tr Normal file
View File

@ -0,0 +1,276 @@
.TL
A prototype Code expander
.NH
Introduction
.PP
A program to be compiled with ACK is first fed into the preprocessor.
The output of the preprocessor goes into the appropiate front end,
whose job it is to produce EM. The EM code generated is
fed into the peephole optimizer, wich scans it with a window of few
instructions, replacing certain inefficient code sequences by better
ones. Following the peephole optimizer follows a backend wich produces
good assembly code. The assembly code goes into the assembler and the objectcode
then goes into the loader/linker, the final component in the pipeline.
.PP
For various applications this scheme is too slow. For example for testing
programs; In this case the program has to be translated fast and the
runtime of the objectcode may be slower. A solution is to build a code
expander ( \fBce\fR) wich translates EM code to objectcode. Of course this
has to
be done automaticly by a code expander generator, but to get some feeling
for the problem we started out to build prototypes.
We built two types of ce's. One wich tranlated EM to assembly, one
wich translated EM to objectcode.
.NH
EM to assembly
.PP
We made one for the 8086 and one for the vax4. These ce's are instances of the
EM_CODE(3L)-interface and produce for a single EM instruction a set
of assembly instruction wich are semantic equivalent.
We implemented in the 8086-ce push/pop-optimalization.
.NH
EM to objectcode
.PP
Instead of producing assembly code we tried to produce vax4-objectcode.
During execution of ce, ce builds in core a machine independent
objectfile ( NEW A.OUT(5L)) and just before dumping the tables this
objectfile is converted to a Berkly 4.2BSD a.out-file. We build two versions;
One with static memory allocation and one with dynamic memory allocation.
If the first one runs out of memory it will give an error message and stop,
the second one will allocate more memory and proceed with producing
objectcode.
.PP
The C-frontend calls the EM_CODE-interface. So after linking the frontend
and the ce we have a pipeline in a program saving a lot of i/o.
It is interesting to compare this C-compiler ( called fcemcom) with "cc -c".
fcemcom1 (the dynamic variant of fcemcom) is tuned in such a way, that
alloc() won't be called.
.NH 2
Compile time
.PP
fac.c is a small program that produces n! ( see below). foo.c is small program
that loops a lot.
.TS
center, box, tab(:);
c | c | c | c | c | c
c | c | n | n | n | n.
compiler : program : real : user : sys : object size
=
fcemcom : sort.c : 31.0 : 17.5 : 1.8 : 23824
fcemcom1 : : 59.0 : 21.2 : 3.3 :
cc -c : : 50.0 : 38.0 : 3.5 : 6788
_
fcemcom : ed.c : 37.0 : 23.6 : 2.3 : 41744
fcemcom1 : : 1.16.0 : 28.3 : 4.6 :
cc -c : : 1.19.0 : 54.8 : 4.3 : 11108
_
fcemcom : cp.c : 4.0 : 2.4 : 0.8 : 4652
fcemcom1 : : 9.0 : 3.0 : 1.0 :
cc -c : : 8.0 : 5.2 : 1.6 : 1048
_
fcemcom : uniq.c : 5.0 : 2.5 : 0.8 : 5568
fcemcom1 : : 9.0 : 2.9 : 0.8 :
cc -c : : 13.0 : 5.4 : 2.0 : 3008
_
fcemcom : btlgrep.c : 24.0 : 7.2 : 1.4 : 12968
fcemcom1 : : 23.0 : 8.1 : 1.2 :
cc -c : : 1.20.0 : 15.3 : 3.8 : 2392
_
fcemcom : fac.c : 1.0 : 0.1 : 0.5 : 216
fecmcom1 : : 2.0 : 0.2 : 0.5 :
cc -c : : 3.0 : 0.7 : 1.3 : 92
_
fcemcom : foo.c : 4.0 : 0.2 : 0.5 : 272
fcemcom1 : : 11.0 : 0.3 : 0.5 :
cc -c : : 7.0 : 0.8 : 1.6 : 108
.TE
.NH 2
Run time
.LP
Is the runtime very bad?
.TS
tab(:), box, center;
c | c | c | c | c
c | c | n | n | n.
compiler : program : real : user : system
=
fcem : sort.c : 22.0 : 17.5 : 1.5
cc : : 5.0 : 2.4 : 1.1
_
fcem : btlgrep.c : 1.58.0 : 27.2 : 4.2
cc : : 12.0 : 3.6 : 1.1
_
fcem : foo.c : 1.0 : 0.7 : 0.1
cc : : 1.0 : 0.4 : 0.1
_
fcem : uniq.c : 2.0 : 0.5 : 0.3
cc : : 1.0 : 0.1 : 0.2
.TE
.NH 2
quality object code
.LP
The runtime is very bad so its interesting to have look at the code which is
produced by fcemcom and by cc -c. I took a program which computes recursively
n!.
.DS
long fac();
main()
{
int n;
scanf( "%D", &n);
printf( "fac is %D\\\\n", fac( n));
}
long fac( n)
int n;
{
if ( n == 0)
return( 1);
else
return( n * fac( n-1));
}
.DE
.br
.br
.br
.br
.LP
"cc -c fac.c" produces :
.DS
fac: tstl 4(ap)
bnequ 7f
movl $1, r0
ret
7f: subl3 $1, 4(ap), r0
pushl r0
call $1, fac
movl r0, -4(fp)
mull3 -4(fp), 4(ap), r0
ret
.DE
.br
.br
.LP
"fcem fac.c fac.o" produces :
.DS
_fac: 0
42: jmp be
48: pushl 4(ap)
4e: pushl $0
54: subl2 (sp)+,(sp)
57: tstl (sp)+
59: bnequ 61
5b: jmp 67
61: jmp 79
67: pushl $1
6d: jmp ba
73: jmp b9
79: pushl 4(ap)
7f: pushl $1
85: subl2 (sp)+,(sp)
88: calls $0,_fac
8f: addl2 $4,sp
96: pushl r0
98: pushl 4(ap)
9e: pushl $4
a4: pushl $4
aa: jsb .cii
b0: mull2 (sp)+,(sp)
b3: jmp ba
b9: ret
ba: movl (sp)+,r0
bd: ret
be: jmp 48
.DE
.NH 1
Conclusions
.PP
comparing "cc -c" with "fcemcom"
.LP
.TS
center, box, tab(:);
c | c s | c | c s
^ | c s | ^ | c s
^ | c | c | ^ | c | c
l | n | n | n | n | n.
program : compile time : object size : runtime
:_::_
: user : sys :: user : sys
=
sort.c : 0.47 : 0.5 : 3.5 : 7.3 : 1.4
_
ed.c : 0.46 : 0.5 : 3.8 : : :
_
cp.c : 0.46 : 0.5 : 4.4 : : :
_
uniq.c : 0.46 : 0.4 : 1.8 : : :
_
btlgrep.c : 0.47 : 0.3 : 5.4 : 7.5 : 3.8
_
fac.c : 0.14 : 0.4 : 2.3 : 1.8 : 1.0
_
foo.c : 0.25 : 0.3 : 2.5 : 5.0 : 1.5
.TE
.PP
The results for fcemcom1 are almost identical; The only thing that changes
is that fcemcom1 is 1.2 slower than fcemcom. ( compile time) This is due to
to an another datastructure . In the static version we use huge array's for
the text- and
data-segment, the relocation information, the symboltable and stringarea.
In the dynamic version we use linked lists, wich makes it expensive to get
and to put a byte on a abritrary memory location. So it is probably better
to use realloc(), because in the most cases there will be enough memory.
.PP
The quality of the objectcode is very bad. The reason is that the frontend
generates bad code and expects the peephole-optimizer to improve the code.
This is also one of the main reasons that the runtime is very bad.
(e.g. the expensive "cii" with arguments 4 and 4 could be deleted.)
So its seems a good
idea to put a new peephole-optimizer between the frontend and the ce.
.PP
Using the peephole optimizer the ce would produce :
.DS
_fac: 0
pushl 4(ap)
tstl (sp)+
beqlu 1f
jmp 3f
1 : pushl $1
jmp 2f
3 : pushl 4(ap)
decl (sp)
calls $0,_fac
addl2 $4,sp
pushl r0
pushl 4(ap)
mull2 (sp)+,(sp)
movl (sp)+,r0
2 : ret
.DE
.PP
Bruce McKenzy already implemented it and made some improvements in the
source code of the ce. The compile-time is two to two and a half times better
and the
size of the objectcode is two to three times bigger.(comparing with "cc -c")
Still we could do better.
.PP
Using peephole- and push/pop-optimization ce could produce :
.DS
_fac: 0
tstl 4(ap)
beqlu 1f
jmp 2f
1 : pushl $1
jmp 3f
2 : decl 4(ap)
calls $0,_fac
addl2 $4,sp
mull3 4(ap), r0, -(sp)
movl (sp)+, r0
3 : ret
.DE
.PP
prof doesn't cooperate, so no profile information.
.PP

323
doc/cref.doc Normal file
View File

@ -0,0 +1,323 @@
.\" $Header$
.nr ID 4
.de hd
'sp 2
'tl ''-%-''
'sp 3
..
.de fo
'bp
..
.tr ~
. TITLE
.de TL
.sp 15
.ce
\\fB\\$1\\fR
..
. AUTHOR
.de AU
.sp 15
.ce
by
.sp 2
.ce
\\$1
..
. DATE
.de DA
.sp 3
.ce
( Dated \\$1 )
..
. INSTITUTE
.de VU
.sp 3
.ce 4
Wiskundig Seminarium
Vrije Universteit
De Boelelaan 1081
Amsterdam
..
. PARAGRAPH
.de PP
.sp
.ti +\n(ID
..
.nr CH 0 1
. CHAPTER
.de CH
.nr SH 0 1
.bp
.in 0
\\fB\\n+(CH.~\\$1\\fR
.PP
..
. SUBCHAPTER
.de SH
.sp 3
.in 0
\\fB\\n(CH.\\n+(SH.~\\$1\\fR
.PP
..
. INDENT START
.de IS
.sp
.in +\n(ID
..
. INDENT END
.de IE
.in -\n(ID
.sp
..
.de PT
.ti -\n(ID
.ta \n(ID
.fc " @
"\\$1@"\c
.fc
..
. DOUBLE INDENT START
.de DS
.sp
.in +\n(ID
.ll -\n(ID
..
. DOUBLE INDENT END
.de DE
.ll +\n(ID
.in -\n(ID
.sp
..
. EQUATION START
.de EQ
.sp
.nf
..
. EQUATION END
.de EN
.fi
.sp
..
. ITEM
.de IT
.sp
.in 0
\\fB~\\$1\\fR
.ti +5
..
.de CS
.br
~-~\\
..
.br
.fi
.TL "Ack-C reference manual"
.AU "Ed Keizer"
.DA "September 12, 1983"
.VU
.wh 0 hd
.wh 60 fo
.CH "Introduction"
The C frontend included in the Amsterdam Compiler Kit
translates UNIX-V7 C into compact EM code [1].
The language accepted is described in [2] and [3].
This document describes which implementation dependent choices were
made in the Ack-C frontend and
some restrictions and additions.
.CH "The language"
.PP
Under the same heading as used in [2] we describe the
properties of the Ack-C frontend.
.IT "2.2 Identifiers"
External identifiers are unique up to 7 characters and allow
both upper and lower case.
.IT "2.3 Keywords"
The word \fBvoid\fP is also reserved as a keyword.
.IT "2.4.3 Character constants"
The ASCII-mapping is used when a character is converted to an
integer.
.IT "2.4.4 Floating constants"
To prevent loss of precision the compiler does not perform
floating point constant folding.
.IT "2.6 Hardware characteristics"
The size of objects of the several arithmetic types and
pointers depend on the EM-implementation used.
The ranges of the arithmetic types depend on the size used,
the C-frontend assumes two's complement representation for the
integral types.
All sizes are multiples of bytes.
The calling program \fIack\fP[4] passes information about the
size of the types to the compiler proper.
.br
However, a few general remarks must be made:
.sp 1
.IS
.PT (a)
The size of pointers is a multiple of
(or equal to) the size of an \fIint\fP.
.PT (b)
The following relations exist for the sizes of the types
mentioned:
.br
.ti +5
\fIchar<=short<=int<=long\fP
.PT (c)
Objects of type \fIchar\fP use one 8-bit byte of storage,
although several bytes are allocated sometimes.
.PT (d)
All sizes are in multiples of bytes.
.PT (e)
Most EM implementations use 4 bytes for floats and 8 bytes
for doubles, but exceptions to this rule occur.
.IE
.IT "4 What's in a name"
The type \fIvoid\fP is added.
Objects of type void do not exist.
Functions declared as returning void, do not return a value at all.
.IT "6.1 Characters and integers"
Objects of type \fIchar\fP are unsigned and do not cause
sign-extension when converted to \fIint\fP.
The range of characters values is from 0 to 255.
.IT "6.3 Floating and integral"
Floating point numbers are truncated towards zero when
converted to the integral types.
.IT "6.4 Pointers and integers"
When a \fIlong\fP is added to or subtracted from a pointer and
longs are larger then pointers the \fIlong\fP is converted to an
\fIint\fP before the operation is performed.
.IT "7.2 Unary operators"
It is allowed to cast any expression to the type \fIvoid\fP.
.IT "8.2 Type specifiers"
One type is added to the type-specifiers:
.br
.IS
void
.IE
.IT "8.5 Structure and union declarations"
The only type allowed for fields is \fIint\fP.
Fields with exactly the size of \fIint\fP are signed,
all other fields are unsigned.
.br
The size of any single structure must be less then 4096 bytes.
.IT "8.6 Initialization"
Initialization of structures containing bit fields is not
allowed.
There is one restriction when using an 'address expression' to initialize
an integral variable.
The integral variable must have the same size as a pointer.
Conversions altering the size of the address expression are not allowed.
.IT "9.10 Return statement"
Return statements of the form:
.IS
return ;
.IE
are the only form of return statement allowed in a function of type
function returning void.
.IT "10.1 External function definitions"
The total amount for storage used for parameters
in any function must be less then 4096 bytes.
The same holds for the total amount of storage occupied by the
automatic variables declared inside any function.
.sp
Using formal parameters whose size is smaller the the size of an int
is less efficient on several machines.
At procedure entry these parameters are converted from integer to the
declared type, because the compiler doesn't know where the least
significant bytes are stored in the int.
.IT "11.2 Scope of externals"
Most C compilers are rather lax in enforcing the restriction
that only one external definition without the keyword
\fIextern\fP is allowed in a program.
The Ack-C frontend is very strict in this.
The only exception is that declarations of arrays with a
missing first array bounds expression are regarded to have an
explicit keyword \fIextern\fP.
.IT "14.4 Explicit pointer conversions"
Pointers may be larger the ints, thus assigning a pointer to an
int and back will not always result in the same pointer.
The process mentioned above works with integrals
of the same size or larger as pointers in all EM implementations
having such integrals.
When converting pointers to an integral type or vice-versa,
the pointers is seen as an unsigned int.
.br
EM guarantees that any object can be placed at a word boundary,
this allows the C-programs to use \fIint\fP pointers
as pointers to objects of any type not smaller than an \fIint\fP.
.CH "Frontend options"
The C-frontend has a few options, these are controlled
by flags:
.IS
.PT -V
This flag is followed by a sequence of letters each followed by
positive integers. Each letter indicates a
certain type, the integer following it specifies the size of
objects of that type. One letter indicates the wordsize used.
.IS
.sp 1
.TS
center tab(:);
l l16 l l.
letter:type:letter:type
w:wordsize:i:int
s:short:l:long
f:float:d:double
p:pointer::
.TE
.sp 1
All existing implementations use an integer size equal to the
wordsize.
.IE
The calling program \fIack\fP[4] provides the frontend with
this flag, with values depending on the machine used.
.sp 1
.PT -l
The frontend normally generates code to keep track of the line
number and source file name at runtime for debugging purposes.
Currently a pointer to a
string containing the filename is stored at a fixed place in
memory at each function
entry and the line number at the start of every expression.
At the return from a function these memory locations are not reset to
the values they had before the call.
Most library routines do not use this feature and thus do not
ruin the current line number and filename when called.
However, you are really unlucky when your program crashes due
to a bug in such a library function, because the line number
and filename do not indicate that something went wrong inside
the library function.
.br
Providing the flag -l to the frontend tells it not to generate
the code updating line number and file name.
This is, for example, used when translating the stdio library.
.br
When the \fIack\fP[4] is called with the -L flag it provides
the frontend with this flag.
.sp 1
.PT -Xp
When this flag is present the frontend generates a call to
the function \fBprocentry\fP at each function entry and a
call to \fBprocexit\fP at each function exit.
Both functions are provided with one parameter,
a pointer to a string containing the function name.
.br
When \fIack\fP is called with the -p flag it provides the
frontend with this flag.
.IE
.CH References
.IS
.PT [1]
A.S. Tanenbaum, Hans van Staveren, Ed Keizer and Johan
Stevenson \fIDescription of a machine architecture for use with
block structured languages\fP Informatica report IR-81.
.sp 1
.PT [2]
B.W. Kernighan and D.M. Ritchie, \fIThe C Programming
language\fP, Prentice-Hall, 1978
.PT [3]
D.M. Ritchie, \fIC Reference Manual\fP
.sp
.PT [4]
UNIX manual ack(I).

55
doc/ego/Makefile Normal file
View File

@ -0,0 +1,55 @@
REFS=-p refs.opt -p refs.stat -p refs.gen
INTRO=intro/intro?
OV=ov/ov?
IC=ic/ic?
CF=cf/cf?
IL=il/il?
SR=sr/sr?
CS=cs/cs?
SP=sp/sp?
UD=ud/ud?
LV=lv/lv?
CJ=cj/cj?
BO=bo/bo?
RA=ra/ra?
CA=ca/ca?
EGO=$(INTRO) $(OV) $(IC) $(CF) $(IL) $(SR) $(CS) $(SP) $(CJ) $(BO) \
$(UD) $(LV) $(RA) $(CA)
REFER=refer
TROFF=troff
TBL=tbl
TARGET=-Tlp
../ego.doc: refs.opt refs.stat refs.gen intro/head intro/tail $(EGO)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(EGO) intro/tail | $(TBL) > ../ego.doc
ego.f: refs.opt refs.stat refs.gen intro/head intro/tail $(EGO)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(EGO) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ego.f
intro.f: refs.opt refs.stat refs.gen intro/head intro/tail $(INTRO)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(INTRO) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > intro.f
ov.f: refs.opt refs.stat refs.gen intro/head intro/tail $(OV)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(OV) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ov.f
ic.f: refs.opt refs.stat refs.gen intro/head intro/tail $(IC)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(IC) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ic.f
cf.f: refs.opt refs.stat refs.gen intro/head intro/tail $(CF)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(CF) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > cf.f
il.f: refs.opt refs.stat refs.gen intro/head intro/tail $(IL)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(IL) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > il.f
sr.f: refs.opt refs.stat refs.gen intro/head intro/tail $(SR)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(SR) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > sr.f
cs.f: refs.opt refs.stat refs.gen intro/head intro/tail $(CS)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(CS) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > cs.f
sp.f: refs.opt refs.stat refs.gen intro/head intro/tail $(SP)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(SP) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > sp.f
cj.f: refs.opt refs.stat refs.gen intro/head intro/tail $(CJ)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(CJ) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > cj.f
bo.f: refs.opt refs.stat refs.gen intro/head intro/tail $(BO)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(BO) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > bo.f
ud.f: refs.opt refs.stat refs.gen intro/head intro/tail $(UD)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(UD) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ud.f
lv.f: refs.opt refs.stat refs.gen intro/head intro/tail $(LV)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(LV) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > lv.f
ra.f: refs.opt refs.stat refs.gen intro/head intro/tail $(RA)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(RA) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ra.f
ca.f: refs.opt refs.stat refs.gen intro/head intro/tail $(CA)
$(REFER) -sA+T -l4,2 $(REFS) intro/head $(CA) intro/tail | $(TBL) | $(TROFF) $(TARGET) -ms > ca.f

37
doc/em/Makefile Normal file
View File

@ -0,0 +1,37 @@
HOME=../..
TBL=tbl
NROFF=nroff
SUF=pr
TARGET=-Tlp
head: ../em.$(SUF)
FILES = macr.nr title.nr intro.nr mem.nr ispace.nr dspace.nr mapping.nr \
types.nr descr.nr env.nr traps.nr mach.nr assem.nr \
app.int.nr app.codes.nr app.exam.nr cont.nr
IOP=$(HOME)/etc/ip_spec.t# # to construct itables from
../em.$(SUF): $(FILES) itables dispatdummy em.i Makefile
$(TBL) $(FILES) | $(NROFF) -mkun $(TARGET) > ../em.$(SUF)
app.codes.pr: app.codes.nr itables dispatdummy
itables: $(IOP) ip.awk
awk -f ip.awk $(IOP) | sed 's/-/\\-/g' | $(TBL) >itables
dispatdummy: $(IOP) mkdispatch
mkdispatch < $(IOP) > dispatdummy
sed -f dispat1.sed < dispatdummy | $(TBL) > dispat1
sed -f dispat2.sed < dispatdummy | $(TBL) > dispat2
sed -f dispat3.sed < dispatdummy | $(TBL) > dispat3
mkdispatch: mkdispatch.c
$(CC) -I$(HOME)/h -o mkdispatch mkdispatch.c $(HOME)/lib.bin/em_data.a
.SUFFIXES : .pr .nr
.nr.pr: ; $(TBL) macr.nr $*.nr | $(NROFF) -mkun >$@
clean:
rm -f *.pr itables *.out dispatdummy dispat? *.o mkdispatch

1122
doc/em/addend.n Normal file

File diff suppressed because it is too large Load Diff

11
doc/em/app.int.nr Normal file
View File

@ -0,0 +1,11 @@
.BP
.AP "EM INTERPRETER"
.nf
.ft CW
.lg 0
.nr x \w' '
.ta \nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu
.so em.i
.ft P
.lg 1
.fi

488
doc/em/app.nr Normal file
View File

@ -0,0 +1,488 @@
.BP
.AP "EM INTERPRETER"
.nf
.ta 8 16 24 32 40 48 56 64 72 80
.so em.i
.fi
.BP
.AP "EM CODE TABLES"
The following table is used by the assembler for EM machine
language.
It specifies the opcodes used for each instruction and
how arguments are mapped to machine language arguments.
The table is presented in three columns,
each line in each column contains three or four fields.
Each line describes a range of interpreter opcodes by
specifying for which instruction the range is used, the type of the
opcodes (mini, shortie, etc..) and range for the instruction
argument.
.A
The first field on each line gives the EM instruction mnemonic,
the second field gives some flags.
If the opcodes are minis or shorties the third field specifies
how many minis/shorties are used.
The last field gives the number of the (first) interpreter
opcode.
.N 1
Flags :
.IS 3
.N 1
Opcode type, only one of the following may be specified.
.PS - 5 " "
.PT -
opcode without argument
.PT m
mini
.PT s
shortie
.PT 2
opcode with 2-byte signed argument
.PT 4
opcode with 4-byte signed argument
.PT 8
opcode with 8-byte signed argument
.PE
Secondary (escaped) opcodes.
.PS - 5 " "
.PT e
The opcode thus marked is in the secondary opcode group instead
of the primary
.PE
restrictions on arguments
.PS - 5 " "
.PT N
Negative arguments only
.PT P
Positive and zero arguments only
.PE
mapping of arguments
.PS - 5 " "
.PT w
argument must be divisible by the wordsize and is divided by the
wordsize before use as opcode argument.
.PT o
argument ( possibly after division ) must be >= 1 and is
decremented before use as opcode argument
.PE
.IE
If the opcode type is 2,4 or 8 the resulting argument is used as
opcode argument (least significant byte first).
.N
If the opcode type is mini, the argument is added
to the first opcode - if in range - .
If the argument is negative, the absolute value minus one is
used in the algorithm above.
.N
For shorties with positive arguments the first opcode is used
for arguments in the range 0..255, the second for the range
256..511, etc..
For shorties with negative arguments the first opcode is used
for arguments in the range -1..-256, the second for the range
-257..-512, etc..
The byte following the opcode contains the least significant
byte of the argument.
First some examples of these specifications.
.PS - 5
.PT "aar mwPo 1 34"
Indicates that opcode 34 is used as a mini for Positive
instruction arguments only.
The w and o indicate division and decrementing of the
instruction argument.
Because the resulting argument must be zero ( only opcode 34 may be used
), this mini can only be used for instruction argument 2.
Conclusion: opcode 34 is for "AAR 2".
.PT "adp sP 1 41"
Opcode 41 is used as shortie for ADP with arguments in the range
0..255.
.PT "bra sN 2 60"
Opcode 60 is used as shortie for BRA with arguments -1..-256,
61 is used for arguments -257..-512.
.PT "zer e- 145"
Escaped opcode 145 is used for ZER.
.PE
The interpreter opcode table:
.N 1
.IS 3
.DS B
.so itables
.DE 0
.IE
.P
The table above results in the following dispatch tables.
Dispatch tables are used by interpreters to jump to the
routines implementing the EM instructions, indexed by the next opcode.
Each line of the dispatch tables gives the routine names
of eight consecutive opcodes, preceded by the first opcode number
on that line.
Routine names consist of an EM mnemonic followed by a suffix.
The suffices show the encoding used for each opcode.
.N
The following suffices exist:
.N 1
.VS 1 0
.IS 4
.PS - 11
.PT .z
no arguments
.PT .l
16-bit argument
.PT .lw
16-bit argument divided by the wordsize
.PT .p
positive 16-bit argument
.PT .pw
positive 16-bit argument divided by the wordsize
.PT .n
negative 16-bit argument
.PT .nw
negative 16-bit argument divided by the wordsize
.PT .s<num>
shortie with <num> as high order argument byte
.PT .sw<num>
shortie with argument divided by the wordsize
.PT .<num>
mini with <num> as argument
.PT .<num>W
mini with <num>*wordsize as argument
.PE 3
<num> is a possibly negative integer.
.VS 1 1
.IE
The dispatch table for the 256 primary opcodes:
.DS B
0 loc.0 loc.1 loc.2 loc.3 loc.4 loc.5 loc.6 loc.7
8 loc.8 loc.9 loc.10 loc.11 loc.12 loc.13 loc.14 loc.15
16 loc.16 loc.17 loc.18 loc.19 loc.20 loc.21 loc.22 loc.23
24 loc.24 loc.25 loc.26 loc.27 loc.28 loc.29 loc.30 loc.31
32 loc.32 loc.33 aar.1W adf.s0 adi.1W adi.2W adp.l adp.1
40 adp.2 adp.s0 adp.s-1 ads.1W and.1W asp.1W asp.2W asp.3W
48 asp.4W asp.5W asp.w0 beq.l beq.s0 bge.s0 bgt.s0 ble.s0
56 blm.s0 blt.s0 bne.s0 bra.l bra.s-1 bra.s-2 bra.s0 bra.s1
64 cal.1 cal.2 cal.3 cal.4 cal.5 cal.6 cal.7 cal.8
72 cal.9 cal.10 cal.11 cal.12 cal.13 cal.14 cal.15 cal.16
80 cal.17 cal.18 cal.19 cal.20 cal.21 cal.22 cal.23 cal.24
88 cal.25 cal.26 cal.27 cal.28 cal.s0 cff.z cif.z cii.z
96 cmf.s0 cmi.1W cmi.2W cmp.z cms.s0 csa.1W csb.1W dec.z
104 dee.w0 del.w-1 dup.1W dvf.s0 dvi.1W fil.l inc.z ine.lw
112 ine.w0 inl.-1W inl.-2W inl.-3W inl.w-1 inn.s0 ior.1W ior.s0
120 lae.l lae.w0 lae.w1 lae.w2 lae.w3 lae.w4 lae.w5 lae.w6
128 lal.p lal.n lal.0 lal.-1 lal.w0 lal.w-1 lal.w-2 lar.W
136 ldc.0 lde.lw lde.w0 ldl.0 ldl.w-1 lfr.1W lfr.2W lfr.s0
144 lil.w-1 lil.w0 lil.0 lil.1W lin.l lin.s0 lni.z loc.l
152 loc.-1 loc.s0 loc.s-1 loe.lw loe.w0 loe.w1 loe.w2 loe.w3
160 loe.w4 lof.l lof.1W lof.2W lof.3W lof.4W lof.s0 loi.l
168 loi.1 loi.1W loi.2W loi.3W loi.4W loi.s0 lol.pw lol.nw
176 lol.0 lol.1W lol.2W lol.3W lol.-1W lol.-2W lol.-3W lol.-4W
184 lol.-5W lol.-6W lol.-7W lol.-8W lol.w0 lol.w-1 lxa.1 lxl.1
192 lxl.2 mlf.s0 mli.1W mli.2W rck.1W ret.0 ret.1W ret.s0
200 rmi.1W sar.1W sbf.s0 sbi.1W sbi.2W sdl.w-1 set.s0 sil.w-1
208 sil.w0 sli.1W ste.lw ste.w0 ste.w1 ste.w2 stf.l stf.W
216 stf.2W stf.s0 sti.1 sti.1W sti.2W sti.3W sti.4W sti.s0
224 stl.pw stl.nw stl.0 stl.1W stl.-1W stl.-2W stl.-3W stl.-4W
232 stl.-5W stl.w-1 teq.z tgt.z tlt.z tne.z zeq.l zeq.s0
240 zeq.s1 zer.s0 zge.s0 zgt.s0 zle.s0 zlt.s0 zne.s0 zne.s-1
248 zre.lw zre.w0 zrl.-1W zrl.-2W zrl.w-1 zrl.nw escape1 escape2
.DE 2
The list of secondary opcodes (escape1):
.N 1
.DS B
0 aar.l aar.z adf.l adf.z adi.l adi.z ads.l ads.z
8 adu.l adu.z and.l and.z asp.lw ass.l ass.z bge.l
16 bgt.l ble.l blm.l bls.l bls.z blt.l bne.l cai.z
24 cal.l cfi.z cfu.z ciu.z cmf.l cmf.z cmi.l cmi.z
32 cms.l cms.z cmu.l cmu.z com.l com.z csa.l csa.z
40 csb.l csb.z cuf.z cui.z cuu.z dee.lw del.pw del.nw
48 dup.l dus.l dus.z dvf.l dvf.z dvi.l dvi.z dvu.l
56 dvu.z fef.l fef.z fif.l fif.z inl.pw inl.nw inn.l
64 inn.z ior.l ior.z lar.l lar.z ldc.l ldf.l ldl.pw
72 ldl.nw lfr.l lil.pw lil.nw lim.z los.l los.z lor.s0
80 lpi.l lxa.l lxl.l mlf.l mlf.z mli.l mli.z mlu.l
88 mlu.z mon.z ngf.l ngf.z ngi.l ngi.z nop.z rck.l
96 rck.z ret.l rmi.l rmi.z rmu.l rmu.z rol.l rol.z
104 ror.l ror.z rtt.z sar.l sar.z sbf.l sbf.z sbi.l
112 sbi.z sbs.l sbs.z sbu.l sbu.z sde.l sdf.l sdl.pw
120 sdl.nw set.l set.z sig.z sil.pw sil.nw sim.z sli.l
128 sli.z slu.l slu.z sri.l sri.z sru.l sru.z sti.l
136 sts.l sts.z str.s0 tge.z tle.z trp.z xor.l xor.z
144 zer.l zer.z zge.l zgt.l zle.l zlt.l zne.l zrf.l
152 zrf.z zrl.pw dch.z exg.s0 exg.l exg.z lpb.z gto.l
.DE 2
Finally, the list of opcodes with four byte arguments (escape2).
.DS
0 loc
.DE 0
.BP
.AP "AN EXAMPLE PROGRAM"
.DS B
1 program example(output);
2 {This program just demonstrates typical EM code.}
3 type rec = record r1: integer; r2:real; r3: boolean end;
4 var mi: integer; mx:real; r:rec;
5
6 function sum(a,b:integer):integer;
7 begin
8 sum := a + b
9 end;
10
11 procedure test(var r: rec);
12 label 1;
13 var i,j: integer;
14 x,y: real;
15 b: boolean;
16 c: char;
17 a: array[1..100] of integer;
18
19 begin
20 j := 1;
21 i := 3 * j + 6;
22 x := 4.8;
23 y := x/0.5;
24 b := true;
25 c := 'z';
26 for i:= 1 to 100 do a[i] := i * i;
27 r.r1 := j+27;
28 r.r3 := b;
29 r.r2 := x+y;
30 i := sum(r.r1, a[j]);
31 while i > 0 do begin j := j + r.r1; i := i - 1 end;
32 with r do begin r3 := b; r2 := x+y; r1 := 0 end;
33 goto 1;
34 1: writeln(j, i:6, x:9:3, b)
35 end; {test}
36 begin {main program}
37 mx := 15.96;
38 mi := 99;
39 test(r)
40 end.
.DE 0
.BP
The EM code as produced by the Pascal-VU compiler is given below. Comments
have been added manually. Note that this code has already been optimized.
.DS B
mes 2,2,2 ; wordsize 2, pointersize 2
.1
rom 't.p\e000' ; the name of the source file
hol 552,-32768,0 ; externals and buf occupy 552 bytes
exp $sum ; sum can be called from other modules
pro $sum,2 ; procedure sum; 2 bytes local storage
lin 8 ; code from source line 8
ldl 0 ; load two locals ( a and b )
adi 2 ; add them
ret 2 ; return the result
end 2 ; end of procedure ( still two bytes local storage )
.2
rom 1,99,2 ; descriptor of array a[]
exp $test ; the compiler exports all level 0 procedures
pro $test,226 ; procedure test, 226 bytes local storage
.3
rom 4.8F8 ; assemble Floating point 4.8 (8 bytes) in
.4 ; global storage
rom 0.5F8 ; same for 0.5
mes 3,-226,2,2 ; compiler temporary not referenced by address
mes 3,-24,2,0 ; the same is true for i, j, b and c in test
mes 3,-22,2,0
mes 3,-4,2,0
mes 3,-2,2,0
mes 3,-20,8,0 ; and for x and y
mes 3,-12,8,0
lin 20 ; maintain source line number
loc 1
stl -4 ; j := 1
lni ; lin 21 prior to optimization
lol -4
loc 3
mli 2
loc 6
adi 2
stl -2 ; i := 3 * j + 6
lni ; lin 22 prior to optimization
lae .3
loi 8
lal -12
sti 8 ; x := 4.8
lni ; lin 23 prior to optimization
lal -12
loi 8
lae .4
loi 8
dvf 8
lal -20
sti 8 ; y := x / 0.5
lni ; lin 24 prior to optimization
loc 1
stl -22 ; b := true
lni ; lin 25 prior to optimization
loc 122
stl -24 ; c := 'z'
lni ; lin 26 prior to optimization
loc 1
stl -2 ; for i:= 1
2
lol -2
dup 2
mli 2 ; i*i
lal -224
lol -2
lae .2
sar 2 ; a[i] :=
lol -2
loc 100
beq *3 ; to 100 do
inl -2 ; increment i and loop
bra *2
3
lin 27
lol -4
loc 27
adi 2 ; j + 27
sil 0 ; r.r1 :=
lni ; lin 28 prior to optimization
lol -22 ; b
lol 0
stf 10 ; r.r3 :=
lni ; lin 29 prior to optimization
lal -20
loi 16
adf 8 ; x + y
lol 0
adp 2
sti 8 ; r.r2 :=
lni ; lin 23 prior to optimization
lal -224
lol -4
lae .2
lar 2 ; a[j]
lil 0 ; r.r1
cal $sum ; call now
asp 4 ; remove parameters from stack
lfr 2 ; get function result
stl -2 ; i :=
4
lin 31
lol -2
zle *5 ; while i > 0 do
lol -4
lil 0
adi 2
stl -4 ; j := j + r.r1
del -2 ; i := i - 1
bra *4 ; loop
5
lin 32
lol 0
stl -226 ; make copy of address of r
lol -22
lol -226
stf 10 ; r3 := b
lal -20
loi 16
adf 8
lol -226
adp 2
sti 8 ; r2 := x + y
loc 0
sil -226 ; r1 := 0
lin 34 ; note the abscence of the unnecesary jump
lae 22 ; address of output structure
lol -4
cal $_wri ; write integer with default width
asp 4 ; pop parameters
lae 22
lol -2
loc 6
cal $_wsi ; write integer width 6
asp 6
lae 22
lal -12
loi 8
loc 9
loc 3
cal $_wrf ; write fixed format real, width 9, precision 3
asp 14
lae 22
lol -22
cal $_wrb ; write boolean, default width
asp 4
lae 22
cal $_wln ; writeln
asp 2
ret 0 ; return, no result
end 226
exp $_main
pro $_main,0 ; main program
.6
con 2,-1,22 ; description of external files
.5
rom 15.96F8
fil .1 ; maintain source file name
lae .6 ; description of external files
lae 0 ; base of hol area to relocate buffer addresses
cal $_ini ; initialize files, etc...
asp 4
lin 37
lae .5
loi 8
lae 2
sti 8 ; mx := 15.96
lni ; lin 38 prior to optimization
loc 99
ste 0 ; mi := 99
lni ; lin 39 prior to optimization
lae 10 ; address of r
cal $test
asp 2
loc 0 ; normal exit
cal $_hlt ; cleanup and finish
asp 2
end 0
mes 5 ; reals were used
.DE 0
The compact code corresponding to the above program is listed below.
Read it horizontally, line by line, not column by column.
Each number represents a byte of compact code, printed in decimal.
The first two bytes form the magic word.
.N 1
.IS 3
.DS B
173 0 159 122 122 122 255 242 1 161 250 124 116 46 112 0
255 156 245 40 2 245 0 128 120 155 249 123 115 117 109 160
249 123 115 117 109 122 67 128 63 120 3 122 88 122 152 122
242 2 161 121 219 122 255 155 249 124 116 101 115 116 160 249
124 116 101 115 116 245 226 0 242 3 161 253 128 123 52 46
56 255 242 4 161 253 128 123 48 46 53 255 159 123 245 30
255 122 122 255 159 123 96 122 120 255 159 123 98 122 120 255
159 123 116 122 120 255 159 123 118 122 120 255 159 123 100 128
120 255 159 123 108 128 120 255 67 140 69 121 113 116 68 73
116 69 123 81 122 69 126 3 122 113 118 68 57 242 3 72
128 58 108 112 128 68 58 108 72 128 57 242 4 72 128 44
128 58 100 112 128 68 69 121 113 98 68 69 245 122 0 113
96 68 69 121 113 118 182 73 118 42 122 81 122 58 245 32
255 73 118 57 242 2 94 122 73 118 69 220 10 123 54 118
18 122 183 67 147 73 116 69 147 3 122 104 120 68 73 98
73 120 111 130 68 58 100 72 136 2 128 73 120 4 122 112
128 68 58 245 32 255 73 116 57 242 2 59 122 65 120 20
249 123 115 117 109 8 124 64 122 113 118 184 67 151 73 118
128 125 73 116 65 120 3 122 113 116 41 118 18 124 185 67
152 73 120 113 245 30 255 73 98 73 245 30 255 111 130 58
100 72 136 2 128 73 245 30 255 4 122 112 128 69 120 104
245 30 255 67 154 57 142 73 116 20 249 124 95 119 114 105
8 124 57 142 73 118 69 126 20 249 124 95 119 115 105 8
126 57 142 58 108 72 128 69 129 69 123 20 249 124 95 119
114 102 8 134 57 142 73 98 20 249 124 95 119 114 98 8
124 57 142 20 249 124 95 119 108 110 8 122 88 120 152 245
226 0 155 249 125 95 109 97 105 110 160 249 125 95 109 97
105 110 120 242 6 151 122 119 142 255 242 5 161 253 128 125
49 53 46 57 54 255 50 242 1 57 242 6 57 120 20 249
124 95 105 110 105 8 124 67 157 57 242 5 72 128 57 122
112 128 68 69 219 110 120 68 57 130 20 249 124 116 101 115
116 8 122 69 120 20 249 124 95 104 108 116 8 122 152 120
159 124 160 255 159 125 255
.DE 0
.IE
.MS T A 0
.ME
.BP
.MS B A 0
.ME
.CT

32
doc/em/int/Makefile Normal file
View File

@ -0,0 +1,32 @@
CFLAGS=-O
HOME=../../..
install \
all: em emdmp tables
tables: mktables $(HOME)/etc/ip_spec.t
mktables $(HOME)/etc/ip_spec.t tables
mktables: mktables.c $(HOME)/h/em_spec.h $(HOME)/h/em_flag.h \
$(HOME)/lib.bin/em_data.a $(HOME)/h/ip_spec.h
$(CC) -I$(HOME)/h -O -o mktables mktables.c $(HOME)/lib.bin/em_data.a
em.out: em.p
apc -mint -O em.p >emerrs ; mv e.out em.out
em: em.p
apc -O -i em.p >emerrs ; mv a.out em
nem.p: em.p
sed -e '/maxadr = t16/s//maxadr =t15/' -e '/maxdata = 8191; /s//maxdata = 14335;/' -e '/ adr=.*long/s// adr= 0..maxadr/' <em.p >nem.p
nem: nem.p
apc -O -i nem.p >emerrs ; mv a.out nem
emdmp: emdmp.c
$(CC) -I$(HOME)/h -I$(HOME)/config -o emdmp -O emdmp.c
cmp:
pr:
@pr em.p mktables.c emdmp.c

376
doc/em/iotrap.nr Normal file
View File

@ -0,0 +1,376 @@
.SN 8
.VS 1 0
.BP
.S1 "ENVIRONMENT INTERACTIONS"
EM programs can interact with their environment in three ways.
Two, starting/stopping and monitor calls, are dealt with in this chapter.
The remaining way to interact, interrupts, will be treated
together with traps in chapter 9.
.S2 "Program starting and stopping"
EM user programs start with a call to a procedure called
m_a_i_n.
The assembler and backends look for the definition of a procedure
with this name in their input.
The call passes three parameters to the procedure.
The parameters are similar to the parameters supplied by the
UNIX
.FS
UNIX is a Trademark of Bell Laboratories.
.FE
operating system to C programs.
These parameters are often called
.BW argc ,
.B argv
and
.BW envp .
Argc is the parameter nearest to LB and is a wordsized integer.
The other two are pointers to the first element of an array of
string pointers.
.N
The
.B argv
array contains
.B argc
strings, the first of which contains the program call name.
The other strings in the
.B argv
array are the program parameters.
.P
The
.B envp
array contains strings in the form "name=string", where 'name'
is the name of an environment variable and string its value.
The
.B envp
is terminated by a zero pointer.
.P
An EM user program stops if the program returns from the first
invocation of m_a_i_n.
The contents of the function return area are used to procure a
wordsized program return code.
EM programs also stop when traps and interrupts occur that are
not caught and when the exit monitor call is executed.
.S2 "Input/Output and other monitor calls"
EM differs from most conventional machines in that it has high level i/o
instructions.
Typical instructions are OPEN FILE and READ FROM FILE instead
of low level instructions such as setting and clearing
bits in device registers.
By providing such high level i/o primitives, the task of implementing
EM on various non EM machines is made considerably easier.
.P
I/O is initiated by the MON instruction, which expects an iocode on top
of the stack.
Often there are also parameters which are pushed on the
stack in reverse order, that is: last
parameter first.
Some i/o functions also provide results, which are returned on the stack.
In the list of monitor calls we use several types of parameters and results,
these types consist of integers and unsigneds of varying sizes, but never
smaller than the wordsize, and the two pointer types.
.N 1
The names of the types used are:
.IS 4
.PS - 10
.PT int
an integer of wordsize
.PT int2
an integer whose size is the maximum of the wordsize and 2
bytes
.PT int4
an integer whose size is the maximum of the wordsize and 4
bytes
.PT intp
an integer with the size of a pointer
.PT uns2
an unsigned integer whose size is the maximum of the wordsize and 2
.PT unsp
an unsigned integer with the size of a pointer
.PT ptr
a pointer into data space
.PE 1
.IE 0
The table below lists the i/o codes with their results and
parameters.
This list is similar to the system calls of the UNIX Version 7
operating system.
.BP
.A
To execute a monitor call, proceed as follows:
.IS 2
.N 1
.PS a 4 "" )
.PT
Stack the parameters, in reverse order, last parameter first.
.PT
Push the monitor call number (iocode) onto the stack.
.PT
Execute the MON instruction.
.PE 1
.IE
An error code is present on the top of the stack after
execution of most monitor calls.
If this error code is zero, the call performed the action
requested and the results are available on top of the stack.
Non-zero error codes indicate a failure, in this case no
results are available and the error code has been pushed twice.
This construction enables programs to test for failure with a
single instruction (~TEQ or TNE~) and still find out the cause of
the failure.
The result name 'e' is reserved for the error code.
.N 1
List of monitor calls.
.DS B
number name parameters results function
1 Exit status:int Terminate this process
2 Fork e,flag,pid:int Spawn new process
3 Read fildes:int;buf:ptr;nbytes:unsp
e:int;rbytes:unsp Read from file
4 Write fildes:int;buf:ptr;nbytes:unsp
e:int;wbytes:unsp Write on a file
5 Open string:ptr;flag:int
e,fildes:int Open file for read and/or write
6 Close fildes:int e:int Close a file
7 Wait e:int;status,pid:int2
Wait for child
8 Creat string:ptr;mode:int
e,fildes:int Create a new file
9 Link string1,string2:ptr
e:int Link to a file
10 Unlink string:ptr e:int Remove directory entry
12 Chdir string:ptr e:int Change default directory
14 Mknod string:ptr;mode,addr:int2
e:int Make a special file
15 Chmod string:ptr;mode:int2
e:int Change mode of file
16 Chown string:ptr;owner,group:int2
e:int Change owner/group of a file
18 Stat string,statbuf:ptr
e:int Get file status
19 Lseek fildes:int;off:int4;whence:int
e:int;oldoff:int4 Move read/write pointer
20 Getpid pid:int2 Get process identification
21 Mount special,string:ptr;rwflag:int
e:int Mount file system
22 Umount special:ptr e:int Unmount file system
23 Setuid userid:int2 e:int Set user ID
24 Getuid e_uid,r_uid:int2 Get user ID
25 Stime time:int4 e:int Set time and date
26 Ptrace request:int;pid:int2;addr:ptr;data:int
e,value:int Process trace
27 Alarm seconds:uns2 previous:uns2 Schedule signal
28 Fstat fildes:int;statbuf:ptr
e:int Get file status
29 Pause Stop until signal
30 Utime string,timep:ptr
e:int Set file times
33 Access string,mode:int e:int Determine file accessibility
34 Nice incr:int Set program priority
35 Ftime bufp:ptr e:int Get date and time
36 Sync Update filesystem
37 Kill pid:int2;sig:int
e:int Send signal to a process
41 Dup fildes,newfildes:int
e,fildes:int Duplicate a file descriptor
42 Pipe e,w_des,r_des:int Create a pipe
43 Times buffer:ptr Get process times
44 Profil buff:ptr;bufsiz,offset,scale:intp Execution time profile
46 Setgid gid:int2 e:int Set group ID
47 Getgid e_gid,r_gid:int Get group ID
48 Sigtrp trapno,signo:int
e,prevtrap:int See below
51 Acct file:ptr e:int Turn accounting on or off
53 Lock flag:int e:int Lock a process
54 Ioctl fildes,request:int;argp:ptr
e:int Control device
56 Mpxcall cmd:int;vec:ptr e:int Multiplexed file handling
59 Exece name,argv,envp:ptr
e:int Execute a file
60 Umask complmode:int2 oldmask:int2 Set file creation mode mask
61 Chroot string:ptr e:int Change root directory
.DE 1
Codes 0, 11, 13, 17, 31, 32, 38, 39, 40, 45, 49, 50, 52,
55, 57, 58, 62, and 63 are
not used.
.P
All monitor calls, except fork and sigtrp
are the same as the UNIX version 7 system calls.
.P
The sigtrp entry maps UNIX signals onto EM interrupts.
Normally, trapno is in the range 0 to 252.
In that case it requests that signal signo
will cause trap trapno to occur.
When given trap number -2, default signal handling is reset, and when given
trap number -3, the signal is ignored.
.P
The flag returned by fork is 1 in the child process and 0 in
the parent.
The pid returned is the process-id of the other process.
.BP
.S1 "TRAPS AND INTERRUPTS"
EM provides a means for the user program to catch all traps
generated by the program itself, the hardware, or external conditions.
This mechanism uses five instructions: LIM, SIM, SIG, TRP and RTT.
This section of the manual may be omitted on the first reading since it
presupposes knowledge of the EM instruction set.
.P
The action taken when a trap occures is determined by the value
of an internal EM trap register.
This register contains a pointer to a procedure.
Initially the pointer used is zero and all traps halt the
program with, hopefully, a useful message to the outside world.
The SIG instruction can be used to alter the trap register,
it pops a procedure pointer from the
stack into the trap register.
When a trap occurs after storing a nonzero value in the trap
register, the procedure pointed to by the trap register
is called with the trap number
as the only parameter (see below).
SIG returns the previous value of the trap register on the
stack.
Two consecutive SIGs are a no-op.
When a trap occurs, the trap register is reset to its initial
condition, to prevent recursive traps from hanging the machine up,
e.g. stack overflow in the stack overflow handling procedure.
.P
The runtime systems for some languages need to ignore some EM
traps.
EM offers a feature called the ignore mask.
It contains one bit for each of the lowest 16 trap numbers.
The bits are numbered 0 to 15, with the least significant bit
having number 0.
If a certain bit is 1 the corresponding trap never
occurs and processing simply continues.
The actions performed by the offending instruction are
described by the Pascal program in appendix A.
.N
If the bit is 0, traps are not ignored.
The instructions LIM and SIM allow copying and replacement of
the ignore mask.~
.P
The TRP instruction generates a trap, the trap number being found on the
stack.
This is, among other things,
useful for library procedures and runtime systems.
It can also be used by a low level trap procedure to pass the trap to a
higher level one (see example below).
.P
The RTT instruction returns from the trap procedure and continues after the
trap.
In the list below all traps marked with an asterisk ('*') are
considered to be fatal and it is explicitly undefined what happens if
you try to restart after the trap.
.P
The way a trap procedure is called is completely compatible
with normal calling conventions. The only way a trap procedure
differs from normal procedures is the return. It has to use RTT instead
of RET. This is necessary because the complete runtime status is saved on the
stack before calling the procedure and all this status has to be reloaded.
Error numbers are in the range 0 to 252.
The trap numbers are divided into three categories:
.IS 4
.N 1
.PS - 10
.PT ~~0-~63
EM machine errors, e.g. illegal instruction.
.PS - 8
.PT ~0-15
maskable
.PT 16-63
not maskable
.PE
.PT ~64-127
Reserved for use by compilers, run time systems, etc.
.PT 128-252
Available for user programs.
.PE 1
.IE
EM machine errors are numbered as follows:
.DS I 5
.TS
tab(@);
n l l.
0@EARRAY@Array bound error
1@ERANGE@Range bound error
2@ESET@Set bound error
3@EIOVFL@Integer overflow
4@EFOVFL@Floating overflow
5@EFUNFL@Floating underflow
6@EIDIVZ@Divide by 0
7@EFDIVZ@Divide by 0.0
8@EIUND@Undefined integer
9@EFUND@Undefined float
10@ECONV@Conversion error
16*@ESTACK@Stack overflow
17*@EHEAP@Heap overflow
18*@EILLINS@Illegal instruction
19*@EODDZ@Illegal size argument
20*@ECASE@Case error
21*@EMEMFLT@Addressing non existent memory
22*@EBADPTR@Bad pointer used
23*@EBADPC@Program counter out of range
24@EBADLAE@Bad argument of LAE
25@EBADMON@Bad monitor call
26@EBADLIN@Argument of LIN too high
27@EBADGTO@GTO descriptor error
.TE
.DE 0
.P
As an example,
suppose a subprocedure has to be written to do a numeric
calculation.
When an overflow occurs the computation has to be stopped and
the higher level procedure must be resumed.
This can be programmed as follows using the mechanism described above:
.DS B
mes 2,2,2 ; set sizes
ersave
bss 2,0,0 ; Room to save previous value of trap procedure
msave
bss 2,0,0 ; Room to save previous value of trap mask
pro calcule,0 ; entry point
lxl 0 ; fill in non-local goto descriptor with LB
ste jmpbuf+4
lor 1 ; and SP
ste jmpbuf+2
lim ; get current ignore mask
ste msave ; save it
lim
loc 16 ; bit for EFOVFL
ior 2 ; set in mask
sim ; ignore EFOVFL from now on
lpi $catch ; load procedure identifier
sig ; catch wil get all traps now
ste ersave ; save previous trap procedure identifier
; perform calculation now, possibly generating overflow
1 ; label jumped to by catch procedure
loe ersave ; get old trap procedure
sig ; refer all following trap to old procedure
asp 2 ; remove result of sig
loe msave ; restore previous mask
sim ; done now
; load result of calculation
ret 2 ; return result
jmpbuf
con *1,0,0
end
.DE 0
.VS 1 1
.DS
Example of catch procedure
pro catch,0 ; Local procedure that must catch the overflow trap
lol 2 ; Load trap number
loc 4 ; check for overflow
bne *1 ; if other trap, call higher trap procedure
gto jmpbuf ; return to procedure calcule
1 ; other trap has occurred
loe ersave ; previous trap procedure
sig ; other procedure will get the traps now
asp 2 ; remove the result of sig
lol 2 ; stack trap number
trp ; call other trap procedure
rtt ; if other procedure returns, do the same
end
.DE

2922
doc/em/itables Normal file

File diff suppressed because it is too large Load Diff

5
doc/em/print Executable file
View File

@ -0,0 +1,5 @@
case $# in
1) make "$1".t ; ntlp "$1".t^lpr ;;
*) echo $0 heeft een argument nodig ;;
esac

4
doc/em/show Executable file
View File

@ -0,0 +1,4 @@
case $# in
1) make $1.t ; ntout $1.t ;;
*) echo $0 heeft een argument nodig ;;
esac

9
doc/lint/Makefile Normal file
View File

@ -0,0 +1,9 @@
# $Header$
FP = frontpage
DOC = abstract contents chap1 chap2 chap3 chap4 chap5 chap6 chap7\
chap8 chap9 appendix_A appendix_B
../lint.doc: $(FP) $(DOC)
cat $(FP) $(DOC) > ../lint.doc

18
doc/occam/Makefile Normal file
View File

@ -0,0 +1,18 @@
EMHOME=../..
FILES= p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
PIC=pic
EQN=eqn
TBL=tbl
TARGET=-Tlp
../occam.doc: p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 channel.h.t channel.c.t
soelim $(FILES) | $(PIC) $(TARGET) | $(TBL) | $(EQN) $(TARGET) > $@
channel.h.t: $(EMHOME)/h/ocm_chan.h
ctot <$(EMHOME)/h/ocm_chan.h >channel.h.t
channel.c.t: channel.c
ctot <channel.c >channel.c.t
channel.c: $(EMHOME)/lang/occam/lib/tail_ocm.a
arch x $(EMHOME)/lang/occam/lib/tail_ocm.a channel.c

10
doc/sparc/Makefile Normal file
View File

@ -0,0 +1,10 @@
# $Header$
REFER=refer
TBL=tbl
TARGET=-Tlp
PIC=pic
GRAP=grap
../sparc.doc: refs title intro 1 2 3 4 5 A B init
$(REFER) -sA+T '-l\", ' -p refs title intro 1 2 3 4 5 A B | $(GRAP) | $(PIC) | $(TBL) | soelim > $@

8
doc/top/Makefile Normal file
View File

@ -0,0 +1,8 @@
# $Header$
REFER=refer
TBL=tbl
TARGET=-Tlp
../top.doc: top.n refs.top
$(REFER) -sA+T -l4,2 -p refs.top top.n | $(TBL) > $@

1
emtest/last Normal file
View File

@ -0,0 +1 @@
0

28
emtest/test.e Normal file
View File

@ -0,0 +1,28 @@
#define WS EM_WSIZE
#define PS EM_PSIZE
#include "test.h"
mes 2,WS,PS
mes 1
mes 4,300
.000
con "tst000"
exp $m_a_i_n
pro $m_a_i_n,0
loc 123
loc -98
; TEST 000: empty
fil .000
loc -98
bne *1
loc 123
bne *1
lin 0
nop
loc 0
ret WS
1
lin 1
nop
loc 1
ret WS
end

View File

@ -1,24 +1,21 @@
#!/bin/sh
h=${1-.}
d=${2-.}
em_table=$1
h=${2-.}
d=${3-.}
set `grep fpseu $em_table`
set `grep fpseu em_table`
p=$2
set `grep fmnem $em_table`
set `grep fmnem em_table`
m=$2
ed - $em_table <<'A' > X
ed - em_table <<'A' > X
1,/^$/g/ /s// /gp
A
ed - $em_table <<'A' | awk '{$2=$2+'$p'; print}' > Y
ed - em_table <<'A' | awk '{$2=$2+'$p'; print}' > Y
1,/^$/d
1,/^$/g/ /s// /gp
A
ed - $em_table <<'A' | awk '{print $0,'$m'+i++}' > Z
ed - em_table <<'A' | awk '{print $0,'$m'+i++}' > Z
1,/^$/d
1,/^$/d
1,/^$/g/ /s// /gp

289
etc/pc_errors Normal file
View File

@ -0,0 +1,289 @@
non-standard feature used
identifier '%s' declared twice
end of file encountered
bad line directive
unsigned real: digit of fraction expected
unsigned real: digit of exponent expected
unsigned real: too many digits (>72)
unsigned integer: too many digits (>72)
unsigned integer: overflow (>32767)
string constant: must not exceed one line
string constant: at least one character expected
string constant: double quotes not allowed (see c option)
string constant: too long (>72 chars)
bad character
identifier '%s' not declared
location counter overflow: arrays too big
location counter overflow: arrays too big
arraysize too big
variable '%s' never used
variable '%s' never assigned
the files contained in '%s' are not closed automatically
constant expected
constant: only integers and reals may be signed
constant: out of bounds
simple type expected
enumerated type: element identifier expected
enumerated type: ',' or ')' expected
enumerated type: ',' expected
enumerated type: ')' expected
subrange type: type must be scalar, but not real
subrange type: '..' expected
subrange type: type of lower and upper bound incompatible
subrange type: lower bound exceeds upper bound
array type: '[' expected
conformant array: low bound identifier expected
conformant array: '..' expected
conformant array: high bound identifier expected
conformant array: ':' expected
conformant array: index type identifier expected
array type: index type not bounded
array type: index separator or ']' expected
array type: index separator expected
array type: ']' expected
array type: 'of' expected
record variant part: tag type identifier expected
record variant part: tag type identifier expected
record variant part: type must be bounded
record variant part: 'of' expected
record variant: type of case label and tag incompatible
record variant: multiple defined case label
record variant: ',' or ':' expected
record variant: ',' expected
record variant: ':' expected
record variant: '(' expected
record variant: ')' expected
record variant part: ';' or end of variant list expected
record variant part: ';' expected
record variant part: end of variant list expected
record variant part: there must be a variant for each tag value
field list: record section expected
record section: field identifier expected
record section: ',' or ':' expected
record section: ',' expected
record section: ':' expected
field list: ';' or end of record section list expected
field list: ';' expected
field list: end of record section list expected
type expected
type: simple and pointer type may not be packed
pointer type: type identifier expected
pointer type: type identifier expected
record type: 'end' expected
set type: 'of' expected
set type: too many elements in set
set type: bad subrange of integer
set of integer: the i option dictates the number of bits (default 16)
set type: base type not bounded
file type: 'of' expected
file type: files within files not allowed
var parameter: type identifier or conformant array expected
var parameter: type identifier expected
label declaration: unsigned integer expected
label declaration: label '%i' multiple declared
label declaration: ',' or ';' expected
label declaration: ',' expected
label declaration: ';' expected
const declaration: constant identifier expected
const declaration: '=' expected
const declaration: ';' expected
const declaration: constant identifier or 'type', 'var', 'procedure', 'function' or 'begin' expected
type declaration: type identifier expected
type declaration: '=' expected
type declaration: ';' expected
type declaration: type identifier or 'var', 'procedure', 'function' or 'begin' expected
var declaration: var identifier expected
var declaration: ',' or ':' expected
var declaration: ',' expected
var declaration: ':' expected
var declaration: ';' expected
var declaration: var identifier or 'procedure', 'function' or 'begin' expected
parameter list: 'var','procedure','function' or identifier expected
parameter list: parameter identifier expected
parameter list: ',' or ':' expected
parameter list: ',' expected
parameter list: ':' expected
parameter list: type identifier expected
parameter list: ';' or ')' expected
parameter list: ';' expected
proc/func declaration: proc/func identifier expected
proc/func declaration: previous declaration of '%s' was not forward
proc/func declaration: parameter list expected
parameterlist: ')' expected
func declaration: ':' expected
func declaration: result type identifier expected
func declaration: result type must be scalar, subrange or pointer
proc/func declaration: ';' expected
proc/func declaration: block or directive expected
proc/func declaration: '%s' unknown directive
proc/func declaration: '%s' again forward declared
proc/func declaration: ';' expected
indexed variable: '[' only allowed following array variables
indexed variable: index type not compatible with declaration
indexed variable: ',' or ']' expected
indexed variable: ',' expected
assignment: standard function not allowed as destination
assignment: cannot store the function result
assignment: formal parameter function not allowed as destination
assignment: function identifier may not be de-referenced
variable: '[', '.', '^' or end of variable expected
indexed variable: ']' expected
field designator: field identifier expected
field designator: '.' only allowed following record variables
field designator: no field '%s' in this record
referenced variable: '^' not allowed following zero-terminated strings
referenced variable: '^' only allowed following pointer or file variables
variable: var or field identifier expected
call: too many actual parameters supplied
call: proc/func identifier expected
call: standard proc/func may not be used as parameter
call: parameter lists of actual and formal proc/func incompatible
call: type of actual and formal value parameter not compatible
call: array parameter not conformable
call: type of actual and formal variable parameter not similar
call: packed elements not allowed as variable parameter
call: ',' or ')' expected
call: too few actual parameters supplied
read(ln): type must be integer, char or real
write(ln): type must be integer, char, real, string or boolean
write(ln): ':', ',' or ')' expected
write(ln): field width must be integer
write(ln): ':', ',' or ')' expected
write(ln): precision must be integer
write(ln): precision may only be specified for reals
read/write: too few actual parameters supplied
read/write: standard input/output not mentioned in program heading
read/write: ',' or ')' expected
read/write: type of parameter not the same as that of the file elements
read/write: parameter list expected
readln/writeln: standard input/output not mentioned in program heading
readln/writeln: only allowed on text files
new/dispose: C-type strings not allowed here
new/dispose: ',' or ')' expected
new/dispose: too many actual parameters supplied
new/dispose: type of tagfield value is incompatible with declaration
call: '(' or end of call expected
standard proc/func: parameter list expected
standard input/output not mentioned in program heading
file variable expected
pointer variable expected
pack: ',' expected
pack: ',' expected
unpack: ',' expected
unpack: ',' expected
standard proc/func: parameter type incompatible with specification
eoln/page: text file variable expected
pack/unpack: array types are incompatible
pack/unpack: only for arrays
abs: integer or real expected
sqr: integer or real expected
ord: type must be scalar or subrange, but not real
pred/succ: type must be scalar or subrange, but not real
trunc/round: real argument required
call: ')' expected
expression: left and right operand are incompatible
set: incompatible elements
set: base type must be bounded or of type integer
set: base type upper bound exceeds maximum set element number
set: element out of range
set: ']' or element list expected
set: '..', ',' or ']' expected
set: ',' or ']' expected
set: ',' expected
factor expected
factor: ')' expected
factor: type of factor must be boolean
set: ']' expected
term: multiplying operator or end of term expected
term: '*' only defined for integers, reals and sets
term: '/' only defined for integers and reals
term: 'div' only defined for integers
term: 'mod' only defined for integers
term: 'and' only defined for booleans
simple expression: only integers and reals may be signed
simple expression: adding operator or end of simple expression expected
simple expression: '+' only defined for integers, reals and sets
simple expression: '-' only defined for integers, reals and sets
simple expression: 'or' only defined for booleans
expression: relational operator or end of expression expected
expression: set expected
expression: left operand of 'in' not compatible with base type of right operand
expression: only '=' and '<>' allowed on pointers
expression: '<' and '>' not allowed on sets
expression: comparison of arrays only allowed for strings
expression: comparison of records not allowed
expression: comparison of files not allowed
assignment: ':=' expected
assignment: left and right hand side incompatible
goto statement: unsigned integer expected
goto statement: label '%i' not declared
if statement: type of expression must be boolean
if statement: 'then' expected
if statement: 'else' or end of if statement expected
case statement: type must be scalar or subrange, but not real
case statement: 'of' expected
case statement: incompatible case label
case statement: multiple defined case label
case statement: ',' or ':' expected
case statement: ',' expected
case statement: ':' expected
case statement: ';' or 'end' expected
case statement: ';' expected
case statement: 'end' expected
repeat statement: ';' or 'until' expected
repeat statement: ';' expected
repeat statement: 'until' expected
repeat statement: type of expression must be boolean
while statement: type of expression must be boolean
while statement: 'do' expected
for statement: type of bound and control variable incompatible
for statement: control variable expected
for statement: control variable must be local
for statement: type must be scalar or subrange, but not real
for statement: ':=' expected
for statement: 'to' or 'downto' expected
for statement: upper bound not assignment compatible
for statement: 'do' expected
with statement: record variable expected
with statement: ',' or 'do' expected
with statement: ',' expected
with statement: 'do' expected
assertion: type of expression must be boolean
statement expected
label '%i' not declared
label '%i' multiple defined
statement: ':' expected
unlabeled statement expected
compound statement: ';' or 'end' expected
compound statement: ';' expected
compound statement: 'end' expected
case statement: 'end' expected
body: ';' or 'end' expected
body: ';' expected
body: label '%i' declared, but never defined
program parameter '%s' not declared
function '%s' never assigned
block: declaration or body expected
block: 'const', 'type', 'var', 'procedure', 'function' or 'begin' expected
block: 'type', 'var', 'procedure', 'function' or 'begin' expected
block: 'var', 'procedure', 'function' or 'begin' expected
block: 'procedure', 'function' or 'begin' expected
block: unsatisfied forward proc/func declaration(s)
block: 'begin' expected
block: 'end' expected
program heading: 'program' expected
program heading: program identifier expected
program heading: file identifier list expected
program heading: file identifier expected
program heading: ',' or ')' expected
program heading: ',' expected
program heading: maximum number of file arguments exceeded (12)
program heading: ')' expected
program heading: ';' expected
program: '.' expected
'program' expected
module: 'const', 'type', 'var', 'procedure' or 'function' expected
module: 'type', 'var', 'procedure' or 'function' expected
module: 'var', 'procedure' or 'function' expected
module: 'procedure' or 'function' expected
garbage at end of program

107
etc/pc_rt_errors Normal file
View File

@ -0,0 +1,107 @@
array bound error
range bound error
set bound error
integer overflow
real overflow
real underflow
divide by 0
divide by 0.0
undefined integer
real undefined
conversion error
error 11
error 12
error 13
error 14
error 15
stack overflow
heap error
illegal instruction
odd or zero byte count
case error
memory fault
bad pointer
bad program counter
bad external address
bad monitor call
bad line number
error 27
error 28
error 29
error 30
error 31
error 32
error 33
error 34
error 35
error 36
error 37
error 38
error 39
error 40
error 41
error 42
error 43
error 44
error 45
error 46
error 47
error 48
error 49
error 50
error 51
error 52
error 53
error 54
error 55
error 56
error 57
error 58
error 59
error 60
error 61
error 62
error 63
more args expected
error in exp
error in ln
error in sqrt
assertion failed
array bound error in pack
array bound error in unpack
only positive j in 'i mod j'
file not yet open
dispose error
error 74
error 75
error 76
error 77
error 78
error 79
error 80
error 81
error 82
error 83
error 84
error 85
error 86
error 87
error 88
error 89
error 90
error 91
error 92
error 93
error 94
error 95
not writable
not readable
end of file
truncated
reset error
rewrite error
close error
read error
write error
digit expected
non-ASCII char read

View File

@ -1,10 +0,0 @@
hilo.b
hilo.c
hilo.mod
hilo.ocm
hilo.p
mandelbrot.c
paranoia.c
startrek.c
startrek.doc
README

View File

@ -1,33 +0,0 @@
# $Source$
# $State$
# $Revision$
A few notes on the examples
---------------------------
This directory contains a handful of working example programs that can be
built with the ACK. They're intended as a convenient source of test code
and as a starting point when writing your own programs.
They consist of:
hilo.c ANSI C version of the Hi/Lo game
hilo.b Basic version of the Hi/Lo game
hilo.mod Modula-2 version of the Hi/Lo game
hilo.ocm Occam 1 version of the Hi/Lo game
hilo.p Pascal version of the Hi/Lo game
mandelbrot.c A simple Mandelbrot generator, using floating-point maths
paranoia.c An ancient public domain K&R C adventure game
startrek.c An even more ancient public domain ANSI C game
(uses the FPU for distance calculation)
startrek.doc Manual for above (plus in current directory when running)
Enjoy.
(startrek.c was written by David Ahl and converted to C by Chris Nystrom. See
http://www.cactus.org/%7Enystrom/startrek.html for more info.)
David Given
dg@cowlark.com
2007-02-25

View File

@ -1,39 +0,0 @@
1 ' $Source$
2 ' $State$
3 ' $Revision$
10 print "Hi there! I'm written in Basic. Before we start, what is your name?"
20 input "> ", PlayerName$
30 print
40 print "Hello, "; PlayerName$; "!"
100 gosub 1000
110 print
120 print "Would you like another go?"
130 input "> ", s$
140 s$ = left$(s$, 1)
150 if s$ = "n" or s$ = "N" then goto 200
160 print
170 print "Excellent! ";
180 goto 100
200 print
210 print "Thanks for playing --- goodbye!"
220 end
1000 print "See if you can guess my number."
1010 Number% = rnd(1) mod 100
1020 Attempts% = 1
1030 print
1040 input "> ", guess%
1050 if guess% < Number% then print: print "Try a bit higher."
1060 if guess% > Number% then print: print "Try a bit lower."
1070 if guess% = Number% then goto 1100
1080 Attempts% = Attempts% + 1
1090 goto 1030
1100 print
1110 print "You got it right in only"; Attempts%;
1120 if Attempts% = 1 then print "go"; else print "goes";
1130 print "!"
1140 return

View File

@ -1,83 +0,0 @@
/* $Source$
* $State$
* $Revision$
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
char buffer[32];
char PlayerName[32];
int Number;
int Attempts;
void reads(void)
{
char* p;
printf("> ");
fflush(stdout);
fgets(buffer, sizeof(buffer), stdin);
p = strchr(buffer, '\n');
if (p != NULL)
*p = '\0';
}
void game(void)
{
printf("See if you can guess my number.\n");
Number = rand() % 100;
Attempts = 1;
for (;;)
{
int guess;
printf("\n");
reads();
guess = atoi(buffer);
if (guess == Number)
{
printf("\nYou got it right in only %d %s!\n", Attempts,
(Attempts == 1) ? "go" : "goes");
return;
}
if (guess < Number)
printf("\nTry a bit higher.\n");
if (guess > Number)
printf("\nTry a bit lower.\n");
Attempts++;
}
}
int main(int argc, char* argv[])
{
printf("\nHi there! I'm written in C. Before we start, what is your name?\n");
reads();
strcpy(PlayerName, buffer);
printf("\nHello, %s! ", PlayerName);
for (;;)
{
game();
printf("\nWould you like another go?\n");
reads();
if ((buffer[0] == 'n') || (buffer[0] == 'N'))
{
printf("\nThanks for playing --- goodbye!\n");
exit(0);
}
printf("\nExcellent! ");
}
return 0;
}

View File

@ -1,104 +0,0 @@
(* $Source$
* $State$
* $Revision$
*)
MODULE HiLo;
FROM InOut IMPORT WriteInt, WriteLn, WriteString, ReadString, ReadInt;
FROM random IMPORT Uniform;
FROM Streams IMPORT FlushStream, OutputStream, StreamResult;
VAR
buffer : ARRAY [0..32] OF CHAR;
PROCEDURE flush;
VAR
strus : StreamResult;
BEGIN
FlushStream(OutputStream, strus);
END flush;
PROCEDURE reads;
BEGIN
WriteString("> ");
flush;
ReadString(buffer);
END reads;
PROCEDURE game;
VAR
Number : INTEGER;
Attempts : INTEGER;
guess : INTEGER;
finished : BOOLEAN;
BEGIN
WriteString("See if you can guess my number.");
WriteLn;
Number := Uniform(0, 99);
Attempts := 1;
finished := FALSE;
WHILE NOT finished DO
WriteString("> ");
flush;
ReadInt(guess);
IF guess = Number THEN
WriteLn;
WriteString("You got it right in only ");
WriteInt(Attempts, 0);
WriteString(" ");
IF Attempts = 1 THEN
WriteString("go");
ELSE
WriteString("goes");
END;
WriteString("!");
WriteLn;
finished := TRUE;
ELSIF guess < Number THEN
WriteLn;
WriteString("Try a bit higher.");
WriteLn;
ELSIF guess > Number THEN
WriteLn;
WriteString("Try a bit lower.");
WriteLn;
END;
Attempts := Attempts + 1;
END;
END game;
VAR
finished : BOOLEAN;
BEGIN
WriteLn;
WriteString("Hi there! I'm written in Modula-2. Before we start, what is your name?");
WriteLn;
reads;
WriteLn;
WriteString("Hello, ");
WriteString(buffer);
WriteString("! ");
finished := FALSE;
WHILE NOT finished DO
game;
WriteLn;
WriteString("Would you like another go?");
WriteLn;
reads;
IF (buffer[0] = 'n') OR (buffer[0] = 'N') THEN
finished := TRUE;
WriteLn;
WriteString("Thanks for playing --- goodbye!");
WriteLn;
ELSE
WriteLn;
WriteString("Excellent! ");
END;
END;
END HiLo.

View File

@ -1,131 +0,0 @@
#
-- $Source$
-- $State$
-- $Revision$
#include "dec.ocm"
-- General utilities: read and write strings.
proc puts(value s[]) =
seq i = [1 for s[byte 0]]
output ! s[byte i]
:
proc gets(var s[]) =
var length, finished, c:
seq
finished := false
length := 0
while not finished
seq
input ? c
if
c = 10
finished := true
true
seq
length := length + 1
s[byte length] := c
s[byte 0] := length
:
-- Our random number generator.
var seed:
proc randomise(value s) =
seq
seed := s
:
proc random(value range, var result) =
seq
seed := (20077 * seed) + 12345
if
seed < 0
seed := -seed
true
skip
result := seed \ range
:
-- Does the reading-in-the-name thing.
proc getname =
var seed, buffer[128]:
seq
puts("*nHi there! I'm written in Occam. Before we start, what is your name?*n")
puts("> ")
gets(buffer)
seed := 0
seq i = [1 for buffer[byte 0]]
seed := seed + buffer[byte i]
randomise(seed)
puts("*nHello, ")
puts(buffer)
puts("! ")
:
-- Plays a single game.
proc game =
var Number, Attempts, finished, guess:
seq
puts("See if you can guess my number.*n")
random(100, Number)
Attempts := 1
finished := false
while not finished
seq
puts("*n> ")
var c:
seq
c := '*s'
decin(input, guess, c)
if
guess = Number
seq
puts("*nYou got it right in only ")
decout(output, Attempts, 0)
puts(" ")
if
Attempts = 1
puts("go")
true
puts("goes")
puts("!*n")
finished := true
guess < Number
puts("*nTry a bit higher.*n")
guess > Number
puts("*nTry a bit lower.*n")
Attempts := Attempts + 1
:
var finished, buffer[128]:
seq
output ! TEXT
getname
finished := false
while not finished
seq
game
puts("*nWould you like another go?*n")
puts("> ")
gets(buffer)
if
(buffer[byte 1] = 'n') or (buffer[byte 1] = 'N')
seq
finished := true
puts("*nThanks for playing --- goodbye!*n")
true
puts("*nExcellent! ")

View File

@ -1,169 +0,0 @@
(* $Source$
* $State$
* $Revision$
*)
(*$U+ --- enables underscores in identifiers *)
program hilo(input, output);
type
string = array [0..255] of char;
var
playing : Boolean;
seed : integer;
{ This version of Pascal seems to have no random number generator I can find,
so we have to implement our own here. This is a hacked up and probably
broken version of the C library generator. }
procedure randomise(s : integer);
begin
seed := s;
end;
function random(range : integer) : integer;
begin
seed := (20077 * seed + 12345);
random := seed mod range;
end;
{ Pascal doesn't provide string input, so we interface to the read() syscall
and do it manually. But... we can't interface to read() directly because
that conflicts with a Pascal keyword. Luckily there's a private function
uread() in the ACK Pascal library that we can use instead. }
function uread(fd : integer; var buffer : char; count : integer) : integer;
extern;
function readchar : char;
var
c : char;
dummy : integer;
begin
c := chr(0);
dummy := uread(0, c, 1);
readchar := c;
end;
procedure readstring(var buffer : string; var length : integer);
var
finished : Boolean;
c : char;
begin
write('> ');
length := 0;
finished := FALSE;
seed := 0;
while not finished do
begin
c := readchar;
if (ord(c) = 10) then
finished := true
else
begin
buffer[length] := c;
length := length + 1;
end
end;
end;
procedure getname;
var
name : string;
namelen : integer;
i : integer;
seed : integer;
begin
writeln;
writeln('Hi there! I''m written in Pascal. Before we start, what is your name?');
writeln;
readstring(name, namelen);
writeln;
write('Hello, ');
seed := 0;
for i := 0 to (namelen-1) do
begin
write(name[i]);
seed := seed + ord(name[i]);
end;
randomise(seed);
write('! ');
end;
procedure game;
var
Number : integer;
Attempts : integer;
guess : integer;
begin
writeln('See if you can guess my number.');
Number := random(100);
Attempts := 0;
guess := -1;
while guess <> Number do
begin
Attempts := Attempts + 1;
write('> ');
readln(guess);
if guess < Number then
begin
writeln;
writeln('Try a bit higher.');
end;
if guess > Number then
begin
writeln;
writeln('Try a bit lower.');
end;
end;
writeln;
write('You got it right in only ', Attempts:0, ' ');
if Attempts = 1 then
write('go')
else
write('goes');
writeln('!');
end;
function question: Boolean;
var
response: char;
begin
write('> ');
readln(response);
question := not ((response = 'n') or (response = 'N'));
end;
begin
getname;
playing := TRUE;
while playing do
begin
game;
writeln;
writeln('Would you like another go?');
playing := question;
writeln;
if playing then
write('Excellent! ')
else
writeln('Thanks for playing --- goodbye!');
end;
end.

View File

@ -1,73 +0,0 @@
/* $Source$
* $State$
* $Revision$
*/
/* Adapted from code by Chris Losinger. (This is the non-obfuscated
* version...
*
* http://www.codeproject.com/cpp/mandelbrot_obfuscation.asp
*/
#include <stdlib.h>
#include <unistd.h>
enum
{
ROWS = 40,
COLUMNS = 60,
MAX_ITERATIONS = 255
};
void nl(void)
{
write(1, "\n", 1);
}
void out(int n)
{
const char* chars = "****++++++---- ";
write(1, chars + (n/16), 1);
}
int main(int argc, const char* argv[])
{
/* Size and position of the visible area. */
double view_r = -2.3, view_i = -1.0;
double zoom = 0.05;
int x, y, n;
for (y=0; y < ROWS; y++)
{
double c_i = view_i + y * zoom;
for (x=0; x < COLUMNS; x++)
{
double c_r = view_r + x*zoom;
double z_r = c_r;
double z_i = c_i;
for (n=0; n < MAX_ITERATIONS; n++)
{
double z_r2 = z_r * z_r;
double z_i2 = z_i * z_i;
/* Have we escaped? */
if (z_r2 + z_i2 > 4)
break;
/* z = z^2 + c */
z_i = 2 * z_r * z_i + c_i;
z_r = z_r2 - z_i2 + c_r;
}
out(n);
}
nl();
}
return 0;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,105 +0,0 @@
1. When you see _Command?_ printed, enter one of the legal commands
(nav, srs, lrs, pha, tor, she, dam, com, or xxx).
2. If you should type in an illegal command, you'll get a short list of
the legal commands printed out.
3. Some commands require you to enter data (for example, the 'nav' command
comes back with 'Course(1-9) ?'.) If you type in illegal data (like
negative numbers), that command will be aborted.
The galaxy is divided into an 8 X 8 quadrant grid, and each quadrant
is further divided into an 8 x 8 sector grid.
You will be assigned a starting point somewhere in the galaxy to begin
a tour of duty as commander of the starship _Enterprise_; your mission:
to seek out and destroy the fleet of Klingon warships which are menacing
the United Federation of Planets.
You have the following commands available to you as Captain of the Starship
Enterprise:
\nav\ Command = Warp Engine Control --
Course is in a circular numerical vector 4 3 2
arrangement as shown. Integer and real . . .
values may be used. (Thus course 1.5 is ...
half-way between 1 and 2. 5 ---*--- 1
...
Values may approach 9.0, which itself is . . .
equivalent to 1.0. 6 7 8
One warp factor is the size of one quadrant. COURSE
Therefore, to get from quadrant 6,5 to 5,5
you would use course 3, warp factor 1.
\srs\ Command = Short Range Sensor Scan
Shows you a scan of your present quadrant.
Symbology on your sensor screen is as follows:
<*> = Your starship's position
+K+ = Klingon battlecruiser
>!< = Federation starbase (Refuel/Repair/Re-Arm here)
* = Star
A condensed 'Status Report' will also be presented.
\lrs\ Command = Long Range Sensor Scan
Shows conditions in space for one quadrant on each side of the Enterprise
(which is in the middle of the scan). The scan is coded in the form \###\
where the units digit is the number of stars, the tens digit is the number
of starbases, and the hundreds digit is the number of Klingons.
Example - 207 = 2 Klingons, No Starbases, & 7 stars.
\pha\ Command = Phaser Control.
Allows you to destroy the Klingon Battle Cruisers by zapping them with
suitably large units of energy to deplete their shield power. (Remember,
Klingons have phasers, too!)
\tor\ Command = Photon Torpedo Control
Torpedo course is the same as used in warp engine control. If you hit
the Klingon vessel, he is destroyed and cannot fire back at you. If you
miss, you are subject to the phaser fire of all other Klingons in the
quadrant.
The Library-Computer (\com\ command) has an option to compute torpedo
trajectory for you (option 2).
\she\ Command = Shield Control
Defines the number of energy units to be assigned to the shields. Energy
is taken from total ship's energy. Note that the status display total
energy includes shield energy.
\dam\ Command = Damage Control report
Gives the state of repair of all devices. Where a negative 'State of Repair'
shows that the device is temporarily damaged.
\com\ Command = Library-Computer
The Library-Computer contains six options:
Option 0 = Cumulative Galactic Record
This option shows computer memory of the results of all previous
short and long range sensor scans.
Option 1 = Status Report
This option shows the number of Klingons, stardates, and starbases
remaining in the game.
Option 2 = Photon Torpedo Data
Which gives directions and distance from Enterprise to all Klingons
in your quadrant.
Option 3 = Starbase Nav Data
This option gives direction and distance to any starbase in your
quadrant.
Option 4 = Direction/Distance Calculator
This option allows you to enter coordinates for direction/distance
calculations.
Option 5 = Galactic /Region Name/ Map
This option prints the names of the sixteen major galactic regions
referred to in the game.

View File

@ -1,24 +1,18 @@
ack.pm
ack-custom.pm
c.pm
llgen.pm
yacc.pm
#create_dir
#cp_dir
#em_path.h.src
#first
#get_answer
#get_makepars
#get_sys
#get_sysvax
#install_tail
#limit_enquire
#limit_impl
#lint_params
#local.h.src
#mk_config
#mk_makefile
#mk_target
#target_comp
#util_comp
create_dir
cp_dir
em_path.h.src
first
get_answer
get_makepars
get_sys
get_sysvax
install_tail
limit_enquire
limit_impl
lint_params
local.h.src
mk_config
mk_makefile
mk_target
target_comp
util_comp

View File

@ -1,21 +0,0 @@
-- $Source$
-- $State$
-- Custom rules used by the ACK build process.
preprocess = simple {
class = "preprocess",
outputs = {"%U%-%I%"},
command = {
"cpp -I%HEADERDIR% %in% > %out[1]%"
}
}
-- Revision history
-- $Log$
-- Revision 1.2 2007-02-20 00:32:58 dtrg
-- Changed the 'preprocess' rule to use the system C preprocessor.
--
-- Revision 1.1 2006/07/22 00:49:48 dtrg
-- First version in CVS.
--

View File

@ -1,33 +0,0 @@
-- $Source$
-- $State$
-- Provides rules for building things with the half-built ACK itself.
ACKBUILDFLAGS = {"-m%PLATFORM%", "%OPTIMISATION%"}
ACKDEFINES = EMPTY
ACKINCLUDES = EMPTY
ackfile = simple_with_clike_dependencies {
class = "ackfile",
CINCLUDES = {REDIRECT, "ACKINCLUDES"},
command = {
"%BINDIR%bin/ack %ACKBUILDFLAGS% %ACKINCLUDES:cincludes% %ACKDEFINES:cdefines% -c -o %out% %in%"
},
outputs = {"%U%-%I%.o"},
}
ackprogram = simple {
class = "ackprogram",
command = {
"%BINDIR%bin/ack %ACKBUILDFLAGS% -o %out% %in%"
},
outputs = {"%U%-%I%"},
}
acklibrary = simple {
class = "acklibrary",
command = {
"%RM% %out% && %BINDIR%bin/aal cr %out% %in%"
},
outputs = {"%U%-%I%.a"},
}

View File

@ -1,238 +0,0 @@
-- $Id$
-- $HeadURL: https://primemover.svn.sf.net/svnroot/primemover/pm/lib/c.pm $
-- $LastChangedDate: 2007-02-24 01:37:06 +0000 (Sat, 24 Feb 2007) $
-- pm includefile to compile *host* C programs.
-- Standard Lua boilerplate.
local io_open = io.open
local string_gsub = string.gsub
local string_gfind = string.gfind
local string_find = string.find
local table_insert = table.insert
local table_getn = table.getn
local filetime = pm.filetime
-- Define some variables.
CCOMPILER = "gcc"
CXXCOMPILER = "g++"
CC = "%CCOMPILER% %CBUILDFLAGS% %CDYNINCLUDES:cincludes% %CINCLUDES:cincludes% %CDEFINES:cdefines% %CEXTRAFLAGS% -c -o %out% %in%"
CXX = "%CXXCOMPILER% %CBUILDFLAGS% %CDYNINCLUDES:cincludes% %CINCLUDES:cincludes% %CDEFINES:cdefines% %CEXTRAFLAGS% -c -o %out% %in%"
CPROGRAM = "%CCOMPILER% %CBUILDFLAGS% %CLINKFLAGS% %CEXTRAFLAGS% -o %out% %in% %CLIBRARIES:clibraries%"
CXXPROGRAM = "%CXXCOMPILER% %CBUILDFLAGS% %CLINKFLAGS% %CEXTRAFLAGS% -o %out% %in% %CLIBRARIES:clibraries%"
CLIBRARY = "rm -f %out% && ar cr %out% %in% && ranlib %out%"
CBUILDFLAGS = {"-g"}
CINCLUDES = EMPTY
CDEFINES = EMPTY
CEXTRAFLAGS = EMPTY
CLINKFLAGS = EMPTY
CDYNINCLUDES = EMPTY
CLIBRARIES = EMPTY
--- Custom string modifiers -------------------------------------------------
local function prepend(rule, arg, prefix)
if (arg == EMPTY) then
return EMPTY
end
local t = {}
for i, j in ipairs(arg) do
t[i] = prefix..j
end
return t
end
function pm.stringmodifier.cincludes(rule, arg)
return prepend(rule, arg, "-I")
end
function pm.stringmodifier.cdefines(rule, arg)
return prepend(rule, arg, "-D")
end
function pm.stringmodifier.clibraries(rule, arg)
if (arg == EMPTY) then
return EMPTY
end
local t = {}
for i, j in ipairs(arg) do
if string_find(j, "%.a$") then
t[i] = j
else
t[i] = "-l"..j
end
end
return t
end
--- Manage C file dependencies ----------------------------------------------
local dependency_cache = {}
local function calculate_dependencies(filename, includes)
-- Cache values, so we don't recalculate dependencies needlessly.
local o = dependency_cache[filename]
if o then
return o
end
local deps = {}
deps[filename] = true
local calcdeps = 0
calcdeps = function(filename, file)
file = file or io_open(filename)
if not file then
return
end
local localincludes = string_gsub(filename, "/[^/]*$", "")
if localincludes then
localincludes = {localincludes, unpack(includes)}
else
localincludes = includes
end
for line in file:lines() do
local _, _, f = string_find(line, '^[ \t]*#[ \t]*include[ \t]*["<]([^"]+)[">]')
if f then
for _, path in ipairs(localincludes) do
local subfilename = path.."/"..f
local subfile = io_open(subfilename)
if subfile then
if not deps[subfilename] then
deps[subfilename] = true
calcdeps(subfilename, subfile)
end
break
end
end
end
end
-- Explicit close to avoid having to wait for the garbage collector
-- to free up the underlying fd.
file:close()
end
calcdeps(filename)
o = {}
for i, _ in pairs(deps) do
table_insert(o, i)
end
dependency_cache[filename] = o
return o
end
-- This clause specialises 'simple' to add support for smart dependencies of C
-- files.
simple_with_clike_dependencies = simple {
class = "simple_with_clike_dependencies",
makedepends = {"%CDEPENDS%"},
__init = function(self, p)
simple.__init(self, p)
-- If we're a class, don't verify.
if ((type(p) == "table") and p.class) then
return
end
-- If dynamicheaders is an object, turn it into a singleton list.
if self.dynamicheaders then
if (type(self.dynamicheaders) ~= "table") then
self:__error("doesn't know what to do with dynamicheaders, which ",
"should be a list or an object but was a ", type(self.dynamicheaders))
end
if self.dynamicheaders.class then
self.dynamicheaders = {self.dynamicheaders}
end
end
end,
__dependencies = function(self, inputs, outputs)
local cincludes = self:__index("CINCLUDES")
if (type(cincludes) == "string") then
cincludes = {cincludes}
end
local includes = {}
for _, i in ipairs(cincludes) do
table_insert(includes, self:__expand(i))
end
local input = self:__expand(inputs[1])
local depends = calculate_dependencies(input, includes)
if not depends then
self:__error("could not determine the dependencies for ",
pm.rendertable({input}))
end
if pm.verbose then
pm.message('"', input, '" appears to depend on ',
pm.rendertable(depends))
end
return depends
end,
__buildadditionalchildren = function(self)
self.CDYNINCLUDES = {}
if self.dynamicheaders then
for _, i in ipairs(self.dynamicheaders) do
local o = i:__build()
if o[1] then
table_insert(self.CDYNINCLUDES, (string_gsub(o[1], "/[^/]*$", "")))
end
end
end
-- If no paths on the list, replace the list with EMPTY so it doesn't
-- expand to anything.
if (table_getn(self.CDYNINCLUDES) == 0) then
self.CDYNINCLUDES = EMPTY
end
end
}
-- These are the publically useful clauses.
cfile = simple_with_clike_dependencies {
class = "cfile",
command = {"%CC%"},
outputs = {"%U%-%I%.o"},
}
cxxfile = simple_with_clike_dependencies {
class = "cxxfile",
command = {"%CXX%"},
outputs = {"%U%-%I%.o"},
}
cprogram = simple {
class = "cprogram",
command = {"%CPROGRAM%"},
outputs = {"%U%-%I%"},
}
cxxprogram = simple {
class = "cxxprogram",
command = {"%CXXPROGRAM%"},
outputs = {"%U%-%I%"},
}
clibrary = simple {
class = "clibrary",
command = {
"%CLIBRARY%"
},
outputs = {"%U%-%I%.a"},
}

70
first/cc.xenix.src Normal file
View File

@ -0,0 +1,70 @@
trap "rm -f x$$.c" 0 1 2 3 15
EMHOME=/usr/em
CFLAG=0
TARGET=a.out
while :
do
case $# in
0) break;;
esac
case $1 in
-I*|-D*|-U*)
PREP=$PREP" "$1
;;
-c) CFLAG=1
;;
-o) shift
TARGET=$1
;;
-F) shift
LFLAG="-F $1"
;;
-*) FLAGS=$FLAGS" "$1
;;
*) ARG=$ARG" "$1
;;
esac
shift
done
for i in $ARG
do
case $i in
*.c)
nm=`basename $i .c`
if [ -x $EMHOME/lib/cpp ]
then
cpp=$EMHOME/lib/cpp
cppf=-P
else
cpp=/bin/cc
cppf=-E
fi
if $cpp $cppf $PREP $i > x$$.c && /bin/cc $FLAGS -c x$$.c
then
mv x$$.o $nm.o
LDARG=$LDARG" "$nm.o
else
rm -f x$$.c
exit 1
fi
rm -f x$$.c
;;
*.s)
if /bin/cc $FLAGS -c $i
then
LDARG=$LDARG" "`basename $i .s`.o
else exit 1
fi
;;
*) LDARG=$LDARG" "$i
;;
esac
done
case $CFLAG in
1) ;;
*) if /bin/cc $FLAGS $LFLAG $LDARG -o $TARGET
then :
else exit 1
fi
;;
esac

67
first/ckpath Normal file
View File

@ -0,0 +1,67 @@
rm -f ../bin/x_tpath x_tpath
echo 'Checking out your $PATH; . and $ACK/bin should be in front ...'
echo "echo $$" >../bin/x_tpath
rm -f x_tpath
chmod +x ../bin/x_tpath
case x`(x_tpath) 2>/dev/null`
in
x$$)
STAT=0 ;;
x)
(cd ../bin ; echo Sorry, `pwd` is not in your shell PATH" ($PATH)")
STAT=1 ;;
*)
echo "Sorry, there is something wrong with your PATH ($PATH)" ;;
esac
echo "echo t_$$" > X_Y_Z_
chmod +x X_Y_Z_
case x`X_Y_Z_`
in
xt_$$)
;;
x)
(cd ../bin ; echo Sorry, . is not in your shell PATH" ($PATH)")
STAT=2 ;;
*)
echo "Sorry, there is something wrong with your PATH ($PATH)" ;;
esac
rm -f X_Y_Z_
case $STAT
in
2)
;;
*)
hash -r ;;
esac
echo "echo l_$$" >x_tpath
chmod +x x_tpath
case x`(x_tpath) 2>/dev/null`
in
xl_$$)
;;
x)
(cd ../bin ; echo Sorry, . is not in your shell PATH" ($PATH)")
STAT=2 ;;
x$$)
echo Sorry, . is not in your PATH" ($PATH)" or after the ACK bin directory
STAT=3 ;;
*)
echo "Sorry, there is something wrong with your PATH ($PATH)"
STAT=4 ;;
esac
rm -f ../bin/x_tpath x_tpath
echo "echo 93" > ../bin/cat
chmod +x ../bin/cat
hash -r
case x`cat < /dev/null 2>/dev/null`
in
x93)
rm -f ../bin/cat
;;
*)
rm -f ../bin/cat
(cd ../bin ; echo Sorry, `pwd` comes too late in your PATH" ($PATH)" )
STAT=13
;;
esac
exit $STAT

View File

@ -1,5 +1,3 @@
#!/bin/sh
set -e
trap "rm -f /tmp/xx$$" 0 1 2 3 15
case $2 in

View File

@ -1,5 +1,3 @@
#!/bin/sh
if ( cd $1 ) 2>/dev/null
then
:

7
first/did_first Executable file
View File

@ -0,0 +1,7 @@
if (ack_sys ) >/dev/null 2>&1
then
exit 0
else
echo "You need to run 'first' first"
exit 1
fi

View File

@ -1,5 +1,4 @@
#! /bin/sh
case $0 in
*/first)
FDIR=`expr $0 : '\(.*\)/first'`

75
first/fixlexlib Executable file
View File

@ -0,0 +1,75 @@
FL=succes
TRIES=
case X$# in
X0)
if (.Xlex) > /dev/null 2>&1
then
TRY=`.Xlex`
else TRY=-lln
fi
echo "trying to find your lex library ..."
cat > x.l <<'EOF'
%%
[A-Z] putchar(yytext[0]+'a'-'A');
EOF
if lex x.l > /dev/null 2>&1 && cc -c lex.yy.c > /dev/null 2>&1
then :
else echo "Sorry, your lex does not seem to work"
exit 2
fi
cat > trylib <<'EOF'
if cc lex.yy.o $1 > /dev/null 2>&1
then
rm -f lex.yy.* a.out
exit 0
else
exit 1
fi
EOF
if sh trylib $TRY
then
LEX=$TRY
else
exec $0 -ll $TRY
fi
;;
*) if sh trylib $1
then
LEX=$1
else
TRIES="$2 and $1"
FL=fail
fi
;;
esac
case X$FL in
Xfail) echo 'What option do I have to give to cc to get the LEX library?'
echo "I tried " $TRIES "but these don't seem to work."
echo -n 'LEX library option: '
if read ANSWER
then :
else echo "Sorry, got EOF while reading your answer"
exit 9
fi
exec $0 $ANSWER "$TRIES"
;;
Xsucces)
for i in ../util/opt ../util/cgg ../util/ncgg ../lang/occam/comp ../modules/src/em_opt ../util/ceg/as_parser
do
( cd $i
cp Makefile makefile
ed - makefile << EOF
/^LEXLIB/c
LEXLIB = $LEX
.
w
q
EOF
)
done
;;
esac
rm -f x.l trylib lex.yy.*
echo echo "$LEX" > .Xlex
chmod +x .Xlex
echo "apparently, \"cc ... $LEX\" works"

View File

@ -1,5 +1,3 @@
#!/bin/sh
if read ANS
then echo
else echo "Sorry, got EOF when reading your answer"

View File

@ -1,5 +1,3 @@
#!/bin/sh
know_target=0
case $SYSNAME in
vax*|i386|sun*|sparc*|m68_sysV_0|m68020|mantra|pmds4|m68k4)

View File

@ -1,5 +1,3 @@
#!/bin/sh
rm -f em_path.h
echo "You will now be asked for the root directory of the ACK sources.
This directory will not be changed by the installation process.

View File

@ -1,5 +1,3 @@
#!/bin/sh
while :
do
echo $E_FLAG "Which system-call library do you want to install for the VAX?

0
first/hash Executable file
View File

View File

@ -1,5 +1,3 @@
#!/bin/sh
set -e
PATH=::$CONFIG/bin:$UTIL_HOME/bin:/usr/ccs/bin:/usr/ucb:$PATH
@ -8,15 +6,8 @@ export PATH
$SRC_HOME/first/create_dir $CONFIG
$SRC_HOME/first/create_dir $CONFIG/bin
(
# Slight complication here to ensure that the #! magic at the
# beginning of TakeAction is preserved correctly.
head -1 $SRC_HOME/TakeAction
echo "PATH=:$CONFIG/bin:$UTIL_HOME/bin:$PATH; export PATH"
tail +2 $SRC_HOME/TakeAction
) > $CONFIG/bin/TakeAction
echo "PATH=:$CONFIG/bin:$UTIL_HOME/bin:$PATH; export PATH" > $CONFIG/bin/TakeAction
cat $SRC_HOME/TakeAction >> $CONFIG/bin/TakeAction
sed '/^#PARAMS/r make_macros' < $SRC_HOME/first/mk_makefile > $CONFIG/bin/mk_makefile
cp $SRC_HOME/first/create_dir $CONFIG/bin/create_dir
cp $SRC_HOME/first/cp_dir $CONFIG/bin/cp_dir

View File

@ -1,5 +1,3 @@
#!/bin/sh
while :
do
echo "The libraries will end up in the machine-independent part of the

View File

@ -1,5 +1,3 @@
#!/bin/sh
for i in $DISABLE_LANG
do
ed -s $CONFIG/Action <<EOF

View File

@ -1,4 +1,3 @@
#!/usr/bin/make
# There are two choices for lint here: ACK lint and Unix lint.
# The current setup is for ACK lint. If you want to use the Unix lint,

View File

@ -1,37 +0,0 @@
-- $Source$
-- $State$
-- This is unpleasant. LLgen can generate an arbitrary number of output files,
-- which means we need our own output filename generator.
LLgen = simple {
class = "LLgen",
command = {
"rm -f %out%",
"cd %out[1]:dirname% && %TOOLDIR%LLgen %in%"
},
outputs = {"%U%/" },
__outputs = function(self, inputs)
local o = simple.__outputs(self, inputs)[1]
local outputs = {o.."Lpars.h", o.."Lpars.c"}
for _, i in ipairs(inputs) do
i = string.gsub(i, "^.*/", "")
i = string.gsub(i, "%.g$", ".c")
table.insert(outputs, o..i)
end
return outputs
end
}
-- Revision history
-- $Log$
-- Revision 1.2 2006-11-11 22:59:01 dtrg
-- Now uses the version of LLgen included with the ACK instead of the standalone version.
--
-- Revision 1.1 2006/07/20 23:18:18 dtrg
-- First version in CVS.
--

View File

@ -1,12 +1,9 @@
#!/bin/sh
set -e
create_dir $CONFIG
create_dir $CONFIG/bin
echo "#!/bin/sh" > $CONFIG/bin/ack_sys
echo "echo $SYSNAME" >> $CONFIG/bin/ack_sys
echo "echo $SYSNAME" > $CONFIG/bin/ack_sys
chmod +x $CONFIG/bin/ack_sys
cd $SRC_HOME

View File

@ -1,4 +1,3 @@
#!/bin/sh
: '$Id$'
: This shell script inserts make macros after a line

View File

@ -1,5 +1,3 @@
#!/bin/sh
set -e
: machine-dependant stuff

21
first/myecho.c Normal file
View File

@ -0,0 +1,21 @@
#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{
int nflag = 0;
if(argc > 1 && ! strncmp(argv[1], "-n", 2)) {
nflag++;
argc--;
argv++;
}
while (--argc > 0) {
fputs(argv[1], stdout);
argv++;
if (argc > 1) putchar(' ');
}
if (!nflag) putchar('\n');
exit(0);
}

View File

@ -1,4 +1,3 @@
#!/bin/sh
# compiler set for target machine
CC=cc# # compiler to be used for compiling ACK

View File

@ -1,4 +1,4 @@
#!/bin/sh
# compiler set for producing runnable binaries (possibly using $(UTIL_HOME)).
# This must describe the compiler with which $(UTIL_HOME) has been compiled.
# If $(TARGET_HOME) is identical to $(UTIL_HOME), which usually will be

View File

@ -1,18 +0,0 @@
yacc = simple {
class = "yacc",
outputs = {"%U%/%I%.c"},
command = {
"yacc -t -b %out[1]:dirname%/y -d %in%",
"mv %out[1]:dirname%/y.tab.c %out[1]%"
}
}
flex = simple {
class = "flex",
outputs = {"%U%/%I%.c"},
command = {
"flex -s -t %in% > %out%"
}
}

View File

@ -1,19 +1,19 @@
#Makefile
Makefile
arch.h
bc_io.h
bc_string.h
#as_spec.h
as_spec.h
cg_pattern.h
cgg_cg.h
em_abs.h
em_ego.h
em_flag.h
em_mes.h
#em_mnem.h
#em_pseu.h
em_mnem.h
em_pseu.h
em_ptyp.h
em_reg.h
#em_spec.h
em_spec.h
out.h
stb.h
pc_err.h
@ -24,6 +24,4 @@ ocm_chan.h
ocm_parco.h
ocm_proc.h
m2_traps.h
#ip_spec.h
em_table
con_float
ip_spec.h

View File

@ -6,12 +6,6 @@
#define LINO_AD 0
#define FILN_AD 4
/* ERANGE conflicts with a symbol in the ANSI C library. */
#ifdef ERANGE
#undef ERANGE
#endif
#define LINO (*(int *)(_hol0()+LINO_AD))
#define FILN (*(char **)(_hol0()+FILN_AD))

View File

@ -3,13 +3,6 @@
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* EBADF conflicts with the ANSI C definition. */
#ifdef EBADF
#undef EBADF
#endif
#define EARGC 64
#define EEXP 65
#define ELOG 66

26
h/pc_size.h Normal file
View File

@ -0,0 +1,26 @@
/* $Header$ */
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/*fundamental */
#define sz_byte 1
#define sz_bool 1
#define sz_char 1
/* target machine characteristics */
/* variable (see pc.c) */
#define sz_addr sizes[0]
#define sz_real sizes[1]
#define sz_head sizes[2]
#define sz_buff sizes[3]
#define sz_mset sizes[4]
#define sz_iset sizes[5]
#define sz_word sizes[6]
#define sz_int sizes[7]
#define sz_long sizes[8]
#define sz_last 8
#define sz_proc 2*sz_addr

View File

@ -1,19 +1,14 @@
assert.h
ctype.h
errno.h
fcntl.h
grp.h
math.h
pwd.h
setjmp.h
stdio.h
assert.h
varargs.h
math.h
time.h
pwd.h
grp.h
sgtty.h
signal.h
stdio.h
time.h
varargs.h
sys/dir.h
sys/errno.h
sys/stat.h
sys/stdtypes.h
sys/types.h
sys/timeb.h
fcntl.h
errno.h
sys

Some files were not shown because too many files have changed in this diff Show More